Problem Set #7

due November 5

Problem 1. Answer the following questions. You can answer just YES or NO and get full
credit (if correct) though, of course, it’s always good to explain your answer.

(1) Is this code type-correct in Hindley Milner?
hf=
if (f True) then (f 1) else (f 0)

(2) Is this code type-correct in Hindley Milner?
(\x > x x (x True)) (\y —> y)
(3) Is this term type correct in Hindley Milner?

hx =
let
my = if (y==0) then True else (n y)
ny = if (y==0) then False else (m y)
in

(n x, m x)

(4) How about in Simple types, is the term from (3) type-correct in Simple types?

Problem 2. Next, implement Simple types for the pure Lambda calculus with integer and
boolean constants using on-the-fly typing (Strategy Two).

The main datatypes are Expressions representing Lambda calculus expressions:

data Prim =
PNum Int
| PBool Bool

data Exp =
EVar Ident
| ELambda Ident Exp
| EApp Exp Exp
| EPrim Prim

and Types representing Simple types:

data BaseType = BTInt | BTBool

data Type =
TBase BaseType
| TVar TVar
| TArrow Type Type



type TEnv = [(String, Type)] is the type environment, a mapping from identifiers to types
(T in lecture), and type Subst = [(TVar, Type)] is the substitution environment, a mapping
from type variables to types.

(1)

Write the function that applies a substitution to a type:

substType :: Type -> Subst -> Type
substType = throw ToImplement

> substType (TVar "__tO0") [("__tO0",TArrow (TBase BTInt) (TBase BTInt))]
TArrow (TBase BTInt) (TBase BTInt)

You will also code a function (last) that prints the type in a friendlier form:
"BTInt -> BTInt"

Next, write a function that substitutes in the type environment:

substEnv :: TEnv -> Subst -> TEnv
substEnv = throw ToImplement

> substEnv [("x",TVar "__t0")] [("__t0",TArrow (TBase BTInt) (TBase BTInt))]

[("x",TArrow (TBase BTInt) (TBase BTInt))]

Implement Robinson’s unification algorithm:
unify :: Type -> Type —-> Subt
unify = throw ToImplement

> unify (TArrow (TVar "__tO0") (TVar "__t1")) (TArrow (TBase BTInt) (TBase BTInt))
[("__tO0",TBase BTInt),("__t1",TBase BTInt)]

Now, the main function, inferTypes:

inferTypes :: TEnv -> Integer -> Exp -> (Subst, Type, Integer)
inferTypes = throw ToImplement

> inferTypes [] 0 (ELambda "x" (EVar "x"))
([],TArrow (TVar "__tO") (TVar "__t0"),1)

The integer input is the next available fresh variable at entry of inferTypes and the
integer output is the next available fresh variable at exit. Recall that as we infer types,
we need to assign fresh type variables to identifiers and subexpressions.

The final function is canonicalize, which renames type variables and pretty prints the
type of the expression (mainly for ease of testing on Submitty):

canonicalize :: Exp -> String
canonicalize = throw ToImplement



> canonicalize sComb -- sComb is the S-combinator term from Quiz 3

"(t1 => 2 -> t3) -> (t1 -> t2) -> t1 -> t3"

It works as follows: given a type, fold the type tree into a list and compute a “renaming”
substitution in the order variables appear in the list. E.g., if the fold of the type tree is

["__t4" s "__t2" s "__t4"]

then the corresponding substitution is
[("__t4",TVar "t1"),("__t2",TVar "t2")].

Note: In this function, you will need to (1) call your inferTypes on the input expression
to compute its type t, (2) fold t into a list, (3) compute the renaming substitution, (4)
apply the substitution on t, and finally, (5) print the type nicely, keeping only necessary
parentheses in function types.

Note: Download minimal starter code in files Data.hs|and Ps7.hs| and submit in Submitty.


Data.hs
Ps7.hs

Haskell Style Guide. Adapted from Stephanie Weirich (UPenn CIS 5520).

e Write a type signature for every function. We will be strict about this when
grading. Hint: try writing the signature before writing the function. If you do write the
function first, try deducing the signature and if this doesn’t work, there is always the :t
command.

e Make sure that your code produces no errors or warnings. Code with errors receives 0
on Submitty and we will mark down warnings during TA grading.

e Use consistent indentation.

e Do not use tab characters, use space for indentation. GHC should be flagging tabs, but
nevertheless, be careful.

e No line should have more than 80 characters.

e Use whitespace to make your code readable. Add whitespace on either side of binary
operators, e.g., write 3 * n + 1 instead of 3*n+1.

e Use descriptive names.
Follow standard Haskell naming conversions: (1) use camelCase for compound names,
and (2) use x and xs when you pattern-match lists.

Use comments. Each function definition should be preceded by a comment.
Comment should say what the function does, not how.

Comments should be concise. Do not overcomment.

Use full English sentences.

Do not leave incomplete pattern matches. They will be marked down.

e Tuples, records and datatypes can be decomposed. You can also use the @ operator if
you need a reference to both the object and its components.

For example, do not use this:

f argl arg2 = ... where
x = fst argl
y = snd argl
z = fst arg2

Use this instead:
f (x,y) (z,.) = ...

e Combine nested case expressions.
For example, do not use this:
case x of

Red -> case y of
Red -> True
Blue -> False
Blue -> case y of
Red -> False
Blue -> True

Use this instead:

case (x,y) of



(Red, Red) -> True
(Blue, Blue) -> True
( - _) -> False

e Use library functions, unless the assignment explicitly forbids them. Use Haskell’s search
engine Hoogle to look up library functions.



