
compiler designcompiler design

Computer Science

Rensselaer Polytechnic

Lecture 1

66.648 Lecture 1 (01/13/97)66.648 Lecture 1 (01/13/97)

● Overview of Compilers

● Introduction to Lexical Analysis

● Course Administration

Overview of CompilerOverview of Compiler

● Compiler is a program (written in a high-
level language) that converts / translates /
compiles source program written in a high
level language into an equivalent machine
code.

source program machine code
compiler

Example source language: Java
Example target language: Bytecode

Sample ProgramSample Program

public class first {
public static void main(String argsv[])

 int x;
x = 19;
x = x*x;

}
}

Output BytecodeOutput Bytecode
Compiled from first.java
public class first extends java.lang.Object {

public static void main(java.lanag.String[]);
public first();

Method void main(java.lang.String[])
0 bipush 19
2 istore_1
3 iload_1
4 iload_1
5 imul
6 istore_1
7 return

Byte Code ContinuedByte Code Continued

Method first()
0 aload_0
1 invokenovirtual #3 <Method java.lang.Object.<init>()V>
4 return

Comments: There are two methods:
main method
constructor method.

Byte Code ContinuedByte Code Continued

Bytecode instructions are 1,2 or 3 bytes long.
Bytecodes are executed in a postfix manner.
In the main method, one can see how x=x*x
is assembled.
iload_1
iload_1
imul
istore_1

Output Code (optimized)Output Code (optimized)

Optimized Bytecode for Main Method will be

0 return

This is so because main method does not use the variable x
in any “meaningful” manner.

ImplementationImplementation

Compilers are written in a high level language.

Sometimes a compiler is written in the same language
for which one is writing a compiler. This is done through
Bootstrapping.

Phases of the compilerPhases of the compiler

Lexical AnalyzerScanner

Parser

Semantic Analyzer

Source Program

Syntax Analyzer

Tokens

Parse Tree

Abstract Syntax Tree with
attributes

Phases of Compiler continuedPhases of Compiler continued

● Intermediate-Code Generator (produces
Intermediate Code)

● Intermediate-Code Optimizer(produces
Optimized Intermediate Code)

● Target-code Generator (produces target
machine code)

One of the primary data-structures that a compiler uses
is a Symbol Table. This data-structure is used by all of the phases.

Sample Program CompiledSample Program Compiled

Scanner takes an input program and breaks them into
a series of tokens.

Tokens are entities defined by the compiler writer which
are of interest.

Examples of Tokens:

Single Character operator: = + - * > <
More than one character operator: ++, --,==,<=
Key Words: public class static void method if while

Example Program Compiled-Example Program Compiled-
ContinuedContinued

Identifiers: x argsv sample my_name Your_Name

Numeric Constants: 1997 45.89 19.9e+7

String Constants: “Rennselaer” “RSV's course”

Scanner’s task is to partition the sequence of characters
into a sequence of tokens.
The tokens will be public , class, first,{, public, static, void,
main,(,String,argsv,[,],),{,int,x,;,x,=,19,;,x,=,x,*,x,;,},}

Example ContinuedExample Continued

The scanner reports errors if it encounters an invalid character.
Often a token number is returned and the identifiers get stored
in a symbol table.

The parser produces a parse tree:

 root_node
 stmt1 stmt2
stmt1 stmt2
 = =
x 19 x *
 x x

AdministrationAdministration

● Compiler Project (3) - 60%

● Test - 40%

● Compiler project is a group effort. All group
members get the same grade.
Test has to be taken individually. No
discussion is allowed.

The course URL is
http://www.cs.rpi.edu/~moorthy/Courses/compiler

I am assuming that you are all proficient in C/C++.

Read Chapter 1 of the Text Book.

