

4

Syntax of Pure Lambda Calculus

l-calculus formulae (e.g., l**x. x y**) are called expressions or terms

E::= $x | (\lambda x. E_1) | (E_1 E_2)$

- A λ -expression is one of
- **N** Variable: **x**
- **Abstraction (i.e., function definition):** λx **.** E₁
- Application: **E₁ E₂**

Programming in Haskell, A Milanova 4

6 Application has higher precedence than abstraction Another way to say this is that the scope of the dot extends as far to the right as possible E.g., $\lambda x. x z = \lambda x. (x z) = (\lambda x. (x z)) =$ $(\lambda x. (x z)) \neq ((\lambda x. x) z)$ WARNING: This is the most common syntactic convention (e.g., Pierce 2002). However, some books give abstraction higher precedence; you might have seen that different convention Programming in Haskell, A Milanova

5

Semantics of Lambda Calculus

An expression has as its meaning the value that results after evaluation is carried out

Abstraction $(\lambda x. \mathsf{E})$ is also referred as binding Variable **x** is said to be bound in λ **x**. E Free and Bound Variables

The set of free variables of **E** is the set of variables that appear unbound in **E**

Defined by cases on **E**

6

8

- **Notatially** Var **x**: free(**x**) = {**x**}
- **n** App $E_1 E_2$: free($E_1 E_2$) = free(E_1) U free(E_2)
- **n** Abs λ **x. E**: free(λ **x.E**) = free(**E**) {**x**}

Programming in Haskell, A Milanova

10 We must take free and bound variables into account when reducing expressions E.g., **(**l**x.**l**y. x y) (y w)** First, rename bound **y** in λy. x y to z: λz. x z $(\lambda x.\lambda y. x y)$ (y **w**) $\rightarrow (\lambda x.\lambda z. x z)$ (y **w**) Second, apply the reduction rule that substitutes $(y \text{ w})$ for **x** in the body $(\lambda z. x z)$ $(\lambda z \times z)$ $[(y \text{ w})/x] \rightarrow (\lambda z \cdot (y \text{ w}) z) = \lambda z \cdot y \text{ w } z$

9

Programming in Haskell, A Milanova 12

12

14

Exercises

 22

Evaluate **(**l**x. x x) ((**l**y. y) (**l**z. z))** using applicative order reduction:

Evaluate **(**l**x. x x) ((**l**y. y) (**l**z. z))** using normal order reduction:

21

Exercise Evaluate **(**l**x.**l**y. x y) ((**l**z. z) w)** using applicative order reduction: Evaluate **(**l**x.**l**y. x y) ((**l**z. z) w)** using normal order reduction: Programming in Haskell, A Milanova 23

Programming in Haskell, A Milanova 24 **Let Expressions** Adding one more term, the let-binding, for the purpose of studying Hindley Milner **E**::= **x** $| (\lambda x. \mathbf{E}_1) | (\mathbf{E}_1 \mathbf{E}_2) | \text{let } x = \mathbf{E}_1 \text{ in } \mathbf{E}_2$ A λ -expression is one of **n** Variable: **x Abstraction (i.e., function definition):** λx **.** E_1 **n** Application: $E_1 E_2$ **Expression: let** $x = E_1$ **in** E_2 24

Outline ■ Pure lambda calculus, a review **syntax and semantics** $\overline{}$ Free and bound variables ⁿ Rules (alpha rule, beta rule) **Normal forms** Normal: $E:$ $__$ Reduction strategies \mathcal{H} pplicative: $E: \leq^V -$ ■ Lazy evaluation in Haskell 1. REDUCTION TRATEGY (NORMAL) or APPLICATIVE 2. NORMAL FORM Programming in Haskell, A Milanova NF , HNF (W HNF) 26

29

Note: \blacksquare In the lazy case, only the first element of ones is produced, as the rest are not required **I** In general, with lazy evaluation expressions are only evaluated as much as required by the context in which they are used Triven by pattern match \blacksquare Hence, gen \times is really a potentially infinite list Programming in Haskell, slide due to G. Hutton 38 38

