
1

Interactive Programming and
IO (based on material due to
Graham Hutton and Stephanie
Weirich)

1

n Quiz 2 on Friday

n PS5 later this week; no new hw until Oct 15th
n Project proposal guidelines now available

n Submission deadline: October 15th

n Team up with a partner. A team of two is required
n Please read carefully
n Do some research and think through carefully

Programming in Haskell, A Milanova 2

2

Outline

n IO actions
n Writing on screen and reading from screen
n File handles and files

n Monads!
n The Maybe and List monads
n Monadic bind and do notation
n Back to the IO monad
n Generic monadic functions 3

3

Introduction

We have seen how Haskell can be used to write
batch programs that take all their inputs at the start
and give all their outputs at the end

batch programinputs outputs

Programming in Haskell, slide due to G. Hutton 4

4

2

Interactive programs read from the keyboard and
write to the screen, as they are running

interactive
program

inputs outputs

keyboard

screenProgramming in Haskell, slide due to G. Hutton 5

5

The Problem

Haskell programs are pure mathematical functions:

However, reading from the keyboard and writing to
the screen are side effects:

! Haskell programs have no side effects

! Interactive programs have side effects

6Programming in Haskell, slide due to G. Hutton

6

The Solution

Interactive programs can be written in Haskell by
using types to distinguish pure expressions from
impure actions that may involve side effects

IO a

The type of actions that return a value
of type a.

7Programming in Haskell, slide due to G. Hutton

7

For example:

IO Char

IO ()

The type of actions that return a
character.

The type of purely side effecting
actions that return no result value.

! () is the type of tuples with no components

Note:

8Programming in Haskell, slide due to G. Hutton

8

3

Basic Actions

The standard library provides a number of actions,
including the following three primitives:

getChar :: IO Char

! The action getChar reads a character from the
keyboard, echoes it to the screen, and returns the
character as its result value:

9Programming in Haskell, slide due to G. Hutton

9

! The action putChar c writes the character c to the
screen, and returns no result value:

putChar :: Char ® IO ()

! The action return v simply returns the value v, without
performing any interaction:

return :: a ® IO a

10Programming in Haskell, slide due to G. Hutton

10

A sequence of actions can be combined as a single
composite action using the keyword do

For example:

Sequencing

act :: IO (Char,Char)

act = do x ¬ getChar

getChar

y ¬ getChar

return (x,y)

11Programming in Haskell, slide due to G. Hutton

11

Derived Primitives

getLine :: IO String

getLine = do x ¬ getChar

if x == '\n' then

return []

else

do xs ¬ getLine

return (x:xs)

! Reading a string from the keyboard:

12Programming in Haskell, slide due to G. Hutton

12

4

putStr :: String ® IO ()

putStr [] = return ()

putStr (x:xs) = do putChar x

putStr xs

! Writing a string to the screen:

! Writing a string and moving to a new line:

putStrLn :: String ® IO ()

putStrLn xs = do putStr xs

putChar '\n'

13Programming in Haskell, slide due to G. Hutton

13

Example

We can now define an action that prompts for a
string to be entered and displays its length:

strlen :: IO ()

strlen = do putStr "Enter a string: "

xs ¬ getLine

putStr "The string has "

putStr (show (length xs))

putStrLn " characters"

14Programming in Haskell, slide due to G. Hutton

14

For example:

> strlen

Enter a string: Haskell

The string has 7 characters

! Evaluating an action executes its side effects, with the
final result value being discarded.

Note:

15Programming in Haskell, slide due to G. Hutton

15

Hangman

Consider the following version of hangman:

! One player secretly types in a word.

! The other player tries to deduce the word, by entering
a sequence of guesses.

! For each guess, the computer indicates which letters
in the secret word occur in the guess.

! The game ends when the guess is correct.
16Programming in Haskell, slide due to G. Hutton

16

5

hangman :: IO ()

hangman = do putStrLn "Think of a word: "

word ¬ sgetLine

putStrLn "Try to guess it:"

play word

We adopt a top down approach to implementing
hangman in Haskell, starting as follows:

17Programming in Haskell, slide due to G. Hutton

17

The action sgetLine reads a line of text from the
keyboard, echoing each character as a dash:

sgetLine :: IO String

sgetLine = do x ¬ getCh

if x == '\n' then

do putChar x

return []

else

do putChar '-'

xs ¬ sgetLine

return (x:xs) 18Programming in Haskell, slide due to G. Hutton

18

import System.IO

getCh :: IO Char

getCh = do hSetEcho stdin False

x ¬ getChar

hSetEcho stdin True

return x

The action getCh reads a single character from the
keyboard, without echoing it to the screen:

19Programming in Haskell, slide due to G. Hutton

19

The function play is the main loop, which requests
and processes guesses until the game ends.

play :: String ® IO ()

play word =

do putStr "? "

guess ¬ getLine

if guess == word then

putStrLn "You got it!"

else

do putStrLn (match word guess)

play word 20Programming in Haskell, slide due to G. Hutton

20

6

The function match indicates which characters in
one string occur in a second string:

For example:

> match "haskell" "pascal"

"-as--ll"

match :: String ® String ® String

match xs ys =

[if elem x ys then x else '-' | x ¬ xs]

21Programming in Haskell, slide due to G. Hutton

21

Exercise

Implement the game of nim in Haskell, where the
rules of the game are as follows:

! The board comprises five rows of stars:

1: * * * * *

2: * * * *
3: * * *
4: * *

5: *

22Programming in Haskell, slide due to G. Hutton

22

! Two players take turn about to remove one or more
stars from the end of a single row.

! The winner is the player who removes the last star or
stars from the board.

Hint:

Represent the board as a list of five integers that
give the number of stars remaining on each row.
For example, the initial board is [5,4,3,2,1].

23Programming in Haskell, slide due to G. Hutton

23

Files and File Handles

24

These operations break “referentially transparency”.
For example, hGetChar typically returns different value
when called twice in a row.

import System.IO -- Standard IO

openFile :: FilePath -> IOMode -> Handle
hClose :: Handle -> () -- void
hIsEOF :: Handle -> Bool
hGetChar :: Handle -> Char

Programming in Haskell, A Milanova

24

7

25

getFileContents :: String -> IO String
getFileContents filename =
do h <- openFile filename ReadMode

putStrLn filename
reversed_cs <- readFileContents h []
hClose h
return (reverse reversed_cs)

readFileContents :: Handle -> String -> IO String
readFileContents h rcs =
do b <- hIsEOF h

if (b) then return rcs
else do { c <- hGetChar h; readFileContents h (c:rcs) }

Programming in Haskell, A Milanova

25

Other useful functions:

26

// reads entire file into one string:
readFile :: FilePath -> IO String
// writes entire string into a file:
writeFile :: FilePath -> String -> IO ()

main = do
[f,g] <- getArgs
s <- readFile f
writeFile g s

Programming in Haskell, A Milanova

26

Outline

n IO actions
n Writing on screen and reading from screen
n File handles and files

n Monads!
n The Maybe and List monads
n Monadic bind and do notation
n Back to the IO monad
n Generic monadic functions 27

27

Example: Cloned Sheep

Programming in Haskell, A Milanova (All About Monads
tutorial on Haskell.org) 28

type Sheep = ...
father :: Sheep -> Maybe Sheep
father = ...
mother :: Sheep -> Maybe Sheep
mother = ...

maternalGrandfather :: Sheep -> Maybe Sheep
maternalGrandfather s = case (mother s) of

Nothing -> Nothing
Just m -> father m

Defining the function that takes a sheep and returns the
maternal grandfather of the sheep:

28

8

29

mothersPaternalGrandfather :: Sheep -> Maybe Sheep
mothersPaternalGrandfather s = case (mother s) of

Nothing -> Nothing
Just m -> case (father m) of

Nothing -> Nothing
Just gf -> father gf

What if we wanted to go one generation up:

Tedious, unreadable, difficult to maintain!

Programming in Haskell, A Milanova (All About Monads
tutorial on Haskell.org)

29

Programming in Haskell, A Milanova 30

Monads!

Monads are a way to cleanly compose actions
n E.g., f may return a value of type a or Nothing
Composing actions becomes tedious

In Haskell, monads model IO and State

case (f s) of
Nothing -> Nothing
Just m -> case (f m) …

30

Monad

Programming in Haskell, A Milanova 31

class Monad m where
-- | Sequentially compose two actions, passing any

value that is produced by first action to the second
(>>=) :: m a -> (a -> m b) -> m b

-- | Inject a value into a monad type
return :: a -> m a

-- More functions that we’ll leave for now.

! Monad is a higher-order type class (actually, right term
is a higher-kinded type class):

31

Programming in Haskell, A Milanova 32

! What are some instances of Monad?

32

9

33

mothersPaternalGrandfather :: Sheep -> Maybe Sheep
mothersPaternalGrandfather s = case (mother s) of

Nothing -> Nothing
Just m -> case (father m) of

Nothing -> Nothing
Just gf -> father gf

Example: Cloned Sheep

Becomes just this:

mothersPaternalGrandfather :: Sheep -> Maybe Sheep
mothersPaternalGrandfather s =

(return s) >>= mother >>= father >>= father

If at any point a function returns Nothing, it cleanly propagates, no
need to check.

33

Example: Lambda Calculus

Programming in Haskell, A Milanova 34

data LExpr = ...

oneStepAppNF :: LExpr -> Maybe LExpr
oneStepAppNF expr = case expr of

(Atom v) -> Nothing
…

twoSteps :: LExpr -> Maybe LExpr
twoSteps expr =

Defining the function that does two applicative order
reduction steps:

34

Exercise

Programming in Haskell, A Milanova 35

! Define firstJust which takes two Maybes and
returns the first Just, if any:

-- firstJust (Just 1) (Just 2) yields (Just 1)
-- firstJust Nothing (Just 2) yields (Just 2)
-- firstJust (Just 1) Nothing yields (Just 1)
-- firstJust Nothing Nothing yields Nothing

firstJust :: Maybe a -> Maybe a -> Maybe a
firstJust ...

35

Exercise

Programming in Haskell, A Milanova 36

! Define seqJust which takes two Maybes and if both are
Just returns the first, otherwise Nothing:

-- seqJust (Just 1) (Just 2) yields (Just 1)
-- seqJust Nothing (Just 2) yields Nothing
-- seqJust (Just 1) Nothing yields Nothing
-- seqJust Nothing Nothing yields Nothing

seqJust :: Maybe a -> Maybe b -> Maybe a
seqJust ...

36

10

Exercise

Programming in Haskell, A Milanova 37

! Can we define either firstJust or seqJust using the
bind operator >>=? Why or why not? Remember the
definition we gave of >>= for Maybe.

37

[e1, e2, e3, … en]

[[r1,r2], [r3],[], … [r4,r5,r6]]

38

f fff

> concatMap f xs

[r1, r2, r3, … r4, r5, r6]

concat part

Map part

List is Monadic

38

The List Monad

Programming in Haskell, A Milanova 39

! List type constructor is an instance of the Monad type
class:

instance Monad [] where
-- return :: a -> [a]
return x = ?

-- (>>=) :: [a] -> (a -> [b]) -> [b]
li >>= f = concatMap f li

concatMap :: Foldable t => (a -> [b]) -> t a -> [b]

> concatMap (return . product) [[1,2],[3,4],[5,6]]

39

Exercises

Programming in Haskell, A Milanova 40

> f x = [x+1]
> [1,2,3] >>= f

> [1,2,3] >>= \x -> return (x+1)

> [1,2,3] >>= return . (+1)

> [1,2,3] >>= return . (+1) . (*5)

40

11

Exercises

Programming in Haskell, A Milanova 41

! Define maybeToList:
maybeToList :: Maybe a -> [a]
maybeToList x =

! Define parents, which returns the list of parents (or
parent) of a cloned sheep:

parents :: Sheep -> [Sheep]
parents s =

! Now define grandParents:
grandParents :: Sheep -> [Sheep]
grandParents s =

41

Outline

n IO actions
n Writing on screen and reading from screen
n File handles and files

n Monads!
n The Maybe and List monads
n Monadic bind and do notation
n Back to the IO monad
n Generic monadic functions 42

42

Monad Laws

Programming in Haskell, A Milanova 43

! return is an identity to >>=:

1. return x >>= f ==== f x

2. m >>= return ==== m

! Associativity (kind of) of >>=:

3. (m >>= f) >>= g ==== m >>= (\x -> f x >>= g)

! Remember, do notation correct only if associativity holds

! Exercise: Show Maybe and List obey the monad laws

43

do Notation

Programming in Haskell, A Milanova 44

! do notation is just syntactic sugar for monadic bind >>=!
> return sh >>= mother >>= father

> mother sh >>= father

do m <- mother sh
father m

Making argument explicit by 𝛈-expansion:
> mother sh >>= (\m -> father m)

By identity monad law:

Which has direct rewrite into do-notation!

44

12

Programming in Haskell, A Milanova 45

! do notation is just syntactic sugar for monadic bind >>=!
> (return sh) >>= mother >>= father

We can make encapsulated element explicit (𝛈-expansion):
expansion):> (return sh) >>= (\s -> mother s) >>= (\m -> father m)

Which has a direct rewrite in do-notation:

do s <- return sh
m <- mother s
father m

Which is equivalent to (by associativity monad law):
> (return sh) >>= (\s -> mother s >>= (\m -> father m))

45

Programming in Haskell, A Milanova 46

! Start with “straightforward” application of bind >>= :

And the do notation:
do
s <- return sh
m <- mother s
gf <- father m
father gf

mothersPaternalGrandfather :: Sheep -> Maybe Sheep
mothersPaternalGrandfather sh =

return sh >>= mother >>= father >>= father

return sh >>= (\s -> mother s >>= (\m -> father m
>>= (\gf -> father gf)))

By monad laws:

46

Programming in Haskell, A Milanova 47

! do notation is just syntactic sugar for monadic bind >>=!
> [1,2,3] >>= return . (+1) >>= return . (*5)

We can make encapsulated element explicit:
> [1,2,3] >>= (\x -> [x+1]) >>= (\y -> [y*5])

Which has a direct rewrite in do-notation:

v = do x <- [1,2,3]
y <- [x+1]
[y*5]

Which is equivalent to (by monad laws):
> [1,2,3] >>= (\x -> [x+1] >>= (\y -> [y*5]))

47

List Comprehension

Programming in Haskell, A Milanova 48

! List comprehension is syntactic sugar over do notation. In
other words, list comprehensions are rewritten internally
in terms of >>=

Direct rewrite into comprehension:

v = do x <- [1,2,3]
y <- [x+1]
[y*5]

v = [y*5 | x <- [1,2,3], y <- [x+1]]

48

13

Monad

Programming in Haskell, A Milanova 49

class Monad m where
-- | Sequentially compose two actions, passing any

value that is produced by first action to the second
(>>=) :: m a -> (a -> m b) -> m b

-- | Inject a value into a monad type
return :: a -> m a

-- | Ignore value produced by first action
(>>) :: m a -> m b -> m b

! >> composes actions without worrying about value
produced by first action:

49

Programming in Haskell, A Milanova 50

(>>) :: m a -> m b -> m b
m >> f = m >>= (_ -> f)

! Second action does not need input from first action:

v = do
x <- doSomething
doSomethingElse -- ?
y <- doMore
f x y

doSomething >>= (\x ->
doSomethingElse >>
doMore >>= (\y ->
(f x y)))

50

Programming in Haskell, A Milanova 51

! List comprehension is syntactic sugar over do notation

Direct rewrite into comprehension:

v = do x <- [1,2,3]
y <- [6,5,4]
[(x,y)]

Exercise

51

52

Back to IO. IO is a Monad!

Unlike other monads (e.g., Maybe and List) there is no
way to make an IO a into an a

IO a: Computation that does some IO producing a value
of type a. E.g., (IO Char), (IO String)

The monad encapsulates “mutable” IO state

… and, there is no “rep exposure” of this state!

Access to state is only through well-defined monadic operations
(e.g., hGetChar)

52

14

Turn do sequence back into a monadic bind expression:

act :: IO (Char,Char)

act = do x ¬ getChar

y ¬ getChar

return (x,y)

Bind expression:

act’ = getChar >>= (\x -> getChar >>= (\y -> return (x,y)))

53

Turn do sequence back into a monadic bind expression:
getLine' :: IO String
getLine' = do

x <- getChar
if x == '\n' then

return []
else do

xs <- getLine’
return (x:xs)

Exercise

getLine’ :: IO String
getLine’ = getChar >>= (\x ->

if x == ‘\n’
then return []
else getLine’ >>= (\xs -> return (x:xs)))

Bind expression:

54

Exercise

Programming in Haskell, A Milanova 55

simpleProgram :: IO ()
simpleProgram = do

putStrLn ”A simple program that does IO."
putStrLn "What is your name?”
inpStr <- getLine
putStrLn ("Welcome to Haskell, " ++ inpStr ++ "!")

Turn back into an equivalent monadic bind expression:

Bind expression using >>=:
putStrLn s1 >>= (\x’ -> putStrLn s2 >>= (\x’’ -> getLine >>=
(\inpStr -> putStrLn (s3 ++ inpStr))))

Bind expression using >>:
putStrLn s1 >> (putStrLn s2 >> (getLine >>= (\inpStr ->
putStrLn (s3 ++ inpStr))))

55

Outline

n IO actions
n Writing on screen and reading from screen
n File handles and files

n Monads!
n The Maybe and List monads
n Monadic bind and do notation
n Back to the IO monad
n Generic monadic functions 56

56

15

Generic Monadic Functions

Programming in Haskell, A Milanova 57

! Define some useful generic functions. What does map do?

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f xs =

! What are some use cases with Maybe and List monads?
! Two use cases are shown in slides. Add an additional use

case for mapM

57

Exercise

Programming in Haskell, A Milanova 58

! Define fun1 in terms of mapM and maybeUpper:

import Data.Char

maybeUpper :: Char -> Maybe Char
maybeUpper x = if isAlpha x

then Just (toUpper x)
else Nothing

-- fun1 “abAcd” yields Just “ABACD”
-- fun1 “ab1cd” yields Nothing
fun1 :: String -> Maybe String
fun1 =

58

Exercise

Programming in Haskell, A Milanova 59

! Define fun2 in terms of mapM and onlyUpper:

import Data.Char

onlyUpper :: String -> Maybe String
onlyUpper = filter isUpper

-- fun2 [“ABC”, “Ac”] yields [”AA”, “BA”, “CA”]
-- fun2 [“ABC”, “ac”] yields []
fun2 :: [String] -> [String]
fun2 =

59

Programming in Haskell, A Milanova 60

! What does foldM do?

-- foldM safeDiv 16 [2,2] yields Just 4
-- foldM safeDiv 16 [2,2,0] yields Nothing

foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a
foldM op i xs =

60

16

Programming in Haskell, A Milanova 61

! What does sequence do? Add an additional use case!

-- sequence [[1::Int,2],[3],[4,5]] yields
-- [[1,3,4],[1,3,5],[2,3,4],[2,4,5]]
-- sequence [Just (3::Int), Nothing, Just 4] yields
-- Nothing

sequence :: Monad m => [m a] -> m [a]
sequence xs =

61

Programming in Haskell, A Milanova 62

! What does Kleisli fish operator do? Add a use case

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
(>=>) =

62

Programming in Haskell, A Milanova 63

! What does join do? Add an additional use case

-- join [[1::Int,2],[3,4]] yields [1,2,3,4]
-- join (Just (Just (3::Int))) yields Just 3

join :: Monad m => m (m a) -> m a
join =

63

Programming in Haskell, A Milanova 64

! What does liftM function do?

liftM :: Monad m => (a -> b) -> m a -> m b
liftM =

! What does liftM2 do?

liftM2 :: Monad m => (a -> b -> c) -> m a -> m b -> m c
liftM2 =

64

17

n Folding patters
n Lists

n Regular lists
n Divide lists

n Trees
Programming in Haskell, A Milanova 65

instance Foldable DivideList where
-- (a -> SortedList a) -> DivideList a -> SortedList a
foldMap f xs =

case divide xs of
(DL [], DL []) -> mempty
(DL [], DL [x]) -> f x
(dl1, dl2) -> (foldMap f dl1) <> (foldMap f dl2

65

