
1

Processes and Process Control

1. Processes and Process Control
2. Definitions of a Process
3. Systems state vs. Process State
4. A 2 State Process Model
5. Process Creation, what does it mean?
6. Process Termination’s meaning
7. A Five State Model of Process Control
8. Queuing Models of Systems having I/O
9. Swapping (Suspending) Processes
10. CPU with I/O and Suspended State

11. Operations on Processes
12. O/S Support for Processes
13. O/S Global Process Structures
14. Memory Tables
15. I/O Tables
16. File Tables
17. Process Tables
18. Process Image
19. Process Control Blocks
20. Process Memory Management
21. O/S Use of PCBs
22. O/S Kernel Services

23. Process Switching
24. Running the O/S
25. Processing Threads
26. Thread Management in Windows NT
27. Examples - MVS
28. MVS List Structures
29. Examples - Unix
30. Examples - Windows NT

2

Definitions of A Process

1. A program in execution
2. An asynchronous activity
3. the ``animated spirit'' of a procedure
4. the ``locus of control'' of a

program in execution
5. that which is manifest by the

existence of a process control
block in the O/S

6. that entity which is assigned to
processors

7. the ``dispatchable'' unit

Systems state vs. Process State

1. Some processes
are resident in
memory.

2. The kernel is
always resident.

3. One process runs
at a time.

A 2 State Process Model

CPU is the only resource for many jobs.

1. Enter --- Process Creation

2. Dispatch --- Scheduling/Queuing
Discipline

3. Pause --- Give other jobs a chance

4. Exit --- Process Termination

3

Figure 2. State Diagram of CPU only System

Process Creation, what does it mean?

Some reasons for process creation include:

1. A new batch job
2. Interactive O/S login
3. O/S created
4. Spawned by an existing process

The frequency of process creation
reflects the expense of creation.

Process Termination's meaning

Some reasons for process termination
include:

1. Normal Completion

2. Excessive Resource Use
a) CPU Time Out
b) Insufficient Memory
c) File system full error

4

3. Security Violations/Programmer Errors
a) Illegal Address
b) Illegal Instruction
c) Privileged Instruction
d) Data Misuse (type error/

initialization error)
4. Systems Control

a) Parent Job Terminated
b) Terminated by Parent
c) Operator or O/S intervention

Process Termination's meaning
(continued)

Process Termination's meaning
(continued)

The frequency of process creation
reflects the expense of creation.

A Five State Model of Process Control

Blocking - When a process waits on a non-CPU service
(typically I/O).

Real systems have I/O, so a more realistic model is:

Figure 3

5

Queuing Models of Systems having I/O

An architecture
with I/O and CPU
is:

Figure 4

Swapping (Suspending) Processes

Suspending a Process - When the O/S saves the state
of a non-running program from main memory to auxiliary
memory.

Activation - When the O/S reloads a suspended process
into main memory from auxiliary memory.

Some reasons for swapping out processes from memory
1. System malfunction - Save state

and resume after fix
2. User suspicious about partial results-

Debugging/ check-pointing

3. Correct short term load (or
memory requirement) fluctuations

4. Fairness (one big process
prevents others from running)

Swapping (Suspending)
Processes (continued)

6

CPU with I/O and Suspended State

We can either treat a suspension as
independent from blocking, or as mutually
exclusive.

Figure 5: O/S
supporting
Blocking and
Suspension

Operations on Processes

Some operations on processes:
1. Create a process
2. Destroy (terminate) a process
3. Block a process
4. Suspend a process
5. Resume (activate) a process
6. Change a process's priority
7. Wake up a process
8. Wake up a process (put it into the ready

state)
9. Enable a process to communicate with

another process (interprocess
communication)

7

O/S support for Processes

The O/S in its role as resource manager and as run time
interface controls resource access by mapping
processes to resources.

Figure 6: Process and Resources

O/S Global Process Structures

The big picture for process
management looks like:

Figure 7:
Processes and
Resources

8

Memory Tables

Memory tables record the following information:
1. The allocation of main and auxiliary

memory to processes
2. Memory protection (O/S vs. users,

users from each other, read only vs.
write instructions vs. data)

3. Control information for the virtual
memory manager

I/O Tables:
Manage hardware control (and
perhaps higher level control) of
channels and peripherals in the
system.

File Tables:
Provide security, access control, and
naming support for persistent objects.

Process Tables:
Manages each individual process's
data structures, stores security per-
missions, and process state info.

Process Image

Process Image --- The state information (attributes) of
the process (data/stack/instructions, I/O state). Process
images typically contain:

1. User Data
2. User Program (Instructions)
3. System Stack
4. Process Control Block

9

Process Control Blocks

Process Control Blocks (PCBs)--- The data structures
the O/S allocates for managing each process,
containing:

1. Process identifiers --- process id,
parent id, user id.

2. Process State Info --- User Visible
Registers, Control Registers (and PC),
and stack pointer.

Process Control Blocks (continued)

3. Process Control Info --- Scheduling and State
info, System Data Structures, Inter-process
Communications, Process privileges,
Memory Management, Resource Ownership
and Utilization.

Process Memory Management

Each process image is allocated its own
virtual memory.

Figure 8:
Process
Memory
Management

10

O/S Use of PCBs

The system accesses processes via their PCBs for state
transitions and scheduling as per state diagram and
queuing models.

Process Lists --- Correspond to queues and service
structures in queuing model.

O/S Kernel Services

An O/S kernel provides privileged access to system
resources, running in systems mode, control mode, or
kernel mode.

Typical Kernel services include:

1. Process Management --- Process Creation, Process
Termination, Process Switching Process
Synchronization, Inter-process Communication.

11

2. Memory Management --- Allocation of
address space to processes, Swapping,
virtual memory management.

3. I/O Management --- Buffer management,
device and channel allocation to
processes

4. Systems Support --- Interrupt handling,
Accounting, Monitoring.

O/S Kernel Services (continued)

Process Switching

Process switching is the O/S transferring control from
one process to another. Issues include:

1. When to switch? Preemption vs.
Non Preemption

Process Switching (continued)

2. Context Switching --- done as follows:

a) Preserve the running process's

state in the PCB, if swapping
save image.

b) Load process image's PCB into
system registers and memory

restore the program counter.

12

Running the O/S

The following are typical of O/S run time support
structures:
1. Non-process O/S --- A more primitive

structure (MS-DOS, CP/M)
2. Single separate Kernel Process --- A

more monolithic approach, has the
efficiency advantage of fewer
context switches, but less flexible
(macrokernel?).
(Unix/Linux, Mac OS, VM, MVS).

Running the O/S (continued)

3. System services via Kernel and User

processes --- A more flexible approach
(microkernel?). (Windows NT, OS/2,

MACH, GNU HURD, Amiga DOS).

Processes and Threads

Some people consider threads as a
special form of process.
1. Processes control a unit of resource

ownership.
2. A process is typically the unit of

dispatching.
3. Threads share process context,
4. Threads are asynchronous,
5. Threads have less context than

processes.

13

Processes and Threads

6. Threads can be created/terminated at

a lower cost.

7. Threads cooperate to do a process in
parallel with (relatively) fine
granularity of parallelism

Threads are suited to shared memory SMP
machines.

Thread Management in Windows NT

Threads typically cooperate to do the same work as a
traditional process. Often the system services are done
in user space in a micro-kernel system (to make them
run time configurable/flexible with an efficiency penalty).

Figure 10: Cooperation in a Typical Thread System-NT

14

Examples --- MVS

MVS has 3 task (process) states: Ready,
Active, Waiting. Entire task may be
swapped to auxiliary storage.

Consider a task composed of:
1. a main program,
2. a customer inquiry module,
3. an order entry module and
4. a production tracking module

Figure 11: MVS Address Space Example

MVS List Structures

MVS tracks system resources used and tasks using list
structures.

15

Figure 12: MVS
List Structures
Example

Examples --- Unix

Unix has a macro-kernel, and processes (some versions
now have thread support).

Figure 13: Unix
Process States

16

Examples - Windows NT

Windows NT is multithreaded, and allocates handles for
managing processes and resources.

The access token identifies the user, and their security
permissions.

Figure 14: An NT Process and Its Resources

