
1

Lambda Calculus and Lazy 
Evaluation (based on material 
due to Graham Hutton)
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n PS5? 
n Project proposal?

n Plan: shorter lecture and “labs” today and on 
Friday so you can work and ask questions on 
monoids, foldables, monads, PS5 and 
Project proposal

n Next week: type inference
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Outline

n Pure lambda calculus, a review
n Syntax and semantics
n Free and bound variables
n Rules (alpha rule, beta rule)
n Normal forms
n Reduction strategies

n Lazy evaluation in Haskell
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Syntax of Pure Lambda 
Calculus

l-calculus formulae (e.g., lx. x y) are called 
expressions or terms

E ::= x | ( lx. E1 ) | ( E1 E2 )

A l-expression is one of 
n Variable: x
n Abstraction (i.e., function definition): lx. E1

n Application: E1 E2 
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Syntactic Conventions

Parentheses may be dropped from “stand-alone” 
terms ( E1 E2 ) and ( lx. E )

E.g., ( f x ) may be written as f x

Function application groups from left-to-right (i.e., it is 
left-associative)

E.g., x y z abbreviates ( ( x y ) z )
E.g., E1 E2 E3 E4 abbreviates ( ( ( E1 E2 ) E3 ) E4 )
Parentheses in x (y z) are necessary! Why?
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Application has higher precedence than abstraction

Another way to say this is that the scope of the dot extends 
as far to the right as possible
E.g., lx. x z = lx. ( x z ) = ( lx. ( x z ) ) =
( lx. (x z) ) ≠ ( ( lx. x ) z )

WARNING: This is the most common syntactic convention 
(e.g., Pierce 2002). However, some books give abstraction 
higher precedence; you might have seen that different 
convention
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Semantics of Lambda 
Calculus

An expression has as its meaning the value that 
results after evaluation is carried out 
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Abstraction ( lx. E ) is also referred as binding
Variable x is said to be bound in lx. E

The set of free variables of E is the set of variables that 
appear unbound in E
Defined by cases on E

n Var x:
n App E1 E2:
n Abs lx. E:

free(x) = {x}
free(E1 E2) = free(E1) U free(E2)

free(lx.E) = free(E) - {x}

Free and Bound Variables

Programming in Haskell, A Milanova
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A variable x is bound if it is in the scope of a lambda 
abstraction: as in lx. E
Variable is free otherwise

1. (lx. x) y

2. (lz. z z) (lx. x) 

3. lx.ly.lz. x z (y (lu. u))
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We must take free and bound variables into account 
when reducing expressions

E.g., (lx.ly. x y) (y w)

First, rename bound y in ly. x y to z: lz. x z
(lx.ly. x y) (y w) à (lx.lz. x z) (y w) 

Second, apply the reduction rule that substitutes 
(y w) for x in the body ( lz. x z )
( lz. x z ) [(y w)/x] à ( lz. (y w) z ) = lz. y w z
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Substitution, formally

n (lx.E) M à E[M/x] replaces all free occurrences 
of x in E by M

n E[M/x] is defined by cases on E:
n Var: y[M/x] =

y[M/x] =
n App: (E1 E2)[M/x] =
n Abs: (ly.E1)[M/x] =

(ly.E1)[M/x] =

M if x = y
y otherwise

(E1[M/x] E2[M/x])
(ly.E1) if x = y
lz.((E1[z/y])[M/x]) otherwise,

where z NOT in free(E1) U free(M) U {x}
Programming in Haskell, A Milanova
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(lx.ly. x y) (y w) 
à (ly. x y)[(y w)/x]
à l1_. ( ((x y)[1_/y])[(y w)/x] ) 
à l1_. ( (x 1_)[(y w)/x] )
à l1_. ( (y w) 1_ )
à l1_. y w 1_
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Exercise 

n Write a Haskell function freshVars that takes a list of 
expressions and returns an infinite list of potential fresh variables, 
excluding variables that occur free in some expressions
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data Lexp = Var String

| App Lexp Lexp
| Lam String Lexp

import Data.List

freeVars :: Lexp -> [String]
freeVars …

freshVars :: [Lexp] -> [String]
freshVars exprs =

13

14

Rules (Axioms) of Lambda 
Calculus

a rule (a-conversion): renaming of parameter (choice 
of parameter name does not matter)

lx. E àa lz. (E[z/x]) provided z is not free in E
e.g., lx. x x is the same as lz. z z

b rule (b-reduction): function application (substitutes 
argument for parameter)

(lx.E) M àb E[M/x]
Note: E[M/x] as defined on previous slide!
e.g., (lx. x) z àb z
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Exercise

Reduce
1. (lx. x) y à?

2. (lx. x) (ly. y) à?

3. (lx.ly.lz. x z (y z)) (lu. u) (lv. v) à ?
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Reductions

An expression ( lx.E ) M is called a redex (for 
reducible expression)

An expression is in normal form if it cannot be β-
reduced

The normal form is the meaning of the term, the 
“answer”
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Definitions of Normal Form

n Normal form (NF): a term without redexes
n Head normal form (HNF)

n x is in HNF
n (lx. E) is in HNF if E is in HNF 
n (x E1 E2 … En) is in HNF

n Weak head normal form (WHNF)
n x is in WHNF
n (lx. E) is in WHNF
n (x E1 E2 … En) is in WHNF

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW) 17
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Exercise

1. lz. z z is in NF, HNF, or WHNF?
2. (lz. z z) (lx. x) is in?
3. lx.ly.lz. x z (y (lu. u)) is in?

4. (lx.ly. x) z ((lx. z x) (lx. z x)) is in?
5. z ((lx. z x) (lx. z x)) is in?
6. (lz.(lx.ly. x) z ((lx. z x) (lx. z x))) is in?
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pair = lx.ly.lf. f x y
fst = lf. f (lx.ly. x) snd = lf. f (lx.ly. y)
What is fst (pair a b)?
à (lf. f (lx.ly. x)) (pair a b)
à (pair a b) (lx.ly. x)
à ((lx.ly.lf. f x y) a b) (lx.ly. x)
à (lf. f a b) (lx.ly. x)
à (lx.ly. x) a b 
à a Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 19

An expression with no free 
variables is called combinator.
pair, fst, snd are combinators. 
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Reduction Strategy

n Let us look at (lx.ly.lz. x z (y z)) (lu. u) (lv. v)

n Actually, there are several “reduction paths”:
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A reduction strategy (also called evaluation order) is a 
strategy for choosing redexes

How do we arrive at the normal form (answer)?

Applicative order reduction chooses the leftmost-
innermost redex in an expression

In the sense that it contains no nested redexes
Also referred to as call-by-value reduction

Normal order reduction chooses the leftmost-
outermost redex in an expression

In the sense that it is not enclosed in a redex
Also referred to as call-by-name reduction
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Evaluate (lx. x x) ( (ly. y) (lz. z) ) using applicative 
order reduction:

Evaluate (lx. x x) ( (ly. y) (lz. z) ) using normal order 
reduction:

Exercises

22

Exercise

Evaluate (lx.ly. x y) ((lz. z) w) using applicative 
order reduction:

Evaluate (lx.ly. x y) ((lz. z) w) using normal order 
reduction:
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Let Expressions

Adding one more term, the let-binding, for the purpose of 
studying Hindley Milner

E ::= x | ( lx. E1 ) | ( E1 E2 ) | let x = E1 in E2

A l-expression is one of 
n Variable: x
n Abstraction (i.e., function definition): lx. E1

n Application: E1 E2

n Let expression: let x = E1 in E2

24
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let in Haskell is a letrec allowing for general recursion

let x = E1 in E2

let 

plus = \x y -> if y==0 then x else plus (x+1) (y-1)
in
plus 2 3

let 

even = \x -> if x==0 then True else odd (x-1)
odd = \x -> if x==0 then False else even (x-1)

in
even 100

25

Outline

n Pure lambda calculus, a review
n Syntax and semantics
n Free and bound variables
n Rules (alpha rule, beta rule)
n Normal forms
n Reduction strategies

n Lazy evaluation in Haskell
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Back to Haskell

! Avoids doing unnecessary evaluation;

! Ensures termination whenever possible;

! Supports programming with infinite lists;

! Allows programs to be more modular.

Expressions in Haskell are evaluated using lazy 
evaluation. What are its benefits?

Programming in Haskell, slide due to G. Hutton 27
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square (1+2)

square 3

=

3 * 3

=

9

=

Evaluating Expressions

square n = n * n

Example:

Apply + first.

I.e., applicative order reduction.
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square (1+2)

(1+2) * (1+2)
=

3 * (1+2)
=

3 * 3

=

Church-Rosser theorem: Any way of evaluating the same expression will 
give the same result, provided it terminates (i.e., normal form exists).

9

=

Apply square first.

Or this:

I.e., normal order reduction.
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fst (0, infinity)

fst (0, 1 + infinity)

=

fst (0, 1 + (1 + infinity))

=

Termination

infinity = 1 + infinity

Example:

Applicative order.

=
•
•
•
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fst (0, infinity)

0

=

Normal order 
evaluation.

! Outermost evaluation may give a result when innermost 
evaluation fails to terminate

! If any evaluation sequence terminates, then so does outermost, 
with the same result

Note:
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Number of Reductions

square (1+2)

square 3

=

3 * 3

=

9

=

square (1+2)

(1+2) * (1+2)

=

3 * (1+2)

=

3 * 3

=

9

=

Applicative order: Normal order:

3 steps. 4 steps.
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Note:

! The outmost version is inefficient, because the argument 1+2 is 
duplicated when square is applied and is hence evaluated twice

! Due to such duplication, outermost evaluation may require more
steps than innermost

! This problem can easily be avoided by using pointers to indicate 
sharing of arguments

Programming in Haskell, slide due to G. Hutton 33
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square (1+2)

9

=

*  

=

1+2

*  

=

3 

Example:

Shared argument evaluated 
once.
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This gives a new evaluation strategy:

lazy evaluation =
outermost evaluation 

+
sharing of arguments

Note:

! Lazy evaluation ensures termination whenever possible, but 
never requires more steps than innermost evaluation and 
sometimes fewer

! Strategy is known as call-by-need. Haskell’s evaluation strategy 
Programming in Haskell, modified from a slide due to G. 
Hutton 35
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gen 1

1 : gen 1=

1 : (1 : gen 1)=

Infinite Lists

gen x = x : gen x

Example:

An infinite list of 
ones.

= •
•
•

1 : (1 : (1 : gen 1))=

Programming in Haskell, modified from a slide due to G. 
Hutton 36
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head (gen 1)

head (1:gen 1)

=

head (1:(1:gen 1))

=

head (gen 1)

head (1:gen 1)

=

1

=

Applicative order: Normal order:

=
•
•
•

Does not 
terminate.

Terminates in 2 
steps!

Programming in Haskell, modified from a slide due to G. 
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Note:

! In the lazy case, only the first element of ones is produced, as 
the rest are not required

! In general, with lazy evaluation expressions are only evaluated 
as much as required by the context in which they are used

! Hence, gen x is really a potentially infinite list
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Modular Programming

Lazy evaluation allows us to make programs more modular
by separating control from data

> take 5 (gen 1)

[1,1,1,1,1]

The data part (gen 1) is only evaluated as much as required by the 
control part take 5.
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Without using lazy evaluation the control and data parts 
would need to be combined into one:

replicate :: Int ® a ® [a]

replicate 0 _ = []

replicate n x = x : replicate (n-1) x

> replicate 5 1

[1,1,1,1,1]

Example:

Programming in Haskell, slide due to G. Hutton 40
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Generating Primes

To generate the infinite sequence of primes:

1. Write down the infinite sequence 2, 3, 4, …;

2. Mark the first number p as being prime;

3. Delete all multiples of p from the sequence;

4. Return to the second step.
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Sieve of Eratosthenes.  

41

2 3 4 8 9 105 6 7 11 12 • ••2

3 95 7 11 • ••3

5 11 • ••75

7 11 • ••

11 • ••

7

11
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This idea can be directly translated into a program that 
generates the infinite list of primes! 

primes :: [Int]

primes = sieve [2..]

sieve :: [Int] ® [Int]

sieve (p:xs) =

Programming in Haskell, slide due to G. Hutton 43
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Examples:

> primes

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,…

> take 10 primes

[2,3,5,7,11,13,17,19,23,29]

> takeWhile (< 10) primes

[2,3,5,7]
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We can also use primes to generate an (infinite?) list of twin 
primes that differ by precisely two.

twin :: (Int,Int) ® Bool

twin (x,y) =

twins :: [(Int,Int)]

twins =

> twins

[(3,5),(5,7),(11,13),(17,19),(29,31),…

Exercise

Programming in Haskell, slide due to G. Hutton 45
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Exercise

(1) The Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

starts with 0 and 1, with each further number being the sum of the 
previous two.  Using a list comprehension, define an expression

fibs :: [Integer]

that generates this infinite sequence.
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Pattern Matching

Pattern matching drives evaluation 

Programming in Haskell, A Milanova (example due to 
Brent Yorgey, Haskell.org) 47

f1 :: Maybe a -> [Maybe a] 
f1 m = [m,m] 

f2 :: Maybe a -> [a] 
f2 Nothing = [] 
f2 (Just x) = [x]

f1’s argument remains completely uneveluated
f2 e must first evaluate argument e because result of f2 depends 
on the shape of e
Thunks are evaluated only as much as needed. E.g., 
safeHead [3^10, 5] does not evaluate 3^10

47
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repeat :: a -> [a] 
repeat x = x : repeat x 

take :: Int -> [a] -> [a] 
take n _ | n <= 0 = [] 
take _ [] = [] 
take n (x:xs) = x : take (n-1) xs

take 2 (repeat 1)

Programming in Haskell, A Milanova (example due to 
Brent Yorgey, Haskell.org)
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Understand space usage. Remember foldl:
foldl (+) 0 [1,2,3]
= foldl (+) (0+1) [2,3]
= foldl (+) ((0+1)+2) [3]
= foldl (+) (((0+1)+2)+3) []
= (((0+1)+2)+3)
= ((1+2)+3)
= (3+3)
= 6 

> foldl (+) 0 [1..1000000] 
500000500000
(0.27 secs, 161,298,016 
bytes)

foldl’ (+) 0 [1,2,3]
= foldl’ (+) (0+1) [2,3]
= foldl’ (+) 1 [2,3]
= foldl’ (+) (1+2) [3]
= foldl’ (+) 3 [3]
= foldl’ (+) (3+3) []
= foldl’ (+) 6 []
= 6

> foldl’ (+) 0 [1..1000000]
500000500000
(0.03 secs, 88,071,264 
bytes)

Programming in Haskell, A Milanova (example due to 
Brent Yorgey, Haskell.org)
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Another problem is that evaluating (((0+1)+2)+3) requires 
pushing 3, then 2, etc. on a stack and then unwinding the stack while 
adding along the way. This adds to space usage 

…
= (((0+1)+2)+3)
= ((1+2)+3)
= (3+3)
= 6 

> foldl (+) 0 [1..1000000] 
500000500000
(0.27 secs, 161,298,016 
bytes)

Programming in Haskell, A Milanova (example due to 
Brent Yorgey, Haskell.org)
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Strict Evaluation
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One can force strict evaluation with bang patterns
f1 :: a -> Bool
f1 x = True

f1’ :: a -> Bool
f1’ !x = True

> f1 inifinty

> f1’ infinity

> f1’ (\x -> fst (x, infinity))

> f1’ (fst (0, infinity))

51

Short-circuiting Operations

Programming in Haskell, A Milanova 52

In Haskell short-circuiting is natural

&& :: Bool -> Bool -> Bool
True && x = x
False && _ = False

&&! :: Bool -> Bool -> Bool
True &&! True = True
False &&! False = False
False &&! True = False
False &&! False = False

> False && (34^9784346 > 34987345)
False
(0.01 secs, 68,040 bytes) 
> False &&! (34^9784346 > 34987345)
False
(0.32 secs, 18,142,296 bytes)

False && (head [] == 'x’) 
False &&! (head [] == 'x')

52
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Arrays

import Data.Array
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squares = array (1,100) [(i, i*i) | i <- [1..100]]

array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b

A one-dimensional array of squares: A[i] = i^2:

sums = array ((1,1),(100,100)) $
[((i,j), i+j) | i <- [1..100], j <- [1..100] ]

A two-dimensional array: A[i,j] = i + j:

53

Dynamic Programming

Programming in Haskell, A Milanova, example due to 
Brent Yorgey, Haskell.org 54

import Data.Array

knapsack01 :: [Double] -- values 
-> [Integer] -- nonnegative weights 
-> Integer -- knapsack size 
-> Double -- max possible value 

knapsack01 vs ws maxW = m!(numItems-1, maxW) 
where numItems = length vs 

m = array ((-1,0), (numItems-1, maxW)) $ 
[((-1,w), 0) | w <- [0 .. maxW]] ++ 
[((i,0), 0) | i <- [0 .. numItems-1]] ++ 
[((i,w), best) 

| i <- [0 .. numItems-1] 
, w <- [1 .. maxW] 
, let best 

| ws!!i > w = m!(i-1, w) 
| otherwise = max (m!(i-1, w)) 

(m!(i-1, w - ws!!i) + vs!!i)]

In Haskell dynamic programming is natural

54

Exercise
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Define longest common subsequence

import Data.Array
lcs :: [a] -- sequence a 

-> [b] -- sequence b 
-> Integer -- length of lcs of a and b

lcs seqa seqb = m!(la - 1, lb - 1) 
where …
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Lab
n Work on HW5

n Work on generic monadic functions (download 
Lecture6’.hs) and monoids and foldables from 
Lecture7

n Work on HW6
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