* Type Inference
|

Project Schedule

- - | PO
Tue Oct 22/ Parametric Quiz 3 on Fri | PS6 due Friday
Fri Oct 25 Polymorphism and Lecture Week9 |
Hindley Milner |
Type Ipference |
Tue Oct 29/ Fri | Type inference in Ps7
Nov 1 Haskell Start work on project this week
(or earlier)
Tue Nov 5/ Standard Monads: Ch. 12 PS7 due Tuesday,
Fri Nov 8 Maybe, List, State, | PS8
10, Continuati |
Tue Nov 12/ Parsing Theory; Ch.12 PS8 due Tuesday
FrNov 15 Parsing with Checkpoint #1: attend office
Monads hours this week (or earlier)
Tue Nov 19/ Functors and Ch.12 |
Fri Nov 22 Applicative | 5-8 min presentation in class
Functors | on Friday
Tue Nov 26 Effectful Ch. 12 Ps9
Programming
Tue Dec 3 TBD | PS9 due Tuesday
Fri Dec 6 | Checkpoint #2: attend office
| hours this week (o earlier)
Tue Dec 10 Project Project due
presentations 5-8 min presentation in class

Programming in Haskell, A Milanova

Outline

= Simple type inference

= Expressions, types and type environment

Goal and intuition
Equality constraints
Substitution

Robinson’s unification
Type inference strategies

= Algorithm V (Strategy One) and

= Algorithm V (Strategy Two)

Programming in Haskell, A Milanova

Outline

= Hindley Milner (also known as Milner Damas)
= Monotypes (types) and polytypes (type schemes)
= Instantiation and generalization
= Algorithm W
= Observations

= Type inference in Haskell
Extends classical system
= Type signatures
= Class constraints
= Implication constraints

* Type Inference

The task of type inference is to

Eq. E =>4 1+ Tige XUD
Reject bad programs with a decent error message
—

Elaborate good programs
—

Programming in Haskell, A Milanova (slide text due to
Simon Peyton Jones)

& Type Inference

Every well-formed expression in Haskell has a type

In general, we don’t need to write type signatures, Haskell
can figure out (many) signatures. E.g.:

Programming in Haskell, A Milanova >) ce 0 — s

4

Foundation is an algorithm known as Hindley Milner type
inference (also, Milner Damas)

Haskell builds on Hindley Milner to account for, most
notably, user-defined types, ADTs and pattern matching,
type classes and type class constraints

Classical Hindley Milner solves constraints on-the-fly

Haskell first generates constraints, then solves them
“offline”

Programming in Haskell, A Milanova

* Simple Type Inference

Inference of the so-called simple types

Formally known as System F1 or Simply Typed Lambda
Calculus l,eugfu 12 [Ban| J>Mte

o . lewstgn 52 [0 7 =D
NO polymorphism, i.e., functions work on a’single type

Hindley Milner extends simple type inference with so-
called let-polymorphism. Functions work on many different

types

Important concepts: expressions and types, type
environment, equality constraints, substitution, unification

Programming in Haskell, A Milanova 8

i Expressions

A minimal language, very close to Lambda calculus:

Eix=c| X | ¥->E; | E4E, |
letx=E;inE, |
Ei+E;|
if E, then E; else E;

There are no types in syntax

The type of each subexpression is derived by simple type
inference -

Programming in Haskell, A Milanova

i Types

Types (as known as simple types or monotypes):

tis a type variable
(tyvar)

ti=b|tomn|t

b is a base type
Assume Int and Bool

E.g., Int, Bool, Int—>Bool, t; > Int, t; > t,, etc.

Tt — Rool y Jut, >t~ 6

Programming in Haskell, A Milanova 10

10

i Type Environment

Type environment Gamma maps identifiers (variables) to
types:

Gamma ::= Identifiers -> Types

For example, we can only type subexpression

- [fff{'e{?]?(.'t{‘:(J - (fx):fé

in a type environment that binds identifies f and x to
types. E.g.,inGamma = [f :: t -> t, x :: t]

Programming in Haskell, A Milanova

i Goal and Intuition

1. Construct parse tree for expression. Associate a fresh
tyvar to each identifier and each subexpression

2. Generate equality constraints

3. Solve equality constraints using unification

4. Deduce type for expression

Programming in Haskell, A Milanova 12

11

12

4

waki 19 totakas ule

1. H -lv «")(,fl /
/ s\arz x: ik /-6 Cousdrnatn fs Rﬂ«(,
\X & Mt U [z-,x-»a/ei,g—,bx/f]

it

{y >k &~
Programm ng in Haskell A Mil Iano m 13

Solve e eony VMIJ'S.

s
NN e roces o adoti ko

(Ufti€f> tof maxes al

" XEER ST 6 S
Cosdear wte 2 6* L $ Off% bx- L‘z/f‘
mborty, 60 b § bt év[#z; G byotxg

Vv
5(7"9 bx

4

1 s =0 7#’& éﬁé«)!‘, .

Programming in Haskell, A Milanova 14

13

14

+

Programming in Haskell, A Milanova

Coustrajuls : ; tye if —=t,, hvtoth, tj’“tﬂ” bttt

Unifrer : [,gf_)é Jts, —,{3/%” b /by, b/t ¢/t]

A/Jlb!y%q Wi,/\tr m tn aborotes H 2
@ "’iz) - fe -

!
’

¢
This s ‘Hll[m'uu'/ya/ b/x ?/ exprestin \}-—v \X—)f ([x)

. M{ = ’ﬁ l.f ”/bs y~ x—?.TMléﬁ
2K ; ﬁ? =a

Programming in Haskell, A Milanova 16

15

16

Jet £ = \x -> x in f 1

Programming in Haskell, A Milanova 17

17

What does it mean for two types ta and 1, to be equal?
Structural equality

Suppose 1.=
Th =

Structural equality entails
Ta~TpbMeans ti > ta~t;3 o> Lhifft1~tzand ta~ t4

Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW) 19

Equality Constraints

Two key concepts

Equality
What does it mean for two types to be equal?
Structural equality

Unification
Can two types be made equal by choosing appropriate
substitutions for their type variables?
Robinson’s unification algorithm

Programming in Haskell, A Milanova 18

18

Can two types be made equal by choosing appropriate
substitutions for their type variables?

Robinson’s unification algorithm

19

To ° — T —
Suppose 1, = Int—t, 7SN L — —A>
T+ 1 b2 Bool
Tb=t2—-)BOO| ~ R _—
Can we unify 1, and t,? Yes, if Bool/ty and Int/t;
Suppose 12 = Int| oty
T, = Bool—>Bool
Can we unify 1, and 1p? No.
Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW) 20

20

‘ Example

ty >Bool ~ (Int>t,)>t;

t1/ BOB' _) . t3

Int t2
Yes, if Int—>t2/ty and Bool/ts

Programming in Haskell, A Milanova 21

21

‘ Exercises

Substitutions can be composed S, $, = flu{/{oja[io—sﬁoo//éﬂ

S1 = [to—)BOO|lt1] Coge 64
S, = [Intity] S = [torsburl [, Tud 4]
T =tHty

S,S17T=S,(S4(ty>ty)) =7
(Lioty) (o= Bool [a T [Tt /] =
’_———’-,’_—
((‘é‘b-—>&w[) = t» =>Roo|)[%14/6-7 -
@“"LAB‘”[) = Teid —» Bool

Programming in Haskell, A Milanova 23

23

‘ Substitution

Language of types
t:=b Il base type: Int and Bool
| t Il type variable (tyvar)
| T1 = t2 [/l function type

A substitution is a map

S : Type Variable > Type

S = [14/t4, ... Taltn] /I substitute type =ifor tyvar t;
A substitution instance 1" =S 1

S =[to—>Bool/t] r:t1—>t1 then

S t = §(t1>t4) = (too>Bool) —» (t—>Bool)

Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW) 22

22

*

Substitutions can be composed
S1=[tdty]
S, =[tdt;]

T=t2—)t1
SZ S1 T=?

(hot,) (& 1T e /6T =
%x—>£,(

Programming in Haskell, A Milanova 24

24

*

Substitutions can be composed
Si=[ty/t;]
S;=[t/yy]
S; =[t,~Int/t;]

T=t1—)t2
33 Sz S1 T= ?

(h-t) [/AT [6/6T =Tk /6] =
T ot) (B /4T [=24/ 6T =

Programming in Haskg A Milanova

(_WQ@ 2}4#/&7 = Gl,—ﬂu)= by Tuf ’

25

‘ Principal Unifier

A unifier is a substitution that unifies (i.e., makes equal) a set of
constraints

A principal unifier is a most general unifier of a set of
constraints]t t, ~ fz"‘?}f‘

Eél/fz, {7—1 /{:31

{ (t1 —)t1)—)t1—)t1 ~ tz—)t3}
[{’1"’ é.’l /{’3) f("afl_ /‘&;\j ﬂﬂf’]‘ GGIVEM

- > T MORE
[Jut Dt [y, Tk Tuk [, , Tuk/ 4] LR e

[y

Programming in Haskell, A Milanova 26

‘ Exercise

A principal unifier is the most general unifier of a set of
constraints

Find principal unifiers (when they exist) for
{ Int>Int ~ t,>t,} [Tut/ts, Dut [6]
{Int~ Int>t,} DNE
{t, ~ Into>t,) [Tt/ 4T

{t; ~Int, t, ~t;>t,} [M/h) Tub->2ut /b,]
{ti>t; ~ t,ots, t; ~ t,ot5} [tlt, t/ts, tests /b

Programming in Haskell, A Milanova 27

26

27

‘ Unification

= Unify: tries to unify 74 and 7, and returns a principal
unifier for T4 ~ 1, if unification is successful
def Unify(1:1,rz) = {'L ~ /’—5\ ‘This is the occurs check! ‘
case (14,T2) o Tup
* (7q,t2) = [r4/ty] provided t, does not occur in 14
e (t4,75) = [1o/t4] provided t; does nmur in T,
(bq,bs) = if (eq? b4 by) then [] else fail
=let Sy = Unify(t41,721)
= S, = Unify(Sy 1y, S112)
in S, S4// compose substitutions
otherwise = fail 28

28

‘ Exercise

Unify (Int—lInt, t,—t,) yields ? L{a}(][i (St £) (24t
[t/ by, Bt (4] Wafy (Tut, £y)- (Bt]

Unify (Int, Int—t,) yields ?
Does Wot i fy

Unify (t;, Int>t,) yields ?
[T4, /6T

Programming in Haskell, A Milanova 29

| Unify Set of Constraints C

Robinson’s algorithm unifies (i.e., solves) a single constraint
T1~T2.

What if we have a set of constraints?

Intuition:

1. Pick a constraint 14 ~ 12 from the set

2. Solve 11 ~ 12 either failing or succeeding getting subst S
If fail, then done, constraints cannot be unified

If success, then first apply S on remaining constraints as S carries
structure that must be taken into account | goh; 7

29

Programming in Haskell, A Milanova 30

‘ Unify Set of Constraints C

UnifySet: tries to unify C and returns a principal unifier for C
if unification is successful

def UnifySet (C) =

if C is Empty Set then [] // Empty subsitution

else let
C={n~12}UC’
S = Unify (t1,72) // Unify returns a substitution S

in

UnifySet (S(C’)) S
/I Compose the substitutions

30

Programming in Haskell, A Milanova 31

31

‘ Exercise
Tt Tuk

UnifySet { t, ~ Int, t, ~ {—>t; } yields ?
[Tut/ty, TeboZut [t T
UnifySet { ;4 * t,oot;, 1/~ tiots) yields ?
Lot 4/t , tests b]
UnifySet { t;~ t,>t,, t/~ t,>t,} yields ?
Bz"’{u /{71 y Ba /by ’:1‘1/{:,:7

Unlfyset { t2 ~ t4—)t1, tz ~ tf—)t3, t4 ~ tx—)lnt, tf ~

Int>t;, t, ~ Int } yields ? »

32

‘ Haskell’s Way

Haskell does a sequence of successive rewrites:
{ to~ t4—)t1, to~ tf—)ts, ts~ tx—>lnt ts~ |I'lt—)t3, t }

¥ [Dt /41
St ot b w,t«)t;, by T, EfATut 5% §
Y2 5T /047

S (D) > b bbbty bl o4, §

2 gty (B A1) oty b Bt R
And so on... z‘b v :Zu\‘—slu,(./ ﬂguﬁ_; t%fbflw#ef_;f

bus e, 3

33

‘ Type Inference Strategies

Strategy One aka constraint-based typing (Haskell)

Traverse expression’s parse tree and generate constraints.
Solve constraints offline producing substitution map S.
Finally, apply S on expression tyvar to infer the principal
type of expression

Strategy Two (Classical Hindley Milner)

Generate and solve constraints on-the-fly while traversing
parse tree. Build and apply substitution map incrementally

Programming in Haskell, A Milanova 35

35

‘ Outline

= Simple type inference
= Expressions, types and type environment
= Goal and intuition
= Equality constraints
= Substitution
= Robinson’s unification

= Type inference strategies
= Algorithm V (Strategy One) and
= Algorithm V (Strategy Two)

Programming in Haskell, A Milanova 34

34

Constraint Generation

=aaseEof _M0 Strategy One
_¢ > ({} TypeOf(c)

X => if (x NOT in Dom(I")) then fail
else ({3}, M(x))

"*B
E (Cu){y,(—elei /%\%7/’6
\x -> E; -> let (Cg1,Teq) = V(M +{x:t,},E) — t is fresh tyvar

- in (Cer,t,>Te1)
\)(EJ_ — r’:
o A
\ PY
" Xy, &)

Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW)

36

def V(I, E) = case E of

P:... EiE; ->let (CE1,TE1) = V! F,E1)
E (tar+ce2s $Ter~T07t}, £)(Cea Tea) = V(T E2)

Ju VRN oy in (Ceq + Cep + {Teq ~ Tea o}, t) -t is fresh tyvar
(5 C, =

1
(et Ter) (CerTer)

let x = Eq in E; -> let (Cgy,Teq) = V(M+{x:t:},E4)
(Ce2,Tez) = V(M+{x:Te1},E2)
in (Cgq + Cga + {tx ~ Te1}, Te2)

Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW) 37

37

+

Programming in Haskell, A Milanova 39

39

(;ﬁﬁ“'l”"’ti) {"XMI"") é‘f—’%

(Tt B)=E< (x> Tn) — "t

* Cbnlktﬂti(,‘gé)(ujﬂletl\; Crtarnts ¢ RADH]

Tpe: Yob e

~

f, (Toetitd, &oT)

\y/ \+ (RerTictt TML)
/N

Programmirg %?ai&)jn(a%j&}” I')

: b—=Tug
"“(Z?x:?TMI-) —7‘52}) éz)

ort,

o lraiot yos)
/N Tef:4p7
N e

5
(15%!) (il,f«ru}) 38

38

o+

Program

ming in Haskell, A Milanova

40

40

10

On-the-fly Generation and
Resolution

Strategy Two

def V(I', E) = case E of
¢ -> (0, TypeOf(c))

X -> if (x NOT in Dom(I)) then fail
else ([1, Te)

\x -> Eq > let (Sgs,Teq) = V(M +{x:t,},Eq)
in (Se1, Ser(t)>Ter)

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 41

def V(I, E) = case E of
Eq1Ez -> let (Sg,Ter) = V(T,Eq)
(Se2,Te2) = V(SEer(I),E2)
S = Unify(Sex(Te1), Tezot)
in (S Sg2 Sgq, S(t)) //' S Sg2 Seq

let x = Eq in E; -> let (Sg4,Tgq) = V(M +{x:t,},E4)
S = Unify(Sex(tx), Te1)
(Se2,Te2) = V(S Seq(M)+{x:S(Te1)},E2)
in (Sg2 S Sey, Te2)

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW)

42

41

+

Programming in Haskell, A Milanova 43

43

42

i Outline

= Hindley Milner (also known as Milner Damas)
= Monotypes (types) and polytypes (type schemes)
= Instantiation and generalization
= Algorithm W
= Observations

= Back to Haskell
= Type signatures
= Class constraints
= Implication constraints

44

44

11

‘ Motivating Example

A sound type system rejects some good programs

Canonical example
let f=\x->x
in
if (f True) then (f 1) else 1
This is a good program, it does not “get stuck®

Term is NOT typable in Simple types
It is typable in Hindley Milner!

Programming in Haskell, A Milanova 45

45

‘ Towards Hindley Milner

Solution:
Generalize the type variable in type of f
t; : tyo>t; becomes t:: Vti.tioty

Different uses of generalized type variables are instantiated
differently

(f True) instantiates tr into us—u4 (u4 is fresh)
ui—u4 unifies with Bool—t;, no problem
E.g., (f 1) instantiates t; into uz—>uz (uz is fresh)

When can we generalize? “
Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW)

47

| Towards Hindley Milner

let f=\x ->x
in
if (f True) then (f 1) else 1
Constraints
t; ~ t,ot,
t;~ bool—t, // at call (f True)
t;~ int>t; // at call (f 1)
Does not unify!

Programming in Haskell, A Milanova

46

46

Expression Syntax

‘ (to study Hindley Milner)

Expressions:

E:=c | x| Xx->E; | E4E; | letx=E;inE;

There are no types in the syntax

The type of each sub-expression is derived by the Hindley
Milner type inference algorithm

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW)

48

48

12

Type Syntax

‘ (to study Hindley Milner)

Types (aka monotypes): ' '
ti=b |t |t tis a type variable

E.g., Int, Bool, Int—>Bool, ti—Int, t1—>t,, etc.

Type scherr‘;’es (aka polymorphic types): ts is a “free” type
c:=1| Vto variable as it isn’t
E.g.VtiVto(Intot))>taots — bound under V

Note: all quantifiers appear in the beginning, T cannot
contain schemes
Type environment now

Gamma ::= Identifiers > Type schemes
Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW)

49

Instantiations

Type scheme ¢ =Y t;...t,.T can be instantiated into a type 1’ by
substituting types for the bound variables (BV) under the
universal quantifier V

=81t Sis a substitution s.t. Domain(S) =2 BV(cs)
7’ is said to be an instance of 6 (6 > 1°)

7’ is said to be a generic instance when S maps type
variables to new (i.e., fresh) type variables

Programming in Haskell, A Milanova (modified from MIT’s 2015 Program Analysis OCW) 50

49

*

E.g., c =V t1t2.(|nt—)t1)—)t2—)t3

E.g., 6 = Vti.tioty

Programming in Haskell, A Milanova (modified from MIT’s 2015 Program Analysis OCW)

51

50

Generalization (aka

‘ Closing)

We can generalize a type t as follows

Gen(l,1) =Vty,...t,.7
where {t;...t,} = FV(t) - FV(I)

Generalization introduces polymorphism

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW) 52

51

52

13

*

Quantify type variables that are free in T but are not
free in the type environment I

E.g., Gen([],t1—>t2) yields

E.g., Gen([x:t2],t1—>t2) yields

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW)

53

53

When can we generalize?

Consider expression \f->\x->letg=fingx

Gen([f:ts,x:t],tr) yields what?

DO NOT generalize variables that are mentioned in type
environment I'!

Programming in Haskell, A Milanova

55

*

let f =\x -> x in if (f True) then (f 1) else 1
1. Infer type for \x -> x : ty—>tx (a monotype)

2. Generalize type using Gen([],tx—>tx): Vix.tx—tx (a type
scheme)

3. Pass type scheme to if (f True) then (f 1) else 1

4. Instantiate for each f in if (f True) then (f 1) else 1
[u4/ts] (tx—tx) where uq is fresh tyvar at (f True)
[u2/ty] (tx—>tx) where uz is fresh tyvar at (f 1)

Programming in Haskell, A Milanova 54

54

Hindley Milner Type

‘ Inference, Rough Sketch

letx=E;inE,
1. Calculate type Tg4 for E1in IM;x:tx ; Teq is @ monotype

2. Generalize free type variables in Tg1 to get the type
scheme for Tgq (be mindful of caveat!)

3. Extend environment with x:Gen(I',Te1) and start typing E2

4. Every time algorithm sees x in Ej, it instantiates x’s type
scheme using fresh type variables

E.g., id’s type scheme is ¥ ty.t;>t1 so id is
instantiated to ux—>ux at (id 1)

Programming in Haskell, A Milanova 56

55

56

14

Hindley Milner Type
Inference

Just like with Simple types, there are two strategies

Strategy One
Simple types extended with generalization and instantiation

Generate all constraints, then solve

Strategy Two
Again, simple types with generalization and instantiation

Generate and solve constraints on-the-fly

This is classical Algorithm W
57

Programming in Haskell, A Milanova

57

Example

\x ->letf=\y->xin (f True, f1)

58

Programming in Haskell, A Milanova

Strategy Two: Algorithm W

u4 to u,, are fresh type vars generated
at instantiation of polymorphic type

def W(I", E) = case E of
c -> ([, TypeOf(c))
if (x NOT in Domain(I")) then fail
else let Te = '(x)
in case Te of

Y tyetnt => ([1[Us/tr..Un/t] T)

_->(0,Te)
\x > Ey -> let (Sg1,Te1) = W(I+{x:t,},E+)

in (Sg1, Seq(t)—>Teq)

...
Il continues on next slide!

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW)

59

59

58

def W(I, E) = case E of
Il continues from previous slide

...
E1 E; -> let (Sg1,Te1) = W(ILEq)
(Se2,Te2) = W(Se+(IN),Ez2)
S = Unify(Se2(Te1), Te2—t)
in (S Se2 SE11 s(t))
let x = Eq in E; -> let (Sg1,Te1) = W(M+{x:t,},E.)
S= Unlfy(SE1(tx),TE1)
¢ =Gen(S Sgq(IN), S(Te1))
(Se2, Te2) = W(S Seq(M)+{x:c},E>)
in (sEz S sE1, TEZ)

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 60

60

15

‘ Strategy Two Example

let f =\x->x|in|if (f True) then (f 1) else 1
1. |etr = [] Ty =int

Si=... I = [f: Vi teoty]
I = [f:tq] .
f 2. Abs 3. if-then-else Ts =int
T,= tot, ~
S2=1]
I = [x:tx f:ts] 4. App > ApP 1
T4=boodl Ts=/int

Ax: tx X S4= [Boolits[bool/us] Ss= [intits][int/uz]

No constraint, types 2. Abs
immediately: T, = t,ot,: [totd/ta] f true f 1

c= Gen([],tx—)tx) = Vtx tx_)tx T=u->uy
S=]] ‘ From Unify(us—uy, bool—mﬂ

| Example

\x ->letf=\y->xin (f True, f1)

Programming in Haskell, A Milanova 62

61

62

Hindley Milner

‘ Observations

Notes

Do not generalize over type variables mentioned in type
environment (they are used elsewhere)

let is the only way of defining polymorphic constructs

Generalize the types of let-bound identifiers only after
processing their definitions

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 63

Hindley Milner

‘ Observations

Generates the most general type (principal type) for each
term/subterm

Type system is sound

Complexity of Algorithm W
It is PSPACE-Hard because of nested let blocks

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 64

63

64

16

* Hindley Milner Limitations

= Only let-bound constructs can be polymorphic and
instantiated differently

let twice f x = f (f x)
in twice twice succ 4 // let-bound polymorphism

let twice f x = f (f x)
foo g = g g succ 4 // lambda-bound
in foo twice

Programming in Haskell, A Milanova 65

Programming in Haskell, A Milanova

65

66

66

17

