
1

In-class Exercises on
Monoids, Foldables, and
Monads

1

n We had Quiz 2 on Tuesday

n PS5 is due October 15th

n Project proposal is due October 15th
n Team up with a partner. A team of two is required
n Please read carefully
n Do some research and think through carefully

Programming in Haskell, A Milanova 2

2

Outline

n Monoids
n Over integers, over boolean, over lists

n Foldables
n Lists and trees

n Generic monadic functions
n Write definition for each function

n Write using >>=
n Then write using do notation (or vice versa)

n Then write at least one additional use case!
3Programming in Haskell, A Milanova

3

Semigroup and Monoid

Programming in Haskell, A Milanova 4

class Semigroup a where

(<>) :: a -> a -> a

class Semigroup a => Monoid a where

mempty :: a

An associative operation combining elements of a set:

An identity elements:

4

2

List is a Monoid

Programming in Haskell, A Milanova 5

What are some instances of Monoid?

5

Programming in Haskell, A Milanova 6

We can define a numeric monoid for addition:

newtype Sum a = Sum { getSum :: a }

> x = Sum 10
> getSum x

We can define an analogous numeric monoid for multiplication.

6

Programming in Haskell, A Milanova 7

We can define a boolean monoid for logical and:

newtype All = All { getAll :: Bool }

> x = All True
> getAll x

And an analogous boolean monoid Any, for logical or.

7

PS5 Tree

Programming in Haskell, A Milanova 8

data AVL a = Atom a -- leaf
| Node

Int -- cached number of elements
Int -- cached height
(AVL a) -- left branch
(AVL a) -- right branch

Can we define an instance of Semigroup? Monoid?

8

3

PS5 Vec

Programming in Haskell, A Milanova 9

data Vec a = Empty
| Tree (AVL a) -- non-empty tree with data at leaves

Can we define an instance of Semigroup? Monoid?

9

PS4 MergesortList

Programming in Haskell, A Milanova 10

newtype MergesortList a = ML [a]
deriving (Eq,Show)

Can we define an instance of Semigroup? Monoid?

A wrapper around the list type to represent sorted lists.

10

Programming in Haskell, A Milanova 11

Can we make function type b->b an instance of Monoid?

11

Programming in Haskell, A Milanova 12

Why are Monoids and wrapper types useful anyway?

foldList :: Monoid a => [a] -> a

foldList xs = List.foldr (<>) mempty xs

12

4

Foldable Type Class

Programming in Haskell, A Milanova 13

Monoids are closely related to Foldables. They combine all
values in a foldable structure to give a single value
class Foldable t where
foldMap :: Monoid m => (a -> m) -> t a -> m
foldr :: (a -> b -> b) -> b -> t a -> b
length :: t a -> Int
toList :: t a -> [a]

… -- other functions

{-# MINIMAL foldMap | foldr #-}

Data of types that are instances of Foldable can be “folded”
(or “reduced”) to single values

13

List is Foldable

Programming in Haskell, A Milanova 14

14

Tree is Foldable

Programming in Haskell, A Milanova 15

data Tree = Leaf a | Node (Tree a) (Tree a)

instance Foldable Tree where
-- flodMap ::
foldMap

t :: Tree Int
t = Node (Node (Leaf 2) (Leaf 1)) (Leaf 3)

15

Programming in Haskell, A Milanova 16

data Tree = Leaf a | Node (Tree a) (Tree a)

Define a tree fold that counts the leaves of the tree as a
single call to foldMap.

Define a tree fold that computes the minimum in a tree of
numeric values, again as a call to foldMap.

16

5

NL is Foldable

17

data NL a = Atom a | List [NL a]

instance Foldable NL where
-- foldMap ::
foldMap

x = List [Atom 1, Atom 2, Atom 3] z = List [Atom 0, List [List [Atom 1]]]

17

An Equivalent foldMap

18

data NL a = Atom a | List [NL a]

instance Foldable NL where
-- foldMap ::
foldMap

x = List [Atom 1, Atom 2, Atom 3] z = List [Atom 0, List [List [Atom 1]]]

18

Programming in Haskell, A Milanova 19

data NL a = Atom a | List [NL a]

atomcount ::
atomcount

flatten ::
flatten

Define atomcount and flatten as a call to generic foldMap.

19

Programming in Haskell, A Milanova 20

{-# MINIMAL foldMap | foldr #-} means one need
only define foldMap or foldr. Haskell can derive all other
functions from either one of these

foldMap :: Monoid m => (a -> m) -> t a -> m

Exercise

Define foldMap in terms of foldr

foldr :: (a -> b -> b) -> b -> t a -> b

Trickier. Define foldr in terms of foldMap

20

6

DivideList is Foldable

Programming in Haskell, A Milanova 21

instance Foldable DivideList where
-- Monoid m => (a -> m) -> DivideList a -> m
-- (a -> MergesortList a) -> DivideList a ->

MergesortList a
foldMap f xs =

case divide xs of
(DL [], DL []) -> mempty
(DL [], DL [x]) -> f x
(dl1, dl2) -> (foldMap f dl1) <> (foldMap f dl2)

-- vs.

foldMap’ f (DL []) = mempty
foldMap’ f (DL (x:xs)) = f x <> foldMap’ f (DL xs)

mergeSort xs = toList $ foldMap singleton (DL xs)

21

Generic Functions over
Foldable Types

Programming in Haskell, A Milanova 22

average :: [Int] -> Int
average ns = sum ns `div` length ns

average :: Foldable t = > t Int -> Int
average ns = sum ns `div` length ns

> average [1..10]
5
> average (Node (Leaf 1) (Leaf 3))
2

! What is the benefit of Foldable?

22

Programming in Haskell, A Milanova 23

-- Like and on list, ands all values in foldable
and :: Foldable t => t Bool -> Bool
and =

-- Like all on list, but acts on foldable
all :: Foldable t => (a -> Bool) -> t a -> Bool
all p =

and [True,False,True]
>
and (Node (Leaf True) (Leaf False)
>
and (List [List [Atom True, List []], Atom False])
>

23

Programming in Haskell, A Milanova 24

-- Like or on list, ors all values in foldable
or :: Foldable t => t Bool -> Bool
or =

-- Like all on list, but acts on foldable
any :: Foldable t => (a -> Bool) -> t a -> Bool
any p =

or [True,False,True]
>
or (Node (Leaf True) (Leaf False)
>
or (List [List [Atom True, List []], Atom False])
>

24

7

Programming in Haskell, A Milanova 25

-- E.g., concat [“ab”,”cd”,”ef”] yields “abcdef”
concat :: Foldable t => t [a] -> [a]
concat =

25

Generic Monadic Functions

Programming in Haskell, A Milanova 26

! Define some useful generic functions. What does map do?

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f xs =

! What are some use cases with Maybe and List monads?
! Two use cases are shown in slides. Add an additional use

case for mapM

26

Exercise

Programming in Haskell, A Milanova 27

! Define fun1 in terms of mapM and maybeUpper:

import Data.Char

maybeUpper :: Char -> Maybe Char
maybeUpper x = if isAlpha x

then Just (toUpper x)
else Nothing

-- fun1 “abAcd” yields Just “ABACD”
-- fun1 “ab1cd” yields Nothing
fun1 :: String -> Maybe String
fun1 =

27

Exercise

Programming in Haskell, A Milanova 28

! Define fun2 in terms of mapM and onlyUpper:

import Data.Char

onlyUpper :: String -> String
onlyUpper = filter isUpper

-- fun2 [“ABC”, “Ac”] yields [”AA”, “BA”, “CA”]
-- fun2 [“ABC”, “ac”] yields []
fun2 :: [String] -> [String]
fun2 =

28

8

Programming in Haskell, A Milanova 29

! What does foldM do?

-- foldM safeDiv 16 [2,2] yields Just 4
-- foldM safeDiv 16 [2,2,0] yields Nothing

foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a
foldM op i xs =

29

Programming in Haskell, A Milanova 30

! What does sequence do? Add a use case with IO

-- sequence [[1::Int,2],[3],[4,5]] yields
-- [[1,3,4],[1,3,5],[2,3,4],[2,4,5]]
-- sequence [Just (3::Int), Nothing, Just 4] yields
-- Nothing

sequence :: Monad m => [m a] -> m [a]
sequence xs =

30

Programming in Haskell, A Milanova 31

! What does Kleisli fish operator do? Add a use case

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
(>=>) =

31

Programming in Haskell, A Milanova 32

! What does join do? Add an additional use case

-- join [[1::Int,2],[3,4]] yields [1,2,3,4]
-- join (Just (Just (3::Int))) yields Just 3

join :: Monad m => m (m a) -> m a
join =

32

9

Programming in Haskell, A Milanova 33

! What does liftM function do?

liftM :: Monad m => (a -> b) -> m a -> m b
liftM =

! What does liftM2 do?

liftM2 :: Monad m => (a -> b -> c) -> m a -> m b -> m c
liftM2 =

33

