
Problem Set #8
due November 26

Problem 1. Rewrite inferTypes from PS7 to use a state transformer instead of a “stateful”
variable. Signature changes from

inferTypes :: TEnv -> Integer -> Exp -> (Subst, Type, Integer)

to

inferTypes :: TEnv -> Exp -> S.State Integer (Subst, Type)

Transfer your previous homework to file Infer.hs. The only change should be inferTypes

and callers of inferTypes.

Problem 2. Next, write a parser for the lambda calculus following this grammar:

lexp ::= lapp | labs | lterm
lapp ::= lterm lterm ttail
ttail ::= lterm ttail | ε
labs ::= λ identifier -> lexp
lterm ::= (lexp) | identifier | integer | T | F

The function parses a lambda expression into the Exp datatype from PS7 and Data.hs is
included in the starter code (again).

lexp :: P.Parser Exp

lexp = undefined

> P.runParser (start lexp) "\\f -> \\x -> f (f x)$"

[(ELambda "f" (ELambda "x" (EApp (EVar "f") (EApp (EVar "f") (EVar "x")))),"")]

We can create expressions (by parsing them from text) and infer types a lot easier:

> twice = fst $ head $ P.runParser (start lexp) "\\f -> \\x -> f (f x)$"

> I.canonicalize twice -- from PS7, now in Infer.hs

"(t1 -> t1) -> t1 -> t1"

Problem 3. Finally, extend the parser with handling of ambiguous grammars in the sense that
the parser now finds all possible parse trees for a string. I will test with the following grammar
that generates all strings of equal number of a’s and b’s:

s ::= a s b s | b s a s | ε
The output of a parse of s should be the production sequence the parser finds where productions
are numbered from left to right: s ::= a s b s is 1, s ::= b s a s is 2, and s ::= ε is 3. Naturally,
the autograder expects that your parser respects this order when trying alternatives.

s :: P.Parser [Int]

s = undefined

> P.runParser (start s) "abab$"

[([1,2,3,3,3],""),([1,3,1,3,3],"")]
1

2

E.g., [1,2,3,3,3] is leftmost derivation s
1⇒ asbs

2⇒ absasbs
3⇒ abasbs

3⇒ ababs
3⇒ abab.

Note: Download files Data.hs, State.hs, Lexer.hs, Parser.hs and Infer.hs. Minimal
starter code is in Ps8.hs.

