
1

Type Inference

1

Project Schedule

Programming in Haskell, A Milanova 2

2

Outline

n Simple type inference
n Expressions, types and type environment
n Goal and intuition
n Equality constraints
n Substitution
n Robinson’s unification
n Type inference strategies

n Algorithm V (Strategy One) and
n Algorithm V (Strategy Two)

3Programming in Haskell, A Milanova

3

Outline

n Hindley Milner (also known as Milner Damas)
n Monotypes (types) and polytypes (type schemes)
n Instantiation and generalization
n Algorithm W
n Observations

n Type inference in Haskell
Extends classical system
n Type signatures
n Class constraints
n Implication constraints 4

4

2

Type Inference

Programming in Haskell, A Milanova (slide text due to
Simon Peyton Jones) 5

The task of type inference is to

Reject bad programs with a decent error message

Elaborate good programs

5

Type Inference

Programming in Haskell, A Milanova 6

> twice = \f -> \x -> f (f x)

> :t twice

Every well-formed expression in Haskell has a type

In general, we don’t need to write type signatures, Haskell
can figure out (many) signatures. E.g.:

> fun = \x -> \y -> x

> :t fun

6

Programming in Haskell, A Milanova 7

Foundation is an algorithm known as Hindley Milner type
inference (also, Milner Damas)

Haskell builds on Hindley Milner to account for, most
notably, user-defined types, ADTs and pattern matching,
type classes and type class constraints

Classical Hindley Milner solves constraints on-the-fly

Haskell first generates constraints, then solves them
“offline”

7

Simple Type Inference

8

Inference of the so-called simple types

Formally known as System F1 or Simply Typed Lambda
Calculus

NO polymorphism, i.e., functions work on a single type

Hindley Milner extends simple type inference with so-
called let-polymorphism. Functions work on many different
types

Important concepts: expressions and types, type
environment, equality constraints, substitution, unification

Programming in Haskell, A Milanova

8

3

Expressions

Programming in Haskell, A Milanova 9

E ::= c | x | \x -> E1 | E1 E2 |
let x = E1 in E2 |
E1 + E2 |
if E1 then E2 else E3

A minimal language, very close to Lambda calculus:

There are no types in syntax

The type of each subexpression is derived by simple type
inference

9

Types

Programming in Haskell, A Milanova 10

τ ::= b | τ1® τ2 | t

Types (as known as simple types or monotypes):

E.g., Int, Bool, Int®Bool, t1 ® Int, t1 ® t1, etc.

t is a type variable
(tyvar)

b is a base type
Assume Int and Bool

10

Type Environment

Programming in Haskell, A Milanova 11

Gamma ::= Identifiers -> Types

Type environment Gamma maps identifiers (variables) to
types:

For example, we can only type subexpression

(f x)

in a type environment that binds identifies f and x to
types. E.g., in Gamma = [f :: t -> t, x :: t]

11

Goal and Intuition

Programming in Haskell, A Milanova 12

\x -> \y -> xGiven

\x -> \y -> x :: t1 -> t2 -> t1Deduce

1. Construct parse tree for expression. Associate a fresh
tyvar to each identifier and each subexpression

2. Generate equality constraints

3. Solve equality constraints using unification

4. Deduce type for expression

12

4

Programming in Haskell, A Milanova 13

\x -> \y -> x

13

Programming in Haskell, A Milanova 14

\f -> \x -> f (f x)

14

Programming in Haskell, A Milanova 15

15

Programming in Haskell, A Milanova 16

(\f -> f 5) (\x -> x + 1)

16

5

Programming in Haskell, A Milanova 17

let f = \x -> x in f 1

17

Equality Constraints

Programming in Haskell, A Milanova 18

Two key concepts

§ Equality
§ What does it mean for two types to be equal?
§ Structural equality

§ Unification
§ Can two types be made equal by choosing appropriate

substitutions for their type variables?
§ Robinson’s unification algorithm

18

What does it mean for two types τa and τb to be equal?

Structural equality

Suppose τa = t1 ® t2

τb = t3 ® t4

Structural equality entails
τa ~ τb means t1 ® t2 ~ t3 ® t4 iff t1 ~ t3 and t2 ~ t4

19Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW)

19

Can two types be made equal by choosing appropriate
substitutions for their type variables?

Robinson’s unification algorithm
Suppose τa = Int®t1

τb = t2®Bool
Can we unify τa and τb?

Suppose τa = Int ®t1

τb = Bool®Bool
Can we unify τa and τb?

20

Yes, if Bool/t1 and Int/t2

No.
Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW)

20

6

Example

t1 ® Bool ~ (Int ® t2) ® t3

Programming in Haskell, A Milanova 21

® ®

t1 Bool ®

Int t2

t3

Yes, if Int®t2/t1 and Bool/t3

21

Substitution

Language of types
τ ::= b // base type: Int and Bool

| t // type variable (tyvar)
| τ1 ® τ2 // function type

A substitution is a map
S : Type Variable à Type
S = [τ1/t1, … τn/tn] // substitute type τi for tyvar ti

A substitution instance τ’ = S τ
S = [t0®Bool / t1] τ = t1®t1 then
S τ = S(t1®t1) = (t0®Bool) ® (t0®Bool)

Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW) 22

22

Substitutions can be composed
S1 = [t0®Bool/t1]
S2 = [Int/t0]
τ = t1®t1

S2 S1 τ = S2 (S1(t1®t1)) = ?

Programming in Haskell, A Milanova 23

Exercises

23

Substitutions can be composed
S1 = [tx/t1]
S2 = [tx/t2]

τ = t2®t1

S2 S1 τ = ?

Programming in Haskell, A Milanova 24

24

7

Substitutions can be composed
S1 = [t1/t2]
S2 = [t3/t1]
S3 = [t4®Int/t3]

τ = t1®t2
S3 S2 S1 τ = ?

Programming in Haskell, A Milanova 25

25

Principal Unifier

A unifier is a substitution that unifies (i.e., makes equal) a set of
constraints
A principal unifier is a most general unifier of a set of
constraints

{ (t1®t1)®t1®t1 ~ t2®t3 }

Programming in Haskell, A Milanova 26

26

Exercise

A principal unifier is the most general unifier of a set of
constraints

Find principal unifiers (when they exist) for

{ Int®Int ~ t1®t2 }
{ Int ~ Int®t2 }
{ t1 ~ Int®t2 }

{ t1 ~ Int, t2 ~ t1®t1 }
{ t1®t2 ~ t2®t3, t3 ~ t4®t5 }

Programming in Haskell, A Milanova 27

27

Unification

n Unify: tries to unify τ1 and τ2 and returns a principal
unifier for τ1 ~ τ2 if unification is successful

def Unify(τ1,τ2) =
case (τ1,τ2)

(τ1,t2) = [τ1/t2] provided t2 does not occur in τ1
(t1,τ2) = [τ2/t1] provided t1 does not occur in τ2

(b1,b2) = if (eq? b1 b2) then [] else fail
(τ11®τ12, τ21®τ22) = let S1 = Unify(τ11,τ21)

S2 = Unify(S1 τ12, S1 τ22)
in S2 S1 // compose substitutions

otherwise = fail 28

This is the occurs check!

28

8

Exercise

Unify (Int®Int, t1®t2) yields ?

Unify (Int, Int®t2) yields ?

Unify (t1, Int®t2) yields ?

Programming in Haskell, A Milanova 29

29

Unify Set of Constraints C

Robinson’s algorithm unifies (i.e., solves) a single constraint
τ1 ~ τ2.

What if we have a set of constraints?

Intuition:
1. Pick a constraint τ1 ~ τ2 from the set
2. Solve τ1 ~ τ2 either failing or succeeding getting subst S

If fail, then done, constraints cannot be unified
If success, then first apply S on remaining constraints as S carries

structure that must be taken into account

30Programming in Haskell, A Milanova

30

Unify Set of Constraints C

UnifySet: tries to unify C and returns a principal unifier for C
if unification is successful

def UnifySet (C) =
if C is Empty Set then [] // Empty subsitution
else let

C = { τ1 ~ τ2 } U C’
S = Unify (τ1,τ2) // Unify returns a substitution S

in
UnifySet (S(C’)) S
// Compose the substitutions

31Programming in Haskell, A Milanova

31

Exercise

UnifySet { t1 ~ Int, t2 ~ t1®t1 } yields ?

UnifySet { t1®t2 ~ t2®t3, t3 ~ t4®t5 } yields ?

UnifySet { tf ~ t2®t1, tf ~ tx®t2 } yields ?

UnifySet { t2 ~ t4®t1, t2 ~ tf®t3, t4 ~ tx®Int, tf ~
Int®t3, tx ~ Int } yields ? 32

32

9

Haskell’s Way

{ t2 ~ t4®t1, t2 ~ tf®t3, t4 ~ tx®Int, tf ~ Int®t3, tx ~ Int }

33

Haskell does a sequence of successive rewrites:

And so on…

33

Outline

n Simple type inference
n Expressions, types and type environment
n Goal and intuition
n Equality constraints
n Substitution
n Robinson’s unification
n Type inference strategies

n Algorithm V (Strategy One) and
n Algorithm V (Strategy Two)

34Programming in Haskell, A Milanova

34

Type Inference Strategies

Strategy One aka constraint-based typing (Haskell)
Traverse expression’s parse tree and generate constraints.
Solve constraints offline producing substitution map S.
Finally, apply S on expression tyvar to infer the principal
type of expression

Strategy Two (Classical Hindley Milner)
Generate and solve constraints on-the-fly while traversing
parse tree. Build and apply substitution map incrementally

Programming in Haskell, A Milanova 35

35

def V(Γ, E) = case E of
c -> ({}, TypeOf(c))

x -> if (x NOT in Dom(Γ)) then fail
else ({}, Γ(x))

\x -> E1 -> let (CE1,TE1) = V(Γ+{x:tx},E1) – tx is fresh tyvar
in (CE1,tx®TE1)

Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW) 36

Constraint Generation
Strategy One

36

10

def V(Γ, E) = case E of
…
E1 E2 -> let (CE1,TE1) = V(Γ,E1)

(CE2,TE2) = V(Γ,E2)
in (CE1 + CE2 + {TE1 ~ TE2 ®t}, t) -- t is fresh tyvar

let x = E1 in E2 -> let (CE1,TE1) = V(Γ+{x:tx},E1)
(CE2,TE2) = V(Γ+{x:TE1},E2)

in (CE1 + CE2 + {tx ~ TE1}, TE2)

Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW) 37

37

Programming in Haskell, A Milanova 38

(\f -> f 5) (\x -> x + 1)

38

Programming in Haskell, A Milanova 39

> (\f -> f True) (\x -> x + 1)

• No instance for (Num Bool) arising from a use of ‘+’
• In the expression: x + 1
In the first argument of ‘\ f -> f True’,
namely ‘(\ x -> x + 1)’

In the expression: (\ f -> f True) (\ x -> x + 1)

39

Programming in Haskell, A Milanova 40

let f = \x -> x in f 1

40

11

def V(Γ, E) = case E of
c -> ([], TypeOf(c))

x -> if (x NOT in Dom(Γ)) then fail
else ([], TE)

\x -> E1 -> let (SE1,TE1) = V(Γ+{x:tx},E1)
in (SE1, SE1(tx)®TE1)

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 41

On-the-fly Generation and
Resolution

Strategy Two

41

def V(Γ, E) = case E of
E1 E2 -> let (SE1,TE1) = V(Γ,E1)

(SE2,TE2) = V(SE1(Γ),E2)
S = Unify(SE2(TE1),TE2®t)

in (S SE2 SE1, S(t)) // S SE2 SE1

let x = E1 in E2 -> let (SE1,TE1) = V(Γ+{x:tx},E1)
S = Unify(SE1(tx),TE1)
(SE2,TE2) = V(S SE1(Γ)+{x:S(TE1)},E2)

in (SE2 S SE1, TE2)

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 42

42

Programming in Haskell, A Milanova 43

(\f -> f 5) (\x -> x + 1)

43

Outline

n Hindley Milner (also known as Milner Damas)
n Monotypes (types) and polytypes (type schemes)
n Instantiation and generalization
n Algorithm W
n Observations

n Back to Haskell
n Type signatures
n Class constraints
n Implication constraints

44

44

12

Motivating Example

A sound type system rejects some good programs

Canonical example
let f = \x -> x
in

if (f True) then (f 1) else 1

This is a good program, it does not “get stuck“
Term is NOT typable in Simple types
It is typable in Hindley Milner!

45Programming in Haskell, A Milanova

45

Towards Hindley Milner

let f = \x -> x
in

if (f True) then (f 1) else 1
Constraints

tf ~ t1®t1

tf ~ bool®t2 // at call (f True)
tf ~ int®t3 // at call (f 1)

Does not unify!

46Programming in Haskell, A Milanova

46

Towards Hindley Milner

Solution:
Generalize the type variable in type of f

tf : t1®t1 becomes tf : t1.t1®t1

Different uses of generalized type variables are instantiated
differently

(f True) instantiates tf into u1®u1 (u1 is fresh)
u1®u1 unifies with Bool®t2, no problem

E.g., (f 1) instantiates tf into u2®u2 (u2 is fresh)

When can we generalize? 47

∀

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW)

47

Expression Syntax
(to study Hindley Milner)

Expressions:

E ::= c | x | \x -> E1 | E1 E2 | let x = E1 in E2

There are no types in the syntax

The type of each sub-expression is derived by the Hindley
Milner type inference algorithm

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW) 48

48

13

Type Syntax
(to study Hindley Milner)

Types (aka monotypes):
τ ::= b | τ1®τ2 | t
E.g., Int, Bool, Int®Bool, t1®Int, t1®t1, etc.

Type schemes (aka polymorphic types):
σ ::= τ | t.σ
E.g., t1. t2.(Int®t1)®t2®t3

Note: all quantifiers appear in the beginning, τ cannot
contain schemes

Type environment now
Gamma ::= Identifiers à Type schemes

49

t is a type variable

∀
∀ ∀

t3 is a “free” type
variable as it isn’t
bound under ∀

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW)

49

Instantiations
Type scheme σ = t1…tn.τ can be instantiated into a type τ’ by
substituting types for the bound variables (BV) under the
universal quantifier

τ’ = S τ S is a substitution s.t. Domain(S) BV(σ)

τ’ is said to be an instance of σ (σ > τ’)

τ’ is said to be a generic instance when S maps type
variables to new (i.e., fresh) type variables

50

∀

∀

Programming in Haskell, A Milanova (modified from MIT’s 2015 Program Analysis OCW)

⊇

50

E.g., σ = t1t2.(Int®t1)®t2®t3

E.g., σ = t1.t1®t1

51

∀

Programming in Haskell, A Milanova (modified from MIT’s 2015 Program Analysis OCW)

∀

51

Generalization (aka
Closing)

We can generalize a type τ as follows

Gen(Γ,τ) = t1,…tn.τ
where {t1…tn} = FV(τ) – FV(Γ)

Generalization introduces polymorphism

52

∀

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW)

52

14

Quantify type variables that are free in τ but are not
free in the type environment Γ

E.g., Gen([],t1®t2) yields

E.g., Gen([x:t2],t1®t2) yields

53Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW)

53

let f = \x -> x in if (f True) then (f 1) else 1
1. Infer type for \x -> x : tx®tx (a monotype)
2. Generalize type using Gen([],tx®tx): tx.tx®tx (a type

scheme)

3. Pass type scheme to if (f True) then (f 1) else 1
4. Instantiate for each f in if (f True) then (f 1) else 1

[u1/tx] (tx®tx) where u1 is fresh tyvar at (f True)
[u2/tx] (tx®tx) where u2 is fresh tyvar at (f 1)

54

∀

Programming in Haskell, A Milanova

54

When can we generalize?

Consider expression \f -> \x-> let g = f in g x

Gen([f:tf,x:tx],tf) yields what?

DO NOT generalize variables that are mentioned in type
environment Γ!

55Programming in Haskell, A Milanova

55

Hindley Milner Type
Inference, Rough Sketch

let x = E1 in E2
1. Calculate type TE1 for E1 in Γ;x:tx ; TE1 is a monotype
2. Generalize free type variables in TE1 to get the type

scheme for TE1 (be mindful of caveat!)

3. Extend environment with x:Gen(Γ,TE1) and start typing E2

4. Every time algorithm sees x in E2, it instantiates x’s type
scheme using fresh type variables

E.g., id’s type scheme is t1.t1®t1 so id is
instantiated to uk®uk at (id 1)

56

∀

Programming in Haskell, A Milanova

56

15

Hindley Milner Type
Inference

Programming in Haskell, A Milanova 57

Just like with Simple types, there are two strategies

Strategy One
Simple types extended with generalization and instantiation
Generate all constraints, then solve

Strategy Two
Again, simple types with generalization and instantiation
Generate and solve constraints on-the-fly
This is classical Algorithm W

57

Example

\x -> let f = \y -> x in (f True, f 1)

Programming in Haskell, A Milanova 58

58

def W(Γ, E) = case E of
c -> ([], TypeOf(c))
x -> if (x NOT in Domain(Γ)) then fail

else let TE = Γ(x)
in case TE of

t1,...tn.τ -> ([],[u1/t1...un/tn] τ)
_ -> ([], TE)

\x -> E1 -> let (SE1,TE1) = W(Γ+{x:tx},E1)
in (SE1, SE1(tx)®TE1)

// ...
// continues on next slide!

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 59

Strategy Two: Algorithm W

∀

u1 to un are fresh type vars generated
at instantiation of polymorphic type

59

def W(Γ, E) = case E of
// continues from previous slide
// ...

E1 E2 -> let (SE1,TE1) = W(Γ,E1)
(SE2,TE2) = W(SE1(Γ),E2)
S = Unify(SE2(TE1),TE2®t)

in (S SE2 SE1, S(t))
let x = E1 in E2 -> let (SE1,TE1) = W(Γ+{x:tx},E1)

S = Unify(SE1(tx),TE1)
σ = Gen(S SE1(Γ), S(TE1))
(SE2,TE2) = W(S SE1(Γ)+{x:σ},E2)

in (SE2 S SE1, TE2)

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 60

60

16

Strategy Two Example

let f = \x->x in if (f True) then (f 1) else 1

61

1. let

f 2. Abs

x lx: tx

Γ = []

Γ = [f:tf]

Γ = [x:tx f:tf]

T2 = tx®tx
S2 = []

3. if-then-else

Γ = [f: tx.tx®tx]∀

No constraint, types 2. Abs
immediately: T2 = tx®tx: [tx®tx/t2]
σ = Gen([],tx®tx) = tx. tx®tx∀

4. App 5. App

f true

1
T4 = bool
S4 = [bool/t4][bool/u1]

f 1

T3 = int
S3 = ...

T = u1®u1
S = [] From Unify(u1®u1, bool®t4)

T5 = int
S5 = [int/t5][int/u2]

T1 = int
S1 = ...

61

Example

\x -> let f = \y -> x in (f True, f 1)

Programming in Haskell, A Milanova 62

62

Hindley Milner
Observations

Notes

n Do not generalize over type variables mentioned in type
environment (they are used elsewhere)

n let is the only way of defining polymorphic constructs

n Generalize the types of let-bound identifiers only after
processing their definitions

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 63

63

Hindley Milner
Observations

n Generates the most general type (principal type) for each
term/subterm

n Type system is sound

n Complexity of Algorithm W
It is PSPACE-Hard because of nested let blocks

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 64

64

17

Hindley Milner Limitations

n Only let-bound constructs can be polymorphic and
instantiated differently

let twice f x = f (f x)
in twice twice succ 4 // let-bound polymorphism

let twice f x = f (f x)
foo g = g g succ 4 // lambda-bound

in foo twice

Programming in Haskell, A Milanova 65

65

Programming in Haskell, A Milanova 66

(\x -> x (\y -> y) (x 1)) (\z -> z)

let x = (\z -> z)
in

x (\y -> y) (x 1)

66

