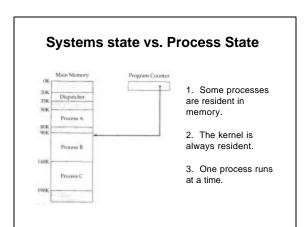
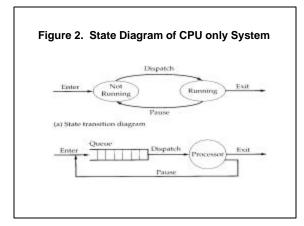
Processes and Process Control

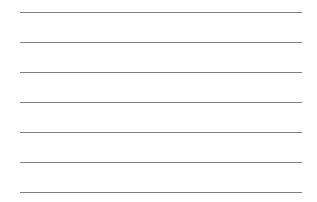

- 1. Processes and Process Control
- 2. Definitions of a Process 3. Systems state vs. Process State
- 4. A 2 State Process Model
- 5. Process Creation, what does it mean? 6. Process Termination's meaning
- 7. A Five State Model of Process Control
- A rive State Model of Process Control
 Queuing Models of Systems having I/O
 Swapping (Suspending) Processes
 CPU with I/O and Suspended State

- 11. Operations on Processes
- 12. O/S Support for Processes
- 13. O/S Global Process Structures
- 14. Memory Tables
- 15. I/O Tables
- 16. File Tables
- 17. Process Tables
- 18. Process Image
- 19. Process Control Blocks
- Process Control Dious
 Process Memory Management
 O/S Use of PCBs
- 22. O/S Kernel Services

- 23. Process Switching
- 24. Running the O/S
- 25. Processing Threads
- 26. Thread Management in Windows NT
 27. Examples MVS
- 28. MVS List Structures
- Examples Unix
 Examples Windows NT

Definitions of A Process


- 1. A program in execution
- An asynchronous activity
 the ``animated spirit" of a procedure
 the ``locus of control" of a
- program in execution
 that which is manifest by the existence of a process control block in the O/S
- 6. that entity which is assigned to
- 7. the ``dispatchable'' unit



A 2 State Process Model

CPU is the only resource for many jobs.

- 1. Enter --- Process Creation
- 2. Dispatch --- Scheduling/Queuing Discipline
- 3. Pause --- Give other jobs a chance
- 4. Exit --- Process Termination

Process Creation, what does it mean?

Some reasons for process creation include:

- A new batch job
 Interactive O/S login
 O/S created
- 4. Spawned by an existing process

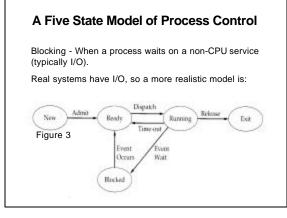
The frequency of process creation reflects the expense of creation.

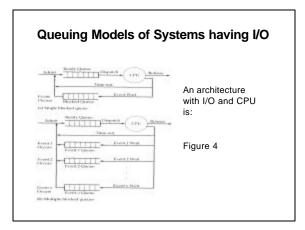
Process Termination's meaning

Some reasons for process termination include:

1. Normal Completion

- 2. Excessive Resource Use
 - a) CPU Time Outb) Insufficient Memoryc) File system full error


Process Termination's meaning (continued)


- 3. Security Violations/Programmer Errors
 - a) Illegal Address b) Illegal Instruction

 - c) Privileged Instructiond) Data Misuse (type error/
- 4. Systems Control
 - - a) Parent Job Terminated
 - b) Terminated by Parent
 - c) Operator or O/S intervention

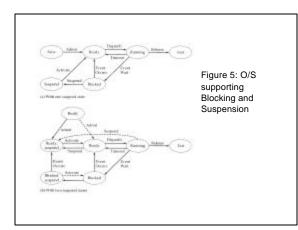
Process Termination's meaning (continued)

The frequency of process creation reflects the expense of creation.

Swapping (Suspending) Processes

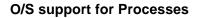
Suspending a Process - When the O/S saves the state of a non-running program from main memory to auxiliary memory.

Activation - When the O/S reloads a suspended process into main memory from auxiliary memory.

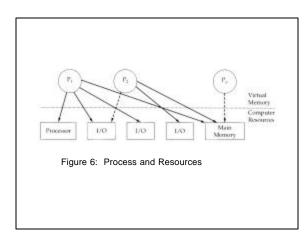

Swapping (Suspending) Processes (continued)

Some reasons for swapping out processes from memory

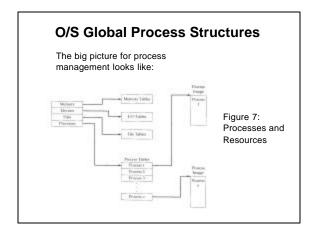
- 1. System malfunction Save state and resume after fix
- 2. User suspicious about partial results-Debugging/ check-pointing
- Correct short term load (or memory requirement) fluctuations
- Fairness (one big process prevents others from running)


CPU with I/O and Suspended State

We can either treat a suspension as independent from blocking, or as mutually exclusive.



Operations on Processes


- Some operations on processes: 1. Create a process 2. Destroy (terminate) a process
- 3. Block a process
- 4. Suspend a process
- 5. Resume (activate) a process
- 6. Change a process's priority
- Wake up a process
 Wake up a process (put it into the ready state)
- 9. Enable a process to communicate with another process (interprocess communication)



The O/S in its role as resource manager and as run time interface controls resource access by mapping processes to resources.

Memory Tables

Memory tables record the following information:

- 1. The allocation of main and auxiliary memory to processes
- Memory protection (O/S vs. users, users from each other, read only vs. write instructions vs. data)
- 3. Control information for the virtual memory manager

I/O Tables:

Manage hardware control (and perhaps higher level control) of channels and peripherals in the system.

File Tables: Provide security, access control, and

naming support for persistent objects.

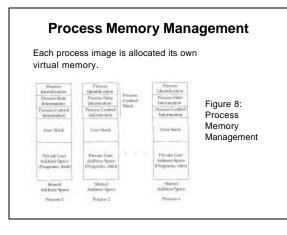
Process Tables:

Manages each individual process's data structures, stores security permissions, and process state info.

Process Image

Process Image --- The state information (attributes) of the process (data/stack/instructions, I/O state). Process images typically contain:

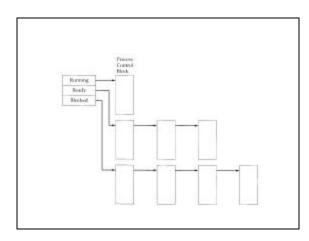
- 1. User Data
- 2. User Program (Instructions)
- 3. System Stack
- 4. Process Control Block


Process Control Blocks

Process Control Blocks (PCBs)--- The data structures the O/S allocates for managing each process, containing:

- 1. Process identifiers --- process id, parent id, user id.
- Process State Info --- User Visible Registers, Control Registers (and PC), and stack pointer.

Process Control Blocks (continued)


 Process Control Info --- Scheduling and State info, System Data Structures, Inter-process Communications, Process privileges, Memory Management, Resource Ownership and Utilization.

O/S Use of PCBs

The system accesses processes via their PCBs for state transitions and scheduling as per state diagram and queuing models.

Process Lists --- Correspond to queues and service structures in queuing model.

O/S Kernel Services

An O/S kernel provides privileged access to system resources, running in systems mode, control mode, or kernel mode.

Typical Kernel services include:

1. Process Management --- Process Creation, Process Termination, Process Switching Process Synchronization, Inter-process Communication.

O/S Kernel Services (continued)

- Memory Management --- Allocation of address space to processes, Swapping, virtual memory management.
- I/O Management --- Buffer management, device and channel allocation to processes
- 4. Systems Support --- Interrupt handling, Accounting, Monitoring.

Process Switching

Process switching is the O/S transferring control from one process to another. Issues include:

1. When to switch? Preemption vs. Non Preemption

Process Switching (continued)

- Context Switching --- done as follows:
 a) Preserve the running process's state in the PCB, if swapping save image.
 - b) Load process image's PCB into system registers and memory restore the program counter.

Running the O/S

The following are typical of O/S run time support structures:

- 1. Non-process O/S --- A more primitive structure (MS-DOS, CP/M)
- Single separate Kernel Process --- A more monolithic approach, has the efficiency advantage of fewer context switches, but less flexible (macrokernel?).
 (Unix/Linux, Mac OS, VM, MVS).

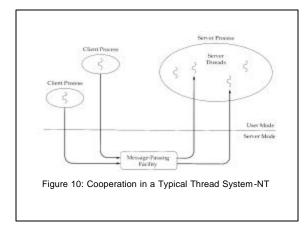
Running the O/S (continued)

 System services via Kernel and User processes --- A more flexible approach (microkernel?). (Windows NT, OS/2, MACH, GNU HURD, Amiga DOS).

Processes and Threads

Some people consider threads as a special form of process.

- 1. Processes control a unit of resource ownership.
- A process is typically the unit of dispatching.
- 3. Threads share process context,
- 4. Threads are asynchronous,
- 5. Threads have less context than processes.

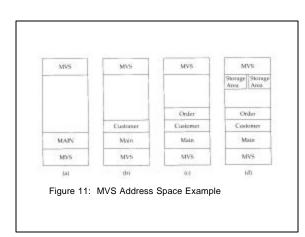

Processes and Threads

- 6. Threads can be created/terminated at a lower cost.
- Threads cooperate to do a process in parallel with (relatively) fine granularity of parallelism

Threads are suited to shared memory SMP machines.

Thread Management in Windows NT

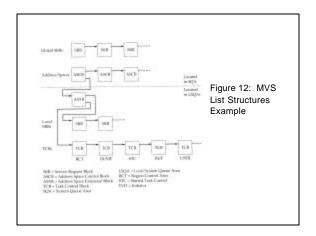
Threads typically cooperate to do the same work as a traditional process. Often the system services are done in user space in a micro-kernel system (to make them run time configurable/flexible with an efficiency penalty).

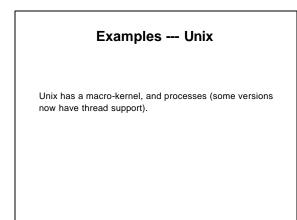


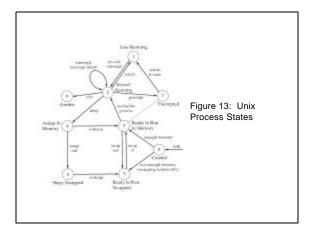
Examples --- MVS

MVS has 3 task (process) states: Ready, Active, Waiting. Entire task may be swapped to auxiliary storage.

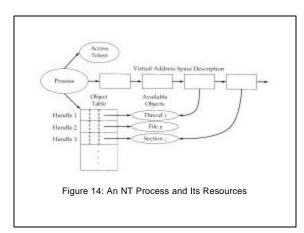
Consider a task composed of:


- 1. a main program,
- 2. a customer inquiry module,
- 3. an order entry module and
- 4. a production tracking module




MVS List Structures

MVS tracks system resources used and tasks using list structures.



Examples - Windows NT

Windows NT is multithreaded, and allocates handles for managing processes and resources.

The access token identifies the user, and their security permissions.

