
Checkpoint #1

At this point, you should have completed initial code (datatypes and some functions) for the
project. Stop by office hours in Lally 314 on Wednesday November 13th or on Friday November
15th after class at the latest and show your progress. You can send a representative of your
team though, of course, all team members are welcome to attend. There will be no
checkpointing after next week and I’ll do the meetings on first-come-first-serve basis. So, it is
probably a good idea to plan on showing your code as early as possible!

I will be looking at the code in your repository and looking for answers to the following
questions:

1. What modules will comprise your project?
2. What data structures will you use to model your project?
3. What functions will you need to write? What are their type signatures?
4. What testing will you do?
5. What questions do you have for me?

The checkpoint is worth 10% of the project grade. If there is no work or very little work done,
I’ll mark a low grade for checkpoint #1.

You should have something like this. This is a sketch of Tic-Tac-Toe, however, keep in mind that
your project should be a lot more involved than that. There is an example of Tic-Tac-Toe in the
textbook as well, Chapter 11 and it might be useful to go over that chapter as well especially if
you are working on a game.

import Data.Maybe (isJust)

import qualified Data.Map as M

import Test.HUnit

import Test.QuickCheck

import Control.Monad.State

-- type definitions (model)

data Player = X | O deriving (Eq, Show)

data Location = Loc Int Int deriving (Eq, Ord, Show)

type Board = M.Map Location Player

data Game = Game { board :: Board , current :: Player } deriving (Eq,

Show)

data End = Win Player | Tie deriving (Eq, Show)

-- function declarations

You should also sketch some of the functions that you plan to implement by giving their type
signatures.

Each function should have a comment explaining what it should do.

Include as many functions here as you can, so that you can write and test several use cases.

-- | starting board for the game

initialGame :: Game

initialGame = undefined

-- | is the board still playable

checkEnd :: Board -> Maybe End

checkEnd = undefined

-- | is this location a valid move for the player

valid :: Board -> Location -> Bool

valid = undefined

-- | make a move at a particular location

makeMove :: Game -> Location -> Maybe Game

makeMove = undefined

-- | display the current game board

showBoard :: Board -> String

showBoard = undefined

You can write (and show me) code as well!

-- | Create a type class for the interface for the main game interface

-- so that it can be tested

class Monad m => Interface m where

 -- ask the current player for their next move

 getMove :: Game -> m Location

 -- send a message to all players

 message :: String -> m ()

 -- send a message to the indicated player

 playerMessage :: Player -> String -> m ()

-- | all valid locations

locations :: [Location]

locations = [Loc x y | x <- [1 .. 3], y <- [1 .. 3]]

-- | make moves until someone wins

playGame :: Interface m => Game -> m ()

playGame game = do

 playerMessage (current game) $ showBoard (board game)

 case checkEnd $ board game of

 Just (Win p) -> message $ "Player " ++ show p ++ " wins!"

 Just Tie -> message $ "It's a Tie!"

 Nothing -> do

 playerMessage (current game) $ "It's your turn"

 move <- getMove game

 case makeMove game move of

 Just game' -> playGame game'

 Nothing -> error "BUG: move is invalid!"

instance Interface IO where

 getMove = undefined

 playerMessage = undefined

 message = undefined

main :: IO ()

main = playGame initialGame

-- Test Cases

Your checkpoint must also include plans for testing your code. Ideally you would write testing
code for one or two use cases. The testing code does not need to be complete, but you should
have at least some code, not just prose describing what the test will be doing. Many teams
have stated that they are planning on using HUnit or Quickcheck, so go ahead and write test
cases using these frameworks!

Code example is due to a writeup by Stephanie Weirich; text is adapted
to our class.

