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Type Inference
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Project Schedule
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Outline

n Simple type inference (last week)
n Expressions, types and type environment 
n Goal and intuition
n Equality constraints
n Substitution
n Robinson’s unification
n Type inference strategies

n Algorithm V (Strategy One) and 
n Algorithm V (Strategy Two)
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Outline

n Hindley Milner (also known as Milner Damas)
n Monotypes (types) and polytypes (type schemes)
n Instantiation and generalization
n Algorithm W
n Observations

n Type inference in Haskell
Extends classical system
n Type signatures 
n Class constraints
n Implication constraints 4
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Simple Type Inference

Covered last week

Moving on
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Type Inference Strategies

Strategy One aka constraint-based typing (Haskell)
Traverse expression’s parse tree and generate constraints. 
Solve constraints offline producing substitution map S. 
Finally, apply S on expression tyvar to infer the principal 
type of expression

Strategy Two (Classical Hindley Milner)
Generate and solve constraints on-the-fly while traversing 
parse tree. Build and apply substitution map incrementally
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def V(Γ, E) = case E of
c       ->   ({}, TypeOf(c))

x       ->   if (x NOT in Dom(Γ)) then fail
else ({}, Γ(x))

\x -> E1 -> let (CE1,TE1) = V(Γ+{x:tx},E1) – tx is fresh tyvar
in (CE1,tx®TE1)
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Constraint Generation
Strategy One
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def V(Γ, E) = case E of
…
E1 E2 -> let (CE1,TE1) = V(Γ,E1)

(CE2,TE2) = V(Γ,E2)
in (CE1 + CE2 + {TE1 ~ TE2 ®t}, t) -- t is fresh tyvar

let x = E1 in E2 -> let (CE1,TE1) = V(Γ+{x:tx},E1)
(CE2,TE2) = V(Γ+{x:TE1},E2)

in (CE1 + CE2 + {tx ~ TE1}, TE2) 
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(\f -> f 5) (\x -> x + 1)
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> (\f -> f True) (\x -> x + 1)

• No instance for (Num Bool) arising from a use of ‘+’
• In the expression: x + 1
In the first argument of ‘\ f -> f True’, 
namely ‘(\ x -> x + 1)’

In the expression: (\ f -> f True) (\ x -> x + 1)
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let f = \x -> x in f 1
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def V(Γ, E) = case E of
c       ->   ([], TypeOf(c))

x       ->   if (x NOT in Dom(Γ)) then fail
else ([], TE)

\x -> E1 -> let (SE1,TE1) = V(Γ+{x:tx},E1)
in (SE1, SE1(tx)®TE1)
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On-the-fly Generation and 
Resolution

Strategy Two
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def V(Γ, E) = case E of
E1 E2 -> let (SE1,TE1) = V(Γ,E1)

(SE2,TE2) = V(SE1(Γ),E2)
S = Unify(SE2(TE1),TE2®t)

in (S SE2 SE1, S(t)) // S SE2 SE1

let x = E1 in E2 -> let (SE1,TE1) = V(Γ+{x:tx},E1)
S = Unify(SE1(tx),TE1)
(SE2,TE2) = V(S SE1(Γ)+{x:S(TE1)},E2)

in (SE2 S SE1, TE2) 
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(\f -> f 5) (\x -> x + 1)
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Outline

n Hindley Milner (also known as Milner Damas)
n Monotypes (types) and polytypes (type schemes)
n Instantiation and generalization
n Algorithm W
n Observations

n Back to Haskell 
n Type signatures 
n Class constraints
n Implication constraints
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Motivating Example

A sound type system rejects some good programs 

Canonical example
let f = \x -> x
in 

if (f True) then (f 1) else 1

This is a good program, it does not “get stuck“
Term is NOT typable in Simple types 
It is typable in Hindley Milner!
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Towards Hindley Milner

let f = \x -> x
in 

if (f True) then (f 1) else 1
Constraints

tf ~ t1®t1

tf ~ bool®t2  // at call (f True)
tf ~ int®t3  // at call (f 1)

Does not unify!
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Towards Hindley Milner

Solution: 
Generalize the type variable in type of f

tf : t1®t1 becomes  tf :   t1.t1®t1

Different uses of generalized type variables are instantiated 
differently

(f True) instantiates tf into u1®u1 (u1 is fresh)
u1®u1 unifies with Bool®t2, no problem

E.g., (f 1) instantiates tf into u2®u2 (u2 is fresh) 

When can we generalize? 18

∀
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Expression Syntax 
(to study Hindley Milner)

Expressions:

E ::= c  | x |  \x -> E1 |  E1 E2  |  let x = E1 in E2

There are no types in the syntax

The type of each sub-expression is derived by the Hindley
Milner type inference algorithm
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Type Syntax
(to study Hindley Milner)

Types (aka monotypes):
τ ::= b | τ1®τ2 | t
E.g., Int, Bool, Int®Bool, t1®Int, t1®t1, etc.

Type schemes (aka polymorphic types):
σ ::= τ |     t.σ
E.g., t1.  t2.(Int®t1)®t2®t3

Note: all quantifiers appear in the beginning, τ cannot 
contain schemes

Type environment now
Gamma ::= Identifiers à Type schemes

20

t is a type variable

∀
∀ ∀

t3 is a “free” type 
variable as it isn’t
bound under ∀
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Instantiations
Type scheme σ =    t1…tn.τ can be instantiated into a type τ’ by 
substituting types for the bound variables (BV) under the 
universal quantifier

τ’ = S τ S is a substitution s.t. Domain(S)     BV(σ)

τ’ is said to be an instance of σ (σ > τ’)

τ’ is said to be a generic instance when S maps type 
variables to new (i.e., fresh) type variables
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∀

∀
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⊇
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E.g., σ =    t1t2.(Int®t1)®t2®t3

E.g., σ =    t1.t1®t1
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∀
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Generalization (aka 
Closing)

We can generalize a type τ as follows

Gen(Γ,τ) =   t1,…tn.τ
where {t1…tn} = FV(τ) – FV(Γ)

Generalization introduces polymorphism

23

∀
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Quantify type variables that are free in τ but are not 
free in the type environment Γ

E.g., Gen([],t1®t2) yields

E.g., Gen([x:t2],t1®t2) yields   
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let f = \x -> x in if (f True) then (f 1) else 1
1. Infer type for \x -> x : tx®tx (a monotype)
2. Generalize type using Gen([],tx®tx):    tx.tx®tx (a type 

scheme)

3. Pass type scheme to if (f True) then (f 1) else 1 
4. Instantiate for each f in if (f True) then (f 1) else 1

[u1/tx] (tx®tx) where u1 is fresh tyvar at (f True)
[u2/tx] (tx®tx) where u2 is fresh tyvar at (f 1)

25

∀
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When can we generalize? 

Consider expression \f -> \x-> let g = f in g x

Gen([f:tf,x:tx],tf) yields what?

DO NOT generalize variables that are mentioned in type 
environment Γ! 
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Hindley Milner Type 
Inference, Rough Sketch

let x = E1 in E2
1. Calculate type TE1 for E1 in Γ;x:tx ; TE1 is a monotype
2. Generalize free type variables in TE1 to get the type 

scheme for TE1 (be mindful of caveat!)

3. Extend environment with x:Gen(Γ,TE1) and start typing E2

4. Every time algorithm sees x in E2, it instantiates x’s type 
scheme using fresh type variables

E.g., id’s type scheme is    t1.t1®t1 so id is 
instantiated to uk®uk at (id 1) 
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∀
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Hindley Milner Type 
Inference
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Just like with Simple types, there are two strategies

Strategy One
Simple types extended with generalization and instantiation
Generate all constraints, then solve

Strategy Two
Again, simple types with generalization and instantiation
Generate and solve constraints on-the-fly
This is classical Algorithm W

28



8

Example

\x -> let f = \y -> x in (f True, f 1)
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def W(Γ, E) = case E of
c       ->   ([], TypeOf(c))
x       ->   if (x NOT in Domain(Γ)) then fail

else let TE = Γ(x)
in case TE of

t1,...tn.τ -> ( [],[u1/t1...un/tn] τ )
_ -> ([], TE)

\x -> E1 -> let (SE1,TE1) = W(Γ+{x:tx},E1)
in (SE1, SE1(tx)®TE1)

// ...     
// continues on next slide!
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Strategy Two: Algorithm W

∀

u1 to un are fresh type vars generated 
at instantiation of polymorphic type
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def W(Γ, E) = case E of
// continues from previous slide
// ... 

E1 E2 -> let (SE1,TE1) = W(Γ,E1)
(SE2,TE2) = W(SE1(Γ),E2)
S = Unify(SE2(TE1),TE2®t)

in (S SE2 SE1, S(t))
let x = E1 in E2 -> let (SE1,TE1) = W(Γ+{x:tx},E1)

S = Unify( SE1(tx),TE1 )
σ = Gen( S SE1(Γ), S(TE1) )
(SE2,TE2) = W(S SE1(Γ)+{x:σ},E2)

in (SE2 S SE1, TE2) 
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Strategy Two Example 

let f = \x->x in if (f True) then (f 1) else 1

32

1. let

f 2. Abs 

x lx: tx

Γ = []

Γ = [f:tf]

Γ = [x:tx f:tf]

T2 = tx®tx
S2 = []

3. if-then-else

Γ = [f:   tx.tx®tx]∀

No constraint, types 2. Abs
immediately: T2 = tx®tx: [tx®tx/t2]
σ = Gen([],tx®tx) =      tx. tx®tx∀

4. App 5. App

f true

1
T4 = bool
S4 = [bool/t4][bool/u1]

f 1

T3 = int
S3 = ...

T = u1®u1
S = [] From Unify(u1®u1, bool®t4)

T5 = int
S5 = [int/t5][int/u2]

T1 = int
S1 = ...
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Example

\x -> let f = \y -> x in (f True, f 1)
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Hindley Milner 
Observations

Notes

n Do not generalize over type variables mentioned in type 
environment (they are used elsewhere)

n let is the only way of defining polymorphic constructs

n Generalize the types of let-bound identifiers only after
processing their definitions
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Hindley Milner 
Observations

n Generates the most general type (principal type) for each 
term/subterm

n Type system is sound

n Complexity of Algorithm W
It is PSPACE-Hard because of nested let blocks
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Hindley Milner Limitations

n Only let-bound constructs can be polymorphic and 
instantiated differently

let twice f x = f (f x) 
in twice twice succ 4 // let-bound polymorphism

let twice f x = f (f x) 
foo g = g g succ 4 // lambda-bound

in foo twice
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(\x -> x (\y -> y) (x 1)) (\z -> z)

let x = (\z -> z)
in

x (\y -> y) (x 1)
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