
Problem Set #5
due October 15

Problem 1. The problem practices interactive programming and IO. You will implement
the word game Connection https://www.nytimes.com/games/connections via a simple text-
based interface similar to the games we studied in class. For those of you unfamiliar with the
game, here is the Wikipedia reference as well: https://en.wikipedia.org/wiki/The_New_

York_Times_Connections.
You can design your interface and text-based graphics as you wish, however, for the purposes

of running the game on Submitty your game should follow these interactions:

• Player 1 enters the name of a file, e.g., puzzle477.txt, that stores the puzzle in the
following format:

Y:COOK_WITH_HEAT_AND_WATER BLANCH BOIL POACH STEAM

G:COMMON_PERFUME_INGREDIENTS AMBERGRIS MUSK ROSE VANILLA

B:CHARACTERS_WITH_PET_DOGS CHARLIE DOROTHY SHAGGY WALLACE

P:CAPITAL_CITY_HOMOPHONES KETO ROAM SOPHIA SOUL

• Next, the system initiates play with Player 2. Each play round is as follows:
(1) System displays the state of the game: categories Player 2 has guessed correctly,

shuffled board of remaining words, remaining mistakes.
(2) System prompts Player 2 to enter a guess of four words, each word on a new line.
(3) System evaluates new guess. Suppose guess is incorrect; if there are no remaining

mistakes Player 1 wins, otherwise system updates number of mistakes and goes
back to (1). Suppose guess is correct; if there are no remaining words Player 2 wins,
otherwise system updates state of the game and goes back to (1).

Note: Some minimal starter code is provided in Ps5Connections.hs. Do not use additional
imports.

Problem 2. In this problem you will develop Vector, an array-like data structure that stores
a sequence of elements. One can index into a vector as well as insert and delete elements. Other
operations on vectors are the append operation as well as fmap and >>= as vectors are instances
of Functor and Monad. You will build on the previous homework which emphasized Foldable

and Monoid operations, but will code fmap and the monadic bind as well.

class (Monad v, Foldable v, forall a. Monoid (v a)) => Vector v where

first :: v a -> Maybe a

final :: v a -> Maybe a

index :: Int -> v a -> Maybe a

insert :: Int -> a -> v a -> Maybe (v a)

delete :: Int -> v a -> Maybe (v a)

The starter file Ps5Vector.hs gives additional instructions for where to add code. The
homework is roughly divided in three parts:

(1) Define basic list-like operations in terms of the Monad, Foldable, and Monoid operations.
1

https://www.nytimes.com/games/connections
https://en.wikipedia.org/wiki/The_New_York_Times_Connections
https://en.wikipedia.org/wiki/The_New_York_Times_Connections

2

(2) Instantiate Vectors as lists. Implementing Vectors as lists gives us a constant first

operation, however all other operations are O(N) in the worst-case where N is the size
of the vector.

(3) Instantiate Vectors as balanced trees. In this case the underlying structure is the AVL
tree, a balanced binary search tree. As you know from Algorithms class, balanced trees
trade O(1) first operation for O(lgN) for all operations. Ideally, you will implement the
re-balancing functionality for the AVL tree structure, however, if you don’t have time
you can omit it and focus on indexing, inserting and deleting elements. The balance
property is worth only a few points.

Note: Use the Control.Monad and Control.Applicative imports, but try not to include
additional imports. When done submit Ps5Vector.hs in Submitty.

Haskell Style Guide. Adapted from Stephanie Weirich (UPenn CIS 5520).

• Write a type signature for every function. We will be strict about this when
grading. Hint: try writing the signature before writing the function. If you do write the
function first, try deducing the signature and if this doesn’t work, there is always the :t

command.
• Make sure that your code produces no errors or warnings. Code with errors receives 0

on Submitty and we will mark down warnings during TA grading.

• Use consistent indentation.
• Do not use tab characters, use space for indentation. GHC should be flagging tabs, but

nevertheless, be careful.
• No line should have more than 80 characters.
• Use whitespace to make your code readable. Add whitespace on either side of binary

operators, e.g., write 3 * n + 1 instead of 3*n+1.

• Use descriptive names.
• Follow standard Haskell naming conversions: (1) use camelCase for compound names,

and (2) use x and xs when you pattern-match lists.

• Use comments. Each function definition should be preceded by a comment.
• Comment should say what the function does, not how.
• Comments should be concise. Do not overcomment.
• Use full English sentences.

• Do not leave incomplete pattern matches. They will be marked down.
• Tuples, records and datatypes can be decomposed. You can also use the @ operator if

you need a reference to both the object and its components.
For example, do not use this:

f arg1 arg2 = ... where

x = fst arg1

y = snd arg1

z = fst arg2

Use this instead:

f (x,y) (z,_) = ...

3

• Combine nested case expressions.
For example, do not use this:

case x of

Red -> case y of

Red -> True

Blue -> False

Blue -> case y of

Red -> False

Blue -> True

Use this instead:

case (x,y) of

(Red, Red) -> True

(Blue, Blue) -> True

(_, _) -> False

• Use library functions, unless the assignment explicitly forbids them. Use Haskell’s search
engine Hoogle to look up library functions.

