
1

Type Inference

1

Project Schedule

Programming in Haskell, A Milanova 2

2

Outline

n Simple type inference (last week)
n Expressions, types and type environment
n Goal and intuition
n Equality constraints
n Substitution
n Robinson’s unification
n Type inference strategies

n Algorithm V (Strategy One) and
n Algorithm V (Strategy Two)

3Programming in Haskell, A Milanova

3

Outline

n Hindley Milner (also known as Milner Damas)
n Monotypes (types) and polytypes (type schemes)
n Instantiation and generalization
n Algorithm W
n Observations

n Type inference in Haskell
Extends classical system
n Type signatures
n Class constraints
n Implication constraints 4

4

2

Simple Type Inference

Covered last week

Moving on

Programming in Haskell, A Milanova 5

5

Type Inference Strategies

Strategy One aka constraint-based typing (Haskell)
Traverse expression’s parse tree and generate constraints.
Solve constraints offline producing substitution map S.
Finally, apply S on expression tyvar to infer the principal
type of expression

Strategy Two (Classical Hindley Milner)
Generate and solve constraints on-the-fly while traversing
parse tree. Build and apply substitution map incrementally

Programming in Haskell, A Milanova 6

6

def V(Γ, E) = case E of
c -> ({}, TypeOf(c))

x -> if (x NOT in Dom(Γ)) then fail
else ({}, Γ(x))

\x -> E1 -> let (CE1,TE1) = V(Γ+{x:tx},E1) – tx is fresh tyvar
in (CE1,tx®TE1)

Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW) 7

Constraint Generation
Strategy One

7

def V(Γ, E) = case E of
…
E1 E2 -> let (CE1,TE1) = V(Γ,E1)

(CE2,TE2) = V(Γ,E2)
in (CE1 + CE2 + {TE1 ~ TE2 ®t}, t) -- t is fresh tyvar

let x = E1 in E2 -> let (CE1,TE1) = V(Γ+{x:tx},E1)
(CE2,TE2) = V(Γ+{x:TE1},E2)

in (CE1 + CE2 + {tx ~ TE1}, TE2)

Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW) 8

8

3

Programming in Haskell, A Milanova 9

(\f -> f 5) (\x -> x + 1)

9

Programming in Haskell, A Milanova 10

> (\f -> f True) (\x -> x + 1)

• No instance for (Num Bool) arising from a use of ‘+’
• In the expression: x + 1
In the first argument of ‘\ f -> f True’,
namely ‘(\ x -> x + 1)’

In the expression: (\ f -> f True) (\ x -> x + 1)

10

Programming in Haskell, A Milanova 11

let f = \x -> x in f 1

11

def V(Γ, E) = case E of
c -> ([], TypeOf(c))

x -> if (x NOT in Dom(Γ)) then fail
else ([], TE)

\x -> E1 -> let (SE1,TE1) = V(Γ+{x:tx},E1)
in (SE1, SE1(tx)®TE1)

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 12

On-the-fly Generation and
Resolution

Strategy Two

12

4

def V(Γ, E) = case E of
E1 E2 -> let (SE1,TE1) = V(Γ,E1)

(SE2,TE2) = V(SE1(Γ),E2)
S = Unify(SE2(TE1),TE2®t)

in (S SE2 SE1, S(t)) // S SE2 SE1

let x = E1 in E2 -> let (SE1,TE1) = V(Γ+{x:tx},E1)
S = Unify(SE1(tx),TE1)
(SE2,TE2) = V(S SE1(Γ)+{x:S(TE1)},E2)

in (SE2 S SE1, TE2)

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 13

13

Programming in Haskell, A Milanova 14

(\f -> f 5) (\x -> x + 1)

14

Outline

n Hindley Milner (also known as Milner Damas)
n Monotypes (types) and polytypes (type schemes)
n Instantiation and generalization
n Algorithm W
n Observations

n Back to Haskell
n Type signatures
n Class constraints
n Implication constraints

15

15

Motivating Example

A sound type system rejects some good programs

Canonical example
let f = \x -> x
in

if (f True) then (f 1) else 1

This is a good program, it does not “get stuck“
Term is NOT typable in Simple types
It is typable in Hindley Milner!

16Programming in Haskell, A Milanova

16

5

Towards Hindley Milner

let f = \x -> x
in

if (f True) then (f 1) else 1
Constraints

tf ~ t1®t1

tf ~ bool®t2 // at call (f True)
tf ~ int®t3 // at call (f 1)

Does not unify!

17Programming in Haskell, A Milanova

17

Towards Hindley Milner

Solution:
Generalize the type variable in type of f

tf : t1®t1 becomes tf : t1.t1®t1

Different uses of generalized type variables are instantiated
differently

(f True) instantiates tf into u1®u1 (u1 is fresh)
u1®u1 unifies with Bool®t2, no problem

E.g., (f 1) instantiates tf into u2®u2 (u2 is fresh)

When can we generalize? 18

∀

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW)

18

Expression Syntax
(to study Hindley Milner)

Expressions:

E ::= c | x | \x -> E1 | E1 E2 | let x = E1 in E2

There are no types in the syntax

The type of each sub-expression is derived by the Hindley
Milner type inference algorithm

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW) 19

19

Type Syntax
(to study Hindley Milner)

Types (aka monotypes):
τ ::= b | τ1®τ2 | t
E.g., Int, Bool, Int®Bool, t1®Int, t1®t1, etc.

Type schemes (aka polymorphic types):
σ ::= τ | t.σ
E.g., t1. t2.(Int®t1)®t2®t3

Note: all quantifiers appear in the beginning, τ cannot
contain schemes

Type environment now
Gamma ::= Identifiers à Type schemes

20

t is a type variable

∀
∀ ∀

t3 is a “free” type
variable as it isn’t
bound under ∀

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW)

20

6

Instantiations
Type scheme σ = t1…tn.τ can be instantiated into a type τ’ by
substituting types for the bound variables (BV) under the
universal quantifier

τ’ = S τ S is a substitution s.t. Domain(S) BV(σ)

τ’ is said to be an instance of σ (σ > τ’)

τ’ is said to be a generic instance when S maps type
variables to new (i.e., fresh) type variables

21

∀

∀

Programming in Haskell, A Milanova (modified from MIT’s 2015 Program Analysis OCW)

⊇

21

E.g., σ = t1t2.(Int®t1)®t2®t3

E.g., σ = t1.t1®t1

22

∀

Programming in Haskell, A Milanova (modified from MIT’s 2015 Program Analysis OCW)

∀

22

Generalization (aka
Closing)

We can generalize a type τ as follows

Gen(Γ,τ) = t1,…tn.τ
where {t1…tn} = FV(τ) – FV(Γ)

Generalization introduces polymorphism

23

∀

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW)

23

Quantify type variables that are free in τ but are not
free in the type environment Γ

E.g., Gen([],t1®t2) yields

E.g., Gen([x:t2],t1®t2) yields

24Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW)

24

7

let f = \x -> x in if (f True) then (f 1) else 1
1. Infer type for \x -> x : tx®tx (a monotype)
2. Generalize type using Gen([],tx®tx): tx.tx®tx (a type

scheme)

3. Pass type scheme to if (f True) then (f 1) else 1
4. Instantiate for each f in if (f True) then (f 1) else 1

[u1/tx] (tx®tx) where u1 is fresh tyvar at (f True)
[u2/tx] (tx®tx) where u2 is fresh tyvar at (f 1)

25

∀

Programming in Haskell, A Milanova

25

When can we generalize?

Consider expression \f -> \x-> let g = f in g x

Gen([f:tf,x:tx],tf) yields what?

DO NOT generalize variables that are mentioned in type
environment Γ!

26Programming in Haskell, A Milanova

26

Hindley Milner Type
Inference, Rough Sketch

let x = E1 in E2
1. Calculate type TE1 for E1 in Γ;x:tx ; TE1 is a monotype
2. Generalize free type variables in TE1 to get the type

scheme for TE1 (be mindful of caveat!)

3. Extend environment with x:Gen(Γ,TE1) and start typing E2

4. Every time algorithm sees x in E2, it instantiates x’s type
scheme using fresh type variables

E.g., id’s type scheme is t1.t1®t1 so id is
instantiated to uk®uk at (id 1)

27

∀

Programming in Haskell, A Milanova

27

Hindley Milner Type
Inference

Programming in Haskell, A Milanova 28

Just like with Simple types, there are two strategies

Strategy One
Simple types extended with generalization and instantiation
Generate all constraints, then solve

Strategy Two
Again, simple types with generalization and instantiation
Generate and solve constraints on-the-fly
This is classical Algorithm W

28

8

Example

\x -> let f = \y -> x in (f True, f 1)

Programming in Haskell, A Milanova 29

29

def W(Γ, E) = case E of
c -> ([], TypeOf(c))
x -> if (x NOT in Domain(Γ)) then fail

else let TE = Γ(x)
in case TE of

t1,...tn.τ -> ([],[u1/t1...un/tn] τ)
_ -> ([], TE)

\x -> E1 -> let (SE1,TE1) = W(Γ+{x:tx},E1)
in (SE1, SE1(tx)®TE1)

// ...
// continues on next slide!

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 30

Strategy Two: Algorithm W

∀

u1 to un are fresh type vars generated
at instantiation of polymorphic type

30

def W(Γ, E) = case E of
// continues from previous slide
// ...

E1 E2 -> let (SE1,TE1) = W(Γ,E1)
(SE2,TE2) = W(SE1(Γ),E2)
S = Unify(SE2(TE1),TE2®t)

in (S SE2 SE1, S(t))
let x = E1 in E2 -> let (SE1,TE1) = W(Γ+{x:tx},E1)

S = Unify(SE1(tx),TE1)
σ = Gen(S SE1(Γ), S(TE1))
(SE2,TE2) = W(S SE1(Γ)+{x:σ},E2)

in (SE2 S SE1, TE2)

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 31

31

Strategy Two Example

let f = \x->x in if (f True) then (f 1) else 1

32

1. let

f 2. Abs

x lx: tx

Γ = []

Γ = [f:tf]

Γ = [x:tx f:tf]

T2 = tx®tx
S2 = []

3. if-then-else

Γ = [f: tx.tx®tx]∀

No constraint, types 2. Abs
immediately: T2 = tx®tx: [tx®tx/t2]
σ = Gen([],tx®tx) = tx. tx®tx∀

4. App 5. App

f true

1
T4 = bool
S4 = [bool/t4][bool/u1]

f 1

T3 = int
S3 = ...

T = u1®u1
S = [] From Unify(u1®u1, bool®t4)

T5 = int
S5 = [int/t5][int/u2]

T1 = int
S1 = ...

32

9

Example

\x -> let f = \y -> x in (f True, f 1)

Programming in Haskell, A Milanova 33

33

Hindley Milner
Observations

Notes

n Do not generalize over type variables mentioned in type
environment (they are used elsewhere)

n let is the only way of defining polymorphic constructs

n Generalize the types of let-bound identifiers only after
processing their definitions

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 34

34

Hindley Milner
Observations

n Generates the most general type (principal type) for each
term/subterm

n Type system is sound

n Complexity of Algorithm W
It is PSPACE-Hard because of nested let blocks

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 35

35

Hindley Milner Limitations

n Only let-bound constructs can be polymorphic and
instantiated differently

let twice f x = f (f x)
in twice twice succ 4 // let-bound polymorphism

let twice f x = f (f x)
foo g = g g succ 4 // lambda-bound

in foo twice

Programming in Haskell, A Milanova 36

36

10

Programming in Haskell, A Milanova 37

(\x -> x (\y -> y) (x 1)) (\z -> z)

let x = (\z -> z)
in

x (\y -> y) (x 1)

37

