

4

Syntax of Pure Lambda Calculus

 λ -calculus formulae (e.g., $\lambda x. x y$) are called expressions or terms

$E ::= x | (\lambda x. E_1) | (E_1 E_2)$

- A $\lambda\text{-expression}$ is one of
 - Variable: x
 - Abstraction (i.e., function definition): λx. E₁
 - Application: E₁ E₂

Programming in Haskell, A Milanova

E.g., $\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{z} = \lambda \mathbf{x} \cdot (\mathbf{x} \cdot \mathbf{z}) = (\lambda \mathbf{x} \cdot (\mathbf{x} \cdot \mathbf{z})) =$ $(\lambda x. (x z)) \neq ((\lambda x. x) z)$ WARNING: This is the most common syntactic convention (e.g., Pierce 2002). However, some books give abstraction higher precedence; you might have seen that different convention Programming in Haskell, A Milanova

6

8

as far to the right as possible

Semantics of Lambda **Calculus**

An expression has as its meaning the value that results after evaluation is carried out

7

Free and Bound Variables Abstraction (λx . E) is also referred as binding Variable x is said to be bound in λx . E The set of free variables of E is the set of variables that appear unbound in E Defined by cases on E Var x: free(x) = {x}

Application has higher precedence than abstraction

Another way to say this is that the scope of the dot extends

- App $E_1 E_2$: free($E_1 E_2$) = free(E_1) U free(E_2)
- Abs $\lambda \mathbf{x}$. E: free($\lambda \mathbf{x}$.E) = free(E) {x}

Programming in Haskell, A Milanova

We must take free and bound variables into account when reducing expressions E.g., $(\lambda x.\lambda y. x y) (y w)$ First, rename bound y in λy . x y to z: λz . x z $(\lambda x.\lambda y. x y) (y w) \rightarrow (\lambda x.\lambda z. x z) (y w)$ Second, apply the reduction rule that substitutes (v w) for x in the body (λz . x z) $(\lambda z. x z) [(y w)/x] \rightarrow (\lambda z. (y w) z) = \lambda z. y w z$ 10

9

Programming in Haskell, A Milanova

10

Rules (Axioms) of Lambda
Calculus α rule (α -conversion): renaming of parameter (choice
of parameter name does not matter) $\lambda x. E \rightarrow_{\alpha} \lambda z.$ (E[z/x]) provided z is not free in E
e.g., $\lambda x. x x$ is the same as $\lambda z. z z$ β rule (β -reduction): function application (substitutes
argument for parameter) $(\lambda x. E) M \rightarrow_{\beta} E[M/x]$
Note: E[M/x] as defined on previous slide!
e.g., $(\lambda x. x) z \rightarrow_{\beta} z$

Exercises

22

23

Evaluate $(\lambda x. x x)$ ($(\lambda y. y)$ ($\lambda z. z$)) using applicative order reduction:

Evaluate ($\lambda x. x x$) (($\lambda y. y$) ($\lambda z. z$)) using normal order reduction:

21

Exercise Evaluate (λx.λy. x y) ((λz. z) w) using applicative order reduction: Evaluate (λx.λy. x y) ((λz. z) w) using normal order reduction:

Let Expressions
 Adding one more term, the let-binding, for the purpose of studying Hindley Milner
 £ ::= x | (λx. E₁) | (E₁ E₂) | let x = E₁ in E₂
 A λ-expression is one of

 Variable: x
 Abstraction (i.e., function definition): λx. E₁
 Application: E₁ E₂
 Let expression: let x = E₁ in E₂

 Programming in Haskell, A Milanova

Outline Pure lambda calculus, a review Syntax and semantics Free and bound variables Rules (alpha rule, beta rule) Normal forms Normad : E: Reduction strategies Applicative: E: Lazy evaluation in Haskell Programming in Haskell, A Milanova 26

