
1

Lambda Calculus and Lazy
Evaluation (based on material
due to Graham Hutton)

1

n PS5?
n Project proposal?

n Plan: shorter lecture and “labs” today and on
Friday so you can work and ask questions on
monoids, foldables, monads, PS5 and
Project proposal

n Next week: type inference

Programming in Haskell, A Milanova 2

2

Outline

n Pure lambda calculus, a review
n Syntax and semantics
n Free and bound variables
n Rules (alpha rule, beta rule)
n Normal forms
n Reduction strategies

n Lazy evaluation in Haskell

Programming in Haskell, A Milanova 3

3

Programming in Haskell, A Milanova 4

Syntax of Pure Lambda
Calculus

l-calculus formulae (e.g., lx. x y) are called
expressions or terms

E ::= x | (lx. E1) | (E1 E2)

A l-expression is one of
n Variable: x
n Abstraction (i.e., function definition): lx. E1

n Application: E1 E2

4

2

5

Syntactic Conventions

Parentheses may be dropped from “stand-alone”
terms (E1 E2) and (lx. E)

E.g., (f x) may be written as f x

Function application groups from left-to-right (i.e., it is
left-associative)

E.g., x y z abbreviates ((x y) z)
E.g., E1 E2 E3 E4 abbreviates (((E1 E2) E3) E4)
Parentheses in x (y z) are necessary! Why?

Programming in Haskell, A Milanova

5

6

Application has higher precedence than abstraction

Another way to say this is that the scope of the dot extends
as far to the right as possible
E.g., lx. x z = lx. (x z) = (lx. (x z)) =
(lx. (x z)) ≠ ((lx. x) z)

WARNING: This is the most common syntactic convention
(e.g., Pierce 2002). However, some books give abstraction
higher precedence; you might have seen that different
convention

Programming in Haskell, A Milanova

6

Semantics of Lambda
Calculus

An expression has as its meaning the value that
results after evaluation is carried out

7Programming in Haskell, A Milanova

7

8

Abstraction (lx. E) is also referred as binding
Variable x is said to be bound in lx. E

The set of free variables of E is the set of variables that
appear unbound in E
Defined by cases on E

n Var x:
n App E1 E2:
n Abs lx. E:

free(x) = {x}
free(E1 E2) = free(E1) U free(E2)

free(lx.E) = free(E) - {x}

Free and Bound Variables

Programming in Haskell, A Milanova

8

3

9

A variable x is bound if it is in the scope of a lambda
abstraction: as in lx. E
Variable is free otherwise

1. (lx. x) y

2. (lz. z z) (lx. x)

3. lx.ly.lz. x z (y (lu. u))

Programming in Haskell, A Milanova

9

10

We must take free and bound variables into account
when reducing expressions

E.g., (lx.ly. x y) (y w)

First, rename bound y in ly. x y to z: lz. x z
(lx.ly. x y) (y w) à (lx.lz. x z) (y w)

Second, apply the reduction rule that substitutes
(y w) for x in the body (lz. x z)
(lz. x z) [(y w)/x] à (lz. (y w) z) = lz. y w z

10

11

Substitution, formally

n (lx.E) M à E[M/x] replaces all free occurrences
of x in E by M

n E[M/x] is defined by cases on E:
n Var: y[M/x] =

y[M/x] =
n App: (E1 E2)[M/x] =
n Abs: (ly.E1)[M/x] =

(ly.E1)[M/x] =

M if x = y
y otherwise

(E1[M/x] E2[M/x])
(ly.E1) if x = y
lz.((E1[z/y])[M/x]) otherwise,

where z NOT in free(E1) U free(M) U {x}
Programming in Haskell, A Milanova

11

(lx.ly. x y) (y w)
à (ly. x y)[(y w)/x]
à l1_. (((x y)[1_/y])[(y w)/x])
à l1_. ((x 1_)[(y w)/x])
à l1_. ((y w) 1_)
à l1_. y w 1_

12Programming in Haskell, A Milanova

12

4

Exercise

n Write a Haskell function freshVars that takes a list of
expressions and returns an infinite list of potential fresh variables,
excluding variables that occur free in some expressions

Programming in Haskell, A Milanova 13

data Lexp = Var String

| App Lexp Lexp
| Lam String Lexp

import Data.List

freeVars :: Lexp -> [String]
freeVars …

freshVars :: [Lexp] -> [String]
freshVars exprs =

13

14

Rules (Axioms) of Lambda
Calculus

a rule (a-conversion): renaming of parameter (choice
of parameter name does not matter)

lx. E àa lz. (E[z/x]) provided z is not free in E
e.g., lx. x x is the same as lz. z z

b rule (b-reduction): function application (substitutes
argument for parameter)

(lx.E) M àb E[M/x]
Note: E[M/x] as defined on previous slide!
e.g., (lx. x) z àb z

14

15

Exercise

Reduce
1. (lx. x) y à?

2. (lx. x) (ly. y) à?

3. (lx.ly.lz. x z (y z)) (lu. u) (lv. v) à ?

Programming in Haskell, A Milanova

15

Programming in Haskell, A Milanova 16

Reductions

An expression (lx.E) M is called a redex (for
reducible expression)

An expression is in normal form if it cannot be β-
reduced

The normal form is the meaning of the term, the
“answer”

16

5

Definitions of Normal Form

n Normal form (NF): a term without redexes
n Head normal form (HNF)

n x is in HNF
n (lx. E) is in HNF if E is in HNF
n (x E1 E2 … En) is in HNF

n Weak head normal form (WHNF)
n x is in WHNF
n (lx. E) is in WHNF
n (x E1 E2 … En) is in WHNF

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW) 17

17

Exercise

1. lz. z z is in NF, HNF, or WHNF?
2. (lz. z z) (lx. x) is in?
3. lx.ly.lz. x z (y (lu. u)) is in?

4. (lx.ly. x) z ((lx. z x) (lx. z x)) is in?
5. z ((lx. z x) (lx. z x)) is in?
6. (lz.(lx.ly. x) z ((lx. z x) (lx. z x))) is in?

18Programming in Haskell, A Milanova

18

pair = lx.ly.lf. f x y
fst = lf. f (lx.ly. x) snd = lf. f (lx.ly. y)
What is fst (pair a b)?
à (lf. f (lx.ly. x)) (pair a b)
à (pair a b) (lx.ly. x)
à ((lx.ly.lf. f x y) a b) (lx.ly. x)
à (lf. f a b) (lx.ly. x)
à (lx.ly. x) a b
à a Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 19

An expression with no free
variables is called combinator.
pair, fst, snd are combinators.

19

20

Reduction Strategy

n Let us look at (lx.ly.lz. x z (y z)) (lu. u) (lv. v)

n Actually, there are several “reduction paths”:

20

6

21

A reduction strategy (also called evaluation order) is a
strategy for choosing redexes

How do we arrive at the normal form (answer)?

Applicative order reduction chooses the leftmost-
innermost redex in an expression

In the sense that it contains no nested redexes
Also referred to as call-by-value reduction

Normal order reduction chooses the leftmost-
outermost redex in an expression

In the sense that it is not enclosed in a redex
Also referred to as call-by-name reduction

21

22

Evaluate (lx. x x) ((ly. y) (lz. z)) using applicative
order reduction:

Evaluate (lx. x x) ((ly. y) (lz. z)) using normal order
reduction:

Exercises

22

Exercise

Evaluate (lx.ly. x y) ((lz. z) w) using applicative
order reduction:

Evaluate (lx.ly. x y) ((lz. z) w) using normal order
reduction:

23Programming in Haskell, A Milanova

23

Programming in Haskell, A Milanova 24

Let Expressions

Adding one more term, the let-binding, for the purpose of
studying Hindley Milner

E ::= x | (lx. E1) | (E1 E2) | let x = E1 in E2

A l-expression is one of
n Variable: x
n Abstraction (i.e., function definition): lx. E1

n Application: E1 E2

n Let expression: let x = E1 in E2

24

7

Programming in Haskell, A Milanova 25

let in Haskell is a letrec allowing for general recursion

let x = E1 in E2

let

plus = \x y -> if y==0 then x else plus (x+1) (y-1)
in
plus 2 3

let

even = \x -> if x==0 then True else odd (x-1)
odd = \x -> if x==0 then False else even (x-1)

in
even 100

25

Outline

n Pure lambda calculus, a review
n Syntax and semantics
n Free and bound variables
n Rules (alpha rule, beta rule)
n Normal forms
n Reduction strategies

n Lazy evaluation in Haskell

Programming in Haskell, A Milanova 26

26

Back to Haskell

! Avoids doing unnecessary evaluation;

! Ensures termination whenever possible;

! Supports programming with infinite lists;

! Allows programs to be more modular.

Expressions in Haskell are evaluated using lazy
evaluation. What are its benefits?

Programming in Haskell, slide due to G. Hutton 27

27

square (1+2)

square 3

=

3 * 3

=

9

=

Evaluating Expressions

square n = n * n

Example:

Apply + first.

I.e., applicative order reduction.

Programming in Haskell, slide due to G. Hutton 28

28

8

square (1+2)

(1+2) * (1+2)
=

3 * (1+2)
=

3 * 3

=

Church-Rosser theorem: Any way of evaluating the same expression will
give the same result, provided it terminates (i.e., normal form exists).

9

=

Apply square first.

Or this:

I.e., normal order reduction.

Programming in Haskell, slide due to G. Hutton 29

29

fst (0, infinity)

fst (0, 1 + infinity)

=

fst (0, 1 + (1 + infinity))

=

Termination

infinity = 1 + infinity

Example:

Applicative order.

=
•
•
•

Programming in Haskell, slide due to G. Hutton 30

30

fst (0, infinity)

0

=

Normal order
evaluation.

! Outermost evaluation may give a result when innermost
evaluation fails to terminate

! If any evaluation sequence terminates, then so does outermost,
with the same result

Note:

Programming in Haskell, slide due to G. Hutton 31

31

Number of Reductions

square (1+2)

square 3

=

3 * 3

=

9

=

square (1+2)

(1+2) * (1+2)

=

3 * (1+2)

=

3 * 3

=

9

=

Applicative order: Normal order:

3 steps. 4 steps.

Programming in Haskell, slide due to G. Hutton 32

32

9

Note:

! The outmost version is inefficient, because the argument 1+2 is
duplicated when square is applied and is hence evaluated twice

! Due to such duplication, outermost evaluation may require more
steps than innermost

! This problem can easily be avoided by using pointers to indicate
sharing of arguments

Programming in Haskell, slide due to G. Hutton 33

33

square (1+2)

9

=

*

=

1+2

*

=

3

Example:

Shared argument evaluated
once.

Programming in Haskell, slide due to G. Hutton 34

34

This gives a new evaluation strategy:

lazy evaluation =
outermost evaluation

+
sharing of arguments

Note:

! Lazy evaluation ensures termination whenever possible, but
never requires more steps than innermost evaluation and
sometimes fewer

! Strategy is known as call-by-need. Haskell’s evaluation strategy
Programming in Haskell, modified from a slide due to G.
Hutton 35

35

gen 1

1 : gen 1=

1 : (1 : gen 1)=

Infinite Lists

gen x = x : gen x

Example:

An infinite list of
ones.

= •
•
•

1 : (1 : (1 : gen 1))=

Programming in Haskell, modified from a slide due to G.
Hutton 36

36

10

head (gen 1)

head (1:gen 1)

=

head (1:(1:gen 1))

=

head (gen 1)

head (1:gen 1)

=

1

=

Applicative order: Normal order:

=
•
•
•

Does not
terminate.

Terminates in 2
steps!

Programming in Haskell, modified from a slide due to G.
Hutton 37

37

Note:

! In the lazy case, only the first element of ones is produced, as
the rest are not required

! In general, with lazy evaluation expressions are only evaluated
as much as required by the context in which they are used

! Hence, gen x is really a potentially infinite list

Programming in Haskell, slide due to G. Hutton 38

38

Modular Programming

Lazy evaluation allows us to make programs more modular
by separating control from data

> take 5 (gen 1)

[1,1,1,1,1]

The data part (gen 1) is only evaluated as much as required by the
control part take 5.

Programming in Haskell, slide due to G. Hutton 39

39

Without using lazy evaluation the control and data parts
would need to be combined into one:

replicate :: Int ® a ® [a]

replicate 0 _ = []

replicate n x = x : replicate (n-1) x

> replicate 5 1

[1,1,1,1,1]

Example:

Programming in Haskell, slide due to G. Hutton 40

40

11

Generating Primes

To generate the infinite sequence of primes:

1. Write down the infinite sequence 2, 3, 4, …;

2. Mark the first number p as being prime;

3. Delete all multiples of p from the sequence;

4. Return to the second step.

Programming in Haskell, slide due to G. Hutton 41

Sieve of Eratosthenes.

41

2 3 4 8 9 105 6 7 11 12 • ••2

3 95 7 11 • ••3

5 11 • ••75

7 11 • ••

11 • ••

7

11
Programming in Haskell, slide due to G. Hutton 42

42

This idea can be directly translated into a program that
generates the infinite list of primes!

primes :: [Int]

primes = sieve [2..]

sieve :: [Int] ® [Int]

sieve (p:xs) =

Programming in Haskell, slide due to G. Hutton 43

43

Examples:

> primes

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,…

> take 10 primes

[2,3,5,7,11,13,17,19,23,29]

> takeWhile (< 10) primes

[2,3,5,7]

Programming in Haskell, slide due to G. Hutton 44

44

12

We can also use primes to generate an (infinite?) list of twin
primes that differ by precisely two.

twin :: (Int,Int) ® Bool

twin (x,y) =

twins :: [(Int,Int)]

twins =

> twins

[(3,5),(5,7),(11,13),(17,19),(29,31),…

Exercise

Programming in Haskell, slide due to G. Hutton 45

45

Exercise

(1) The Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

starts with 0 and 1, with each further number being the sum of the
previous two. Using a list comprehension, define an expression

fibs :: [Integer]

that generates this infinite sequence.

Programming in Haskell, slide due to G. Hutton 46

46

Pattern Matching

Pattern matching drives evaluation

Programming in Haskell, A Milanova (example due to
Brent Yorgey, Haskell.org) 47

f1 :: Maybe a -> [Maybe a]
f1 m = [m,m]

f2 :: Maybe a -> [a]
f2 Nothing = []
f2 (Just x) = [x]

f1’s argument remains completely uneveluated
f2 e must first evaluate argument e because result of f2 depends
on the shape of e
Thunks are evaluated only as much as needed. E.g.,
safeHead [3^10, 5] does not evaluate 3^10

47

48

repeat :: a -> [a]
repeat x = x : repeat x

take :: Int -> [a] -> [a]
take n _ | n <= 0 = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

take 2 (repeat 1)

Programming in Haskell, A Milanova (example due to
Brent Yorgey, Haskell.org)

48

13

49

Understand space usage. Remember foldl:
foldl (+) 0 [1,2,3]
= foldl (+) (0+1) [2,3]
= foldl (+) ((0+1)+2) [3]
= foldl (+) (((0+1)+2)+3) []
= (((0+1)+2)+3)
= ((1+2)+3)
= (3+3)
= 6

> foldl (+) 0 [1..1000000]
500000500000
(0.27 secs, 161,298,016
bytes)

foldl’ (+) 0 [1,2,3]
= foldl’ (+) (0+1) [2,3]
= foldl’ (+) 1 [2,3]
= foldl’ (+) (1+2) [3]
= foldl’ (+) 3 [3]
= foldl’ (+) (3+3) []
= foldl’ (+) 6 []
= 6

> foldl’ (+) 0 [1..1000000]
500000500000
(0.03 secs, 88,071,264
bytes)

Programming in Haskell, A Milanova (example due to
Brent Yorgey, Haskell.org)

49

50

Another problem is that evaluating (((0+1)+2)+3) requires
pushing 3, then 2, etc. on a stack and then unwinding the stack while
adding along the way. This adds to space usage

…
= (((0+1)+2)+3)
= ((1+2)+3)
= (3+3)
= 6

> foldl (+) 0 [1..1000000]
500000500000
(0.27 secs, 161,298,016
bytes)

Programming in Haskell, A Milanova (example due to
Brent Yorgey, Haskell.org)

50

Strict Evaluation

Programming in Haskell, A Milanova 51

One can force strict evaluation with bang patterns
f1 :: a -> Bool
f1 x = True

f1’ :: a -> Bool
f1’ !x = True

> f1 inifinty

> f1’ infinity

> f1’ (\x -> fst (x, infinity))

> f1’ (fst (0, infinity))

51

Short-circuiting Operations

Programming in Haskell, A Milanova 52

In Haskell short-circuiting is natural

&& :: Bool -> Bool -> Bool
True && x = x
False && _ = False

&&! :: Bool -> Bool -> Bool
True &&! True = True
False &&! False = False
False &&! True = False
False &&! False = False

> False && (34^9784346 > 34987345)
False
(0.01 secs, 68,040 bytes)
> False &&! (34^9784346 > 34987345)
False
(0.32 secs, 18,142,296 bytes)

False && (head [] == 'x’)
False &&! (head [] == 'x')

52

14

Arrays

import Data.Array

Programming in Haskell, A Milanova 53

squares = array (1,100) [(i, i*i) | i <- [1..100]]

array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b

A one-dimensional array of squares: A[i] = i^2:

sums = array ((1,1),(100,100)) $
[((i,j), i+j) | i <- [1..100], j <- [1..100]]

A two-dimensional array: A[i,j] = i + j:

53

Dynamic Programming

Programming in Haskell, A Milanova, example due to
Brent Yorgey, Haskell.org 54

import Data.Array

knapsack01 :: [Double] -- values
-> [Integer] -- nonnegative weights
-> Integer -- knapsack size
-> Double -- max possible value

knapsack01 vs ws maxW = m!(numItems-1, maxW)
where numItems = length vs

m = array ((-1,0), (numItems-1, maxW)) $
[((-1,w), 0) | w <- [0 .. maxW]] ++
[((i,0), 0) | i <- [0 .. numItems-1]] ++
[((i,w), best)

| i <- [0 .. numItems-1]
, w <- [1 .. maxW]
, let best

| ws!!i > w = m!(i-1, w)
| otherwise = max (m!(i-1, w))

(m!(i-1, w - ws!!i) + vs!!i)]

In Haskell dynamic programming is natural

54

Exercise

Programming in Haskell, A Milanova 55

Define longest common subsequence

import Data.Array
lcs :: [a] -- sequence a

-> [b] -- sequence b
-> Integer -- length of lcs of a and b

lcs seqa seqb = m!(la - 1, lb - 1)
where …

55

Lab
n Work on HW5

n Work on generic monadic functions (download
Lecture6’.hs) and monoids and foldables from
Lecture7

n Work on HW6

Programming in Haskell, A Milanova 56

56

