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Outline

n Eq and other overloaded operations
n Deriving mechanism
n Read and Show
n Ord 
n Enum and Bounded
n Semigroup and Monoid
n Kinds and higher-kinded type classes
n Functor, Foldable, and Monad type classes
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The Type of (+)

We saw a lot of (+) which we used to add Ints:

(+)::a -> a -> a   

two::Int
two = 1 + 1

Programming in Haskell, A Milanova

We might conclude type is (+)::Int -> Int -> Int
But we can also add Floats:

two’::Float
two’ = 1.0 + 1.0

Thus, we can also have (+)::Float -> Float -> Float
So, is this the type?

4
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The above get us the following type error:

add :: a -> a -> a

add x y = (+) x y

dfdfLecture1.hs:32:11: error:
• No instance for (Num a) arising from a use of ‘+’
Possible fix:
add (Num a) to the context of
the type signature for:
add :: forall a. a -> a -> a

• In the expression: (+) x y
In an equation for ‘add’: add x y = (+) x y

5

Programming in Haskell, A Milanova 6

Type a -> a -> a is too general. It makes sense to add 
numbers, but not Bools or lists. We need a type in the 
middle

add :: Num a => a -> a -> a

add x y = (+) x y

Num a => is a type constraint. It says (+) should work on 
any type a as long as a implements the Num type class 

Adding constraint Num a => achieves the goal:

6

Num Type Class and More

Programming in Haskell, A Milanova 7

Num is one of many type classes in Haskell. Instances of 
Num support (+), (-), etc. 

Int, Integer, Float and Double are all instances 
of Num

Type classes are Haskell’s solution to overloading. 
Overloading is also known as ad-hoc polymorphism

7
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In contrast, parametric polymorphism means one
implementation that works on many different types 

E.g., the implementation of length works on lists of Ints, 
lists of lists of doubles and so on

But behavior of (+) does depend on the type of operand, 
hence a different implementation for each type

Type classes bring “order” and “discipline” to ad-hoc 
polymorphism

8
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Subtype polymorphism is OO-style polymorphism, no 
clear analog in Haskell  

Aside: Flavors of 
Polymorphism

Parametric polymorphism is Haskell’s way. Here a is an 
explicit type parameter: 

Ad-hoc polymorphism is overloading. Haskell’s type 
classes bring order to ad-hoc polymorphism

twice ::    (a -> a) -> a -> a

twice f x = f (f x)

> twice (+1) 1 :: Int

9

The Eq Type Class
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(==) :: Eq a => a -> a -> Bool

Now consider (==):

(==) works on many types but not all. Can you think of a 
type for which it makes little sense to compare with (==)?

Note the constraint Eq a =>. We can only compare 
values of the same type a with (==)   

10
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class Eq a where 
(==) :: a -> a -> Bool 
(/=) :: a -> a -> Bool

Now let us define an instance of Eq:

This is a declaration of type class Eq with a single 
parameter a

To make a type member of Eq, we declare it an 
instance of and implement operations (==) and (/=)

11
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data PrimaryColor = Red | Green | Blue

instance Eq PrimaryColor where
(==) :: PrimaryColor -> PrimaryColor -> Bool
Red == Red = True
Green == Green = True
Blue == Blue = True
_ == _ = False 

(/=) :: PrimaryColor -> PrimaryColor -> Bool
Red /= Red = False
Green /= Green = False
Blue /= Blue = False
_ /= _ = True

Note: Use {-# LANGUAGE InstanceSigs #-} for Haskell to 
allow instance function signatures

12
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What does this mean?

Type class Eq as defined in Prelude:

We have some initial implementation. If we don’t override 
(==) or (/=) our instance inherits the default 
implementation in Eq

class Eq a where 
(==), (/=) :: a -> a -> Bool 
x /= y = not (x == y)
x == y = not (x /= y)

13

Exercise
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data Tree a = Leaf | Node a (Tree a) (Tree a)

instance Eq a => Eq (Tree a) where
(==) :: Tree a -> Tree a -> Bool
t1 == t2 = ?

Fill in the following code. It will tell Haskell how to 
compare two values of type Tree a, as long as it knows 
how to compare values of type a.

14
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lookup ::         a -> [(a,b)] -> Maybe b 
lookup    

Write the lookup function that looks up in a list of 
bindings. E.g.,
> lookup ‘a’ [(‘a’,5)] 
Just 5
> lookup “b” [(“a”,10),(“b”,11)]
Just 11

Exercise

15
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Write the lookupDefault function that looks up in a list 
of bindings and returns the value if found. Returns default 
value otherwise. E.g.,
> lookupDefault ‘a’ [(‘a’,5)] 10
5
> lookupDefault “c” [(“a”,10),(“b”,11)] 10
10

lookupDefault:: 
lookupDefault x xs def =   

Exercise

16
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What other overloaded operations have you seen?

Overloading is called ad-hoc polymorphism. Why?

Type classes bring “order” and “discipline” to ad-hoc 
polymorphism. How?

Overloaded Operations?

17

C++20 Concepts
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std::list<int> l = {3, -1, 10}; 
std::sort(l.begin(), l.end()); 
// Typical compiler diagnostic without concepts: 
// invalid operands to binary expression ('std::_List_iterator<int>' and 
// 'std::_List_iterator<int>’) 
// std::__lg(__last - __first) * 2); 
// ~~~~~~ ^ ~~~~~~~ 
// ... 50 lines of output ... 
// 
// Typical compiler diagnostic with concepts: 
// error: cannot call std::sort with std::_List_iterator<int>
// note: concept RandomAccessIterator<std::_List_iterator<int>> was 
// not satisfied

Inspired by Haskell’s type classes!

18
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E.g., == is reflexive, symmetric and transitive 
+ is associative and commutative 

Note: The type system does NOT enforce the laws, it is 
the responsibility of the programmer to ensure that  
implementation obeys the laws 

Common type: e.g., (+) :: Num a => a -> a -> a
and all implementations of (+) must obey the type

Type classes come with ”laws”

19

Value Equality versus 
Reference Equality
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No issues with value vs. reference quality in Haskell!

20

http://en.cppreference.com/w/cpp/container/list
http://en.cppreference.com/w/cpp/algorithm/sort
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data Point = Point Double Double 
deriving (Eq)

data Shape = Circle Point Float 
| Rectangle Point Point 

deriving (Eq)

When we define a new datatype, instead of writing Eq
operations, we can ask Haskell to do it!

Deriving

Haskell derives an instance of Eq for Point. It already 
knows how to compare Doubles

21

Deriving
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data Tree a = Leaf | Node a (Tree a) (Tree a)
deriving (Eq)

Haskell creates an instance of the Eq type class for Tree 
a.

Derivation for many datatypes follows a common pattern. 
As long as Haskell has Eq a => a for every type 
parameter a, it can run == recursively over components 

Programming in Haskell, A Milanova
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data IntFunctions = OneArg (Int->Int)
| TwoArg (Int->Int->Int)

Deriving does not always work:

One cannot derive an instance for this data type. Why? 

In general, data types you write will require that you write 
the instance yourself

23

Show
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We have been using Haskell’s printing throughout class. 
When we evaluate an expression, Haskell has to figure 
out how to convert it to String. E.g., 

Function show converts a value to String:

> take 5 [1..]

show :: Show a => a -> String

So, what is Show?

24
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class Show a where 

show :: a -> String 
showsPrec :: Int -> a -> ShowS
showList :: [a] -> ShowS

To implement Show, implement show or showsPrec. 
show converts a value to String. 

Important: By convention, show should produce valid 
Haskell expressions. I.e., strings that can be parsed into 
expressions

A type class!

25

Read
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read :: Read a => String -> a

In the other direction of Show is Read. Function read:

Notice that the type parameter occurs in the return. 
Therefore, the actual type must be clear from context, or 
you must explicitly provide it: 

> read “3”::Int

3

26
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What happened here?

Prelude.read is a partial function and there is no good 
way to recover from the exception.

> read “3”

> read “3”::Bool

readMaybe::Read a => String -> Maybe a 

A better way is to use the (non-partial) function from 
Text.Read:

27
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read and show should be inverses:

More generally: 

> read (show 3) :: Int

> show (read “3”::Int) 

show (read x::T) == x

read (show x) == x

28
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Show and Read are derivable:

What happens if you try to print a value of a type that is 
not an instance of Show?

data SadColors = Black | Brown | Grey

deriving (Eq, Show, Read)

> empty  –-the empty DList from quiz

> \x -> (x,x)

29

Type Classes vs. Java 
Interfaces
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A Haskell type class is more like a Java interface than a 
Java class:

class Show a where 

show :: a -> String
…

f :: Show a => a -> …
…

interface Showable {

String show();
}
…

f(Showable x) {
… x.show(); …

}

30
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However,

In Haskell, we can have multiple type class constraints:

f :: (Show a, Num a) => a -> …

In Haskell, we can make an existing type an instance of a 
new type class (retroactively):

class ParseField a where 

parseField :: String -> Maybe a

instance ParseField SomeType where

…

31
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In Haskell, there is no subtyping

Claim is 

Generics (also called parametric polymorphism) +

Type-class constraints on polymorphism 

is enough 

32
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Outline

n Eq and other overloaded operations
n Deriving
n Read and Show
n Ord
n Enum and Bounded
n Semigroup and Monoid
n Kinds and higher-kinded type classes
n Functor, Foldable and Monad type classes
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Ord
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class Eq a => Ord a where 

compare              :: a -> a -> Ordering
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min             :: a -> a -> a

Importantly, an instance of the Ord class is already an 
instance of the Eq class. Why two separate classes?

Have you used these operations before?

This type class is for comparisons:

34
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compare :: Ord a => a -> a -> Ordering

E.g.,  

What about compare?

data Ordering = LT | EQ | GT

Uses

> compare 1 2

> compare ‘b’ ‘a’

> compare ”ana” “ana”

35
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data MyThree = One | Two | Tree

deriving (Eq, Ord)

Haskell derives the order based on the order in which 
constructors occur: One < Two < Three
E.g.,  

Have you used these operations before?

What are some of the Ord class laws?

Ord can be derived, just like Eq, Show and Read:

Type Class “Laws”

> One <= Two

> Three <= Two
> One == One

36
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sort :: Ord a => [a] -> [a]

Examples:  

Have you used these operations before?

Function sort in library Data.List:

Exercises

> sort [4,1,3,2]

> sort [\x->1, \x->2]

> sort [Two, Three, One]

37

Overloading and Syntax
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Type classes have been part of Haskell since the 
beginning. Therefore, overloading is integrated in the 
language syntax sometimes in non-obvious ways

>:t 1

Num a => a
>:t 1::Int
Int

>:t 1.0 
Fractional a => a
>

38
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class Num a where
(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
abs :: a -> a
signum :: a -> a
fromInteger :: Integer -> a
{-# MINIMAL (+), (*), abs, signum, 

fromInteger, (negate | (-)) #-}
-- Defined in ‘GHC.Num’

Haskell’s parser coverts an integer literal to an Integer and 
then the Num class type converts it to a numeric type.   

39
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What happens in the last example?

The syntax is convenient because all numeric types can 
use the same syntax for constants: 

> 1::Double

> 1::Integer

> 1 + 2.0

40
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Enum and Bounded
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class Enum a where
succ :: a -> a
pred :: a -> a
toEnum :: Int -> a
fromEnum :: a -> Int
enumFrom :: a -> [a]

-- These are used in Haskell's translation of [n..] and [n..m]

enumFromThen :: a -> a -> [a]
enumFromTo :: a -> a -> [a]
enumFromThenTo :: a -> a -> a -> [a]
{-# MINIMAL toEnum, fromEnum #-}

-- Defined in ‘GHC.Enum’

41

Bounded
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class Bounded a where
minBound, maxBound : a

> maxInt::Int
> maxInt = maxBound
> maxInt

> maxInteger::Integer
> maxInteger = maxBound

> data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving (Eq,Ord,Show,Enum,Bounded,Read)

> daysOfWeek :: [Day]
> daysOfWeek = [minBound..]

42

Outline

n Eq and other overloaded operations
n Deriving
n Read and Show
n Ord 
n Enum and Bounded
n Semigroup and Monoid
n Kinds and higher-kinded type classes
n Functor, Foldable and Monad type classes
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Semigroup and Monoid
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class Semigroup a where

(<>) :: a -> a -> a

class Semigroup a => Monoid a where

mempty :: a

44
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Exercise
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What are some instances of Monoid?

45
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What about Integers?

46

Programming in Haskell, A Milanova 47

Disambiguate by defining a newtype:

newtype Sum = Sum { getSum :: Int }

> x = Sum 10
> getSum x

instance Semigroup Sum where

x <> y = Sum $ getSum x + getSum y 

instance Monoid Sum where

mempty = Sum 0

47
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Disambiguate by defining a newtype:

newtype Product = Product { getProduct :: Int }

> x = Product 10

instance Semigroup Product where
x <> y = Product $ getProduct x * getProduct y 

instance Monoid Product where

mempty = Product 1

48
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newtype can be polymorphic:

newtype Sum a = Sum { getSum :: a }

> x = Sum 10
> getSum x

instance Num a => Semigroup (Sum a) where 

x <> y = Sum $ getSum x + getSum y 

instance Num a => Monoid (Sum a) where 

mempty = Sum 0

49
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Why are Monoids and wrapper types useful anyway?

foldList :: Monoid a => [a] -> a

foldList xs = List.foldr (<>) mempty xs

50

Functor
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map takes a function and applies it on every element in a 
list: 

map :: (a -> b) -> [a] -> [b] 

But what about trees? We can imagine a treeMap which 
takes a function from a to b, a Tree a and applies the 
function on every element in the tree:

data Tree a = Leaf | Node a (Tree a) (Tree a)

deriving (Eq,Show)

treeMap :: (a -> b) -> Tree a -> Tree b 

51
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More generally, you can apply a ”map” to any ”container” 
that holds values of some type a

And yes, there is a type class for that! 

class Functor f where

fmap :: (a -> b) -> f a -> f b

instance Eq a => Eq (Tree a) where

…
instance Functor Tree where

… 

52
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Functor is a type class, but it is different from the ones 
we’ve seen so far. It is a “constructor” class

Functor applies on constructors (or “containers”) like []
and Tree, rather than on primitive types like Int and 
Double

instance Functor [] where

-- fmap :: (a -> b) -> [a] -> [b]
fmap = map 

The Functor instance for the [] type is as follows:

53
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We can define class Functor for the Tree type:

data Tree a = Leaf | Node a (Tree a) (Tree a)

deriving (Eq,Show)

instance Functor Tree where

-- fmap :: (a -> b) -> Tree a -> Tree b
fmap = treeMap where

treeMap …

54
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<$> is defined as a synonym (alias) of fmap in the 
Data.Functor library: 

> Data.Char.toUpper <$> “abcd”

> Data.Char.toUpper <$> ‘a’

> Data.Char.toUpper <$> Node ‘a’ Leaf Leaf

55

Exercise
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Define a Functor instance for the following type: 

data Two a = MkTwo a a 

deriving (Eq,Show,Read,Ord)

instance Functor Two where

-- (a -> b) -> Two a -> Two b 
fmap = 

56
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Exercise
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Consider newtypes that wrap around Bool, and define 
corresponding instances of Semigroup and Monoid:  

newtype And = And { getAnd :: Bool }
newtype Or = Or { getOr :: Bool } 

getAnd (foldList (fmap And [True,False,False])) == False
getOr (foldList (fmap Or [True,False,False])) == True

57

What Are Kinds?
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How are Tree and Two different from Int and Bool? 

Well, types themselves have types! They are called kinds. 

The kind of Int and Bool is *, pronounced “type”.

The kind of Tree, Two, [] is * -> *. These are all type 
constructors that take one type argument.

The way to think of these is that they are “functions that 
take a type and return a new type”. The new types are 
constructed types as opposed to primitive types like Bool.

58

Exercise
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You can always ask Haskell for the kind of something:

>:k Tree

>:k Int

>:k Bool

>:k Tree Int

>:k ->

59

Exercise
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You can always ask Haskell for the kind of something:

>:k []

>:k [Int]

data Either a b = Left a | Right b

>:k Either

60
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Some type classes are different than other. Knowing the 
kinds of types is important when making instances of type 
classes

Valid instances of Functor (and Monad) all have the type 
* -> * (also called Type -> Type).  We cannot write 
Functor Bool or Functor Int!

Valid instances of Show, Eq, Ord all have the type *
(Type). The instance needs to be Show (Tree a) not 
Show Tree.

61

Foldable
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class Foldable t where

foldMap :: Monoid m => (a -> m) -> t a -> m

What are some instances of Foldable?

62

Exercise
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Instantiate the NL a datatype into a Foldable and define 
atomcount and flatten using foldMap.

data NL a = Atom a

| List [NL a]

63
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Type class declaration: class ClassName t where

...

class Functor f where

fmap :: (a -> b) -> f a -> f b

class Foldable f where

foldMap :: Monoid m => (a -> m) -> f a -> m

class Semigroup a where

(<>) :: a -> a -> a

First order:

Higher order:

class Eq a where
(==) :: a -> a -> Bool

64
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First-order type class: class ClassName t where

... t ...

instance Semigroup Sum where

-- (<>) :: Sum -> Sum -> Sum
x <> y = …

Instantiation of a first-order type class:

instance Eq (Tree a) where

-- (==) :: (Tree a) -> (Tree a) -> Bool
Leaf == Leaf = True 
…

65

Programming in Haskell, A Milanova 66

Higher-order type class: class ClassName f where

… f a … f b …

instance Functor [] where

fmap :: (a -> b) -> [a] -> [b]

instance Foldable NL where

foldMap :: Monoid m => (a -> m) -> NL a -> m

Instantiation of a higher-order type class:

66

Monad
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And now, all we’ve been waiting for!!!

The Monad type class!

main :: IO ()
main = do
putStrLn “What is your name?”
inpStr <- getLine
putStrLn $ “Welcome to Haskell, “ ++ inpStr ++ “!”
return ()

Well, IO is an instance of the Monad type class.

67

Monad
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class Monad m where
-- | Sequentially compose two actions, passing any 

value that is produced by first action to the second
(>>=)  :: m a -> (a -> m b) -> m b

-- | Inject a value into a monad type
return :: a -> m a

-- More functions that we’ll leave for now.

68
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We’ve been using bind (>>=) quite awhile, but we haven’t 
seen it yet because of syntactic sugar 

ex :: IO Int
ex = do 
x <- doSomething
return x

Is equivalent to 

ex = doSomething >>= (\x -> return x) 

69
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