
Problem Set #3
due September 24

Note: Use only functions defined in the standard Prelude. Construct readable solutions!

Problem 1. Implement altMap :: (a -> b) -> (a -> b) -> [a] -> [b] which takes
two argument functions and a list, and applies the argument functions on the list elements in
turn in order. E.g.,

> altMap (+1) (+100) [0,1,2,3,4]

[1,101,3,103,5]

Problem 2. Now implement the luhn algorithm from PS#1 for checking credit card numbers
in as “wholemeal” style as possible, but most importantly, the solution should be readable.

(1) toDigits takes an (arbitrarily large) positive integer, i.e., the card number, and returns
a list of its digits in decimal. E.g.,

> toDigits 1234567

[1,2,3,4,5,6,7]

Note: Use iterate.
(2) doubleOther takes a list of digits and doubles every other starting from the next to last

digit and moving left. E.g.,

> doubleOther [1,2,3,4,5,6,7]

[1,4,3,8,5,12,7]

> doubleOther [1,9,3]

[1,18,3]

Note: Naturally, use altMap for full credit.
(3) subNine takes a list of integers and subtracts 9 from the ones greater than 9. E.g.,

> subNine [1,18,3]

[1,9,3]

(4) Finally, validate takes an (arbitrarily large) integer and returns True if the number is
valid. It returns False otherwise. E.g.,

> validate 1784

True

> validate 4783

False

Problem 3. Rewrite the following functions in “wholemeal style”.

(1) fun1 :: [Integer] -> Integer

fun1 [] = 1

fun1 (x:xs)

| even x = (x - 2) * fun1 xs

| otherwise = fun1 xs

1

2

(2) fun2 :: Integer -> Integer

fun2 1 = 0

fun2 n

| even n = n + fun2 (n ‘div‘ 2)

| otherwise = fun2 (3 * n + 1)

Name your functions fun1’ and fun2’ respectively and use takeWhile and iterate in fun2’.

Problem 4. Use foldl or foldr to write the digitsToInt function that converts a list of
digits (integers) into an integer:

> digitsToInt [1,2,3,4,5,6]

123456

> digitsToInt $ replicate 30 8

888888888888888888888888888888

Problem 5. Write function transpose::[[a]] -> [[a]] that transposes its argument.
E.g.,

> transpose [[1,2,3],[4,5,6]]

[[1,4],[2,5],[3,6]]

> transpose [[1,2],[4,5,6]]

[[1,4],[2,5]]

Note: For full credit, use two calls to foldr.

Some notes. Name your file Ps3.hs and begin with

module Ps3 where

altMap:: ... --- type signature

altMap ... --- function definition

...

Haskell Style Guide. Adapted from Stephanie Weirich (UPenn).

• Write a type signature for every function. We will be strict about this when
grading. Hint: try writing the signature before writing the function. If you do write the
function first, try deducing the signature and if this doesn’t work, there is always the :t

command.
• Make sure that your code produces no errors or warnings. Code with errors receives 0

on Submitty and we will mark down warnings during TA grading.

• Use consistent indentation.

3

• Do not use tab characters, use space for indentation. GHC should be flagging tabs, but
nevertheless, be careful.

• No line should have more than 80 characters.
• Use whitespace to make your code readable. Add whitespace on either side of binary

operators, e.g., write 3 * n + 1 instead of 3*n+1.

• Use descriptive names.
• Follow standard Haskell naming conversions: (1) use camelCase for compound names,

and (2) use x and xs when you pattern-match lists.

• Use comments. Each function definition should be preceded by a comment.
• Comment should say what the function does, not how.
• Comments should be concise. Do not overcomment.
• Use full English sentences.

• Do not leave incomplete pattern matches. They will be marked down.
• Tuples, records and datatypes can be decomposed. You can also use the @ operator if

you need a reference to both the object and its components.
For example, do not use this:

f arg1 arg2 = ... where

x = fst arg1

y = snd arg1

z = fst arg2

Use this instead:

f (x,y) (z,_) = ...

• Combine nested case expressions.
For example, do not use this:

case x of

Red -> case y of

Red -> True

Blue -> False

Blue -> case y of

Red -> False

Blue -> True

Use this instead:

case (x,y) of

(Red, Red) -> True

(Blue, Blue) -> True

(_, _) -> False

• Use library functions, unless the assignment explicitly forbids them. Use Haskell’s search
engine Hoogle to look up library functions.

