
1

Types and Functions
(based on notes by Stephanie
Weirich)

1

n PS3

n I’ll post PS4 and autograder later today

Programming in Haskell, A Milanova 2

2

Outline

n Eq and other overloaded operations
n Deriving mechanism
n Read and Show
n Ord
n Enum and Bounded
n Semigroup and Monoid
n Kinds and higher-kinded type classes
n Functor, Foldable, and Monad type classes

3Programming in Haskell, A Milanova

3

The Type of (+)

We saw a lot of (+) which we used to add Ints:

(+)::a -> a -> a

two::Int
two = 1 + 1

Programming in Haskell, A Milanova

We might conclude type is (+)::Int -> Int -> Int
But we can also add Floats:

two’::Float
two’ = 1.0 + 1.0

Thus, we can also have (+)::Float -> Float -> Float
So, is this the type?

4

4

2

Programming in Haskell, A Milanova 5

The above get us the following type error:

add :: a -> a -> a

add x y = (+) x y

dfdfLecture1.hs:32:11: error:
• No instance for (Num a) arising from a use of ‘+’
Possible fix:
add (Num a) to the context of
the type signature for:
add :: forall a. a -> a -> a

• In the expression: (+) x y
In an equation for ‘add’: add x y = (+) x y

5

Programming in Haskell, A Milanova 6

Type a -> a -> a is too general. It makes sense to add
numbers, but not Bools or lists. We need a type in the
middle

add :: Num a => a -> a -> a

add x y = (+) x y

Num a => is a type constraint. It says (+) should work on
any type a as long as a implements the Num type class

Adding constraint Num a => achieves the goal:

6

Num Type Class and More

Programming in Haskell, A Milanova 7

Num is one of many type classes in Haskell. Instances of
Num support (+), (-), etc.

Int, Integer, Float and Double are all instances
of Num

Type classes are Haskell’s solution to overloading.
Overloading is also known as ad-hoc polymorphism

7

Programming in Haskell, A Milanova 8

In contrast, parametric polymorphism means one
implementation that works on many different types

E.g., the implementation of length works on lists of Ints,
lists of lists of doubles and so on

But behavior of (+) does depend on the type of operand,
hence a different implementation for each type

Type classes bring “order” and “discipline” to ad-hoc
polymorphism

8

3

Programming in Haskell, A Milanova 9

Subtype polymorphism is OO-style polymorphism, no
clear analog in Haskell

Aside: Flavors of
Polymorphism

Parametric polymorphism is Haskell’s way. Here a is an
explicit type parameter:

Ad-hoc polymorphism is overloading. Haskell’s type
classes bring order to ad-hoc polymorphism

twice :: (a -> a) -> a -> a

twice f x = f (f x)

> twice (+1) 1 :: Int

9

The Eq Type Class

Programming in Haskell, A Milanova 10

(==) :: Eq a => a -> a -> Bool

Now consider (==):

(==) works on many types but not all. Can you think of a
type for which it makes little sense to compare with (==)?

Note the constraint Eq a =>. We can only compare
values of the same type a with (==)

10

Programming in Haskell, A Milanova 11

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

Now let us define an instance of Eq:

This is a declaration of type class Eq with a single
parameter a

To make a type member of Eq, we declare it an
instance of and implement operations (==) and (/=)

11

Programming in Haskell, A Milanova 12

data PrimaryColor = Red | Green | Blue

instance Eq PrimaryColor where
(==) :: PrimaryColor -> PrimaryColor -> Bool
Red == Red = True
Green == Green = True
Blue == Blue = True
_ == _ = False

(/=) :: PrimaryColor -> PrimaryColor -> Bool
Red /= Red = False
Green /= Green = False
Blue /= Blue = False
_ /= _ = True

Note: Use {-# LANGUAGE InstanceSigs #-} for Haskell to
allow instance function signatures

12

4

Programming in Haskell, A Milanova 13

What does this mean?

Type class Eq as defined in Prelude:

We have some initial implementation. If we don’t override
(==) or (/=) our instance inherits the default
implementation in Eq

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)
x == y = not (x /= y)

13

Exercise

Programming in Haskell, A Milanova 14

data Tree a = Leaf | Node a (Tree a) (Tree a)

instance Eq a => Eq (Tree a) where
(==) :: Tree a -> Tree a -> Bool
t1 == t2 = ?

Fill in the following code. It will tell Haskell how to
compare two values of type Tree a, as long as it knows
how to compare values of type a.

14

Programming in Haskell, A Milanova 15

lookup :: a -> [(a,b)] -> Maybe b
lookup

Write the lookup function that looks up in a list of
bindings. E.g.,
> lookup ‘a’ [(‘a’,5)]
Just 5
> lookup “b” [(“a”,10),(“b”,11)]
Just 11

Exercise

15

Programming in Haskell, A Milanova 16

Write the lookupDefault function that looks up in a list
of bindings and returns the value if found. Returns default
value otherwise. E.g.,
> lookupDefault ‘a’ [(‘a’,5)] 10
5
> lookupDefault “c” [(“a”,10),(“b”,11)] 10
10

lookupDefault::
lookupDefault x xs def =

Exercise

16

5

Programming in Haskell, A Milanova 17

What other overloaded operations have you seen?

Overloading is called ad-hoc polymorphism. Why?

Type classes bring “order” and “discipline” to ad-hoc
polymorphism. How?

Overloaded Operations?

17

C++20 Concepts

Programming in Haskell, A Milanova 18

std::list<int> l = {3, -1, 10};
std::sort(l.begin(), l.end());
// Typical compiler diagnostic without concepts:
// invalid operands to binary expression ('std::_List_iterator<int>' and
// 'std::_List_iterator<int>’)
// std::__lg(__last - __first) * 2);
// ~~~~~~ ^ ~~~~~~~
// ... 50 lines of output ...
//
// Typical compiler diagnostic with concepts:
// error: cannot call std::sort with std::_List_iterator<int>
// note: concept RandomAccessIterator<std::_List_iterator<int>> was
// not satisfied

Inspired by Haskell’s type classes!

18

Programming in Haskell, A Milanova 19

E.g., == is reflexive, symmetric and transitive
+ is associative and commutative

Note: The type system does NOT enforce the laws, it is
the responsibility of the programmer to ensure that
implementation obeys the laws

Common type: e.g., (+) :: Num a => a -> a -> a
and all implementations of (+) must obey the type

Type classes come with ”laws”

19

Value Equality versus
Reference Equality

Programming in Haskell, A Milanova 20

No issues with value vs. reference quality in Haskell!

20

http://en.cppreference.com/w/cpp/container/list
http://en.cppreference.com/w/cpp/algorithm/sort

6

Programming in Haskell, A Milanova 21

data Point = Point Double Double
deriving (Eq)

data Shape = Circle Point Float
| Rectangle Point Point

deriving (Eq)

When we define a new datatype, instead of writing Eq
operations, we can ask Haskell to do it!

Deriving

Haskell derives an instance of Eq for Point. It already
knows how to compare Doubles

21

Deriving

22

data Tree a = Leaf | Node a (Tree a) (Tree a)
deriving (Eq)

Haskell creates an instance of the Eq type class for Tree
a.

Derivation for many datatypes follows a common pattern.
As long as Haskell has Eq a => a for every type
parameter a, it can run == recursively over components

Programming in Haskell, A Milanova

22

Programming in Haskell, A Milanova 23

data IntFunctions = OneArg (Int->Int)
| TwoArg (Int->Int->Int)

Deriving does not always work:

One cannot derive an instance for this data type. Why?

In general, data types you write will require that you write
the instance yourself

23

Show

Programming in Haskell, A Milanova 24

We have been using Haskell’s printing throughout class.
When we evaluate an expression, Haskell has to figure
out how to convert it to String. E.g.,

Function show converts a value to String:

> take 5 [1..]

show :: Show a => a -> String

So, what is Show?

24

7

25

class Show a where

show :: a -> String
showsPrec :: Int -> a -> ShowS
showList :: [a] -> ShowS

To implement Show, implement show or showsPrec.
show converts a value to String.

Important: By convention, show should produce valid
Haskell expressions. I.e., strings that can be parsed into
expressions

A type class!

25

Read

Programming in Haskell, A Milanova 26

read :: Read a => String -> a

In the other direction of Show is Read. Function read:

Notice that the type parameter occurs in the return.
Therefore, the actual type must be clear from context, or
you must explicitly provide it:

> read “3”::Int

3

26

Programming in Haskell, A Milanova 27

What happened here?

Prelude.read is a partial function and there is no good
way to recover from the exception.

> read “3”

> read “3”::Bool

readMaybe::Read a => String -> Maybe a

A better way is to use the (non-partial) function from
Text.Read:

27

Programming in Haskell, A Milanova 28

read and show should be inverses:

More generally:

> read (show 3) :: Int

> show (read “3”::Int)

show (read x::T) == x

read (show x) == x

28

8

Programming in Haskell, A Milanova 29

Show and Read are derivable:

What happens if you try to print a value of a type that is
not an instance of Show?

data SadColors = Black | Brown | Grey

deriving (Eq, Show, Read)

> empty –-the empty DList from quiz

> \x -> (x,x)

29

Type Classes vs. Java
Interfaces

Programming in Haskell, A Milanova 30

A Haskell type class is more like a Java interface than a
Java class:

class Show a where

show :: a -> String
…

f :: Show a => a -> …
…

interface Showable {

String show();
}
…

f(Showable x) {
… x.show(); …

}

30

Programming in Haskell, A Milanova 31

However,

In Haskell, we can have multiple type class constraints:

f :: (Show a, Num a) => a -> …

In Haskell, we can make an existing type an instance of a
new type class (retroactively):

class ParseField a where

parseField :: String -> Maybe a

instance ParseField SomeType where

…

31

Programming in Haskell, A Milanova 32

In Haskell, there is no subtyping

Claim is

Generics (also called parametric polymorphism) +

Type-class constraints on polymorphism

is enough

32

9

Outline

n Eq and other overloaded operations
n Deriving
n Read and Show
n Ord
n Enum and Bounded
n Semigroup and Monoid
n Kinds and higher-kinded type classes
n Functor, Foldable and Monad type classes

33Programming in Haskell, A Milanova

33

Ord

Programming in Haskell, A Milanova 34

class Eq a => Ord a where

compare :: a -> a -> Ordering
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> a

Importantly, an instance of the Ord class is already an
instance of the Eq class. Why two separate classes?

Have you used these operations before?

This type class is for comparisons:

34

35

compare :: Ord a => a -> a -> Ordering

E.g.,

What about compare?

data Ordering = LT | EQ | GT

Uses

> compare 1 2

> compare ‘b’ ‘a’

> compare ”ana” “ana”

35

Programming in Haskell, A Milanova 36

data MyThree = One | Two | Tree

deriving (Eq, Ord)

Haskell derives the order based on the order in which
constructors occur: One < Two < Three
E.g.,

Have you used these operations before?

What are some of the Ord class laws?

Ord can be derived, just like Eq, Show and Read:

Type Class “Laws”

> One <= Two

> Three <= Two
> One == One

36

10

Programming in Haskell, A Milanova 37

sort :: Ord a => [a] -> [a]

Examples:

Have you used these operations before?

Function sort in library Data.List:

Exercises

> sort [4,1,3,2]

> sort [\x->1, \x->2]

> sort [Two, Three, One]

37

Overloading and Syntax

Programming in Haskell, A Milanova 38

Type classes have been part of Haskell since the
beginning. Therefore, overloading is integrated in the
language syntax sometimes in non-obvious ways

>:t 1

Num a => a
>:t 1::Int
Int

>:t 1.0
Fractional a => a
>

38

Programming in Haskell, A Milanova 39

class Num a where
(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
abs :: a -> a
signum :: a -> a
fromInteger :: Integer -> a
{-# MINIMAL (+), (*), abs, signum,

fromInteger, (negate | (-)) #-}
-- Defined in ‘GHC.Num’

Haskell’s parser coverts an integer literal to an Integer and
then the Num class type converts it to a numeric type.

39

Programming in Haskell, A Milanova 40

What happens in the last example?

The syntax is convenient because all numeric types can
use the same syntax for constants:

> 1::Double

> 1::Integer

> 1 + 2.0

40

11

Enum and Bounded

Programming in Haskell, A Milanova 41

class Enum a where
succ :: a -> a
pred :: a -> a
toEnum :: Int -> a
fromEnum :: a -> Int
enumFrom :: a -> [a]

-- These are used in Haskell's translation of [n..] and [n..m]

enumFromThen :: a -> a -> [a]
enumFromTo :: a -> a -> [a]
enumFromThenTo :: a -> a -> a -> [a]
{-# MINIMAL toEnum, fromEnum #-}

-- Defined in ‘GHC.Enum’

41

Bounded

Programming in Haskell, A Milanova 42

class Bounded a where
minBound, maxBound : a

> maxInt::Int
> maxInt = maxBound
> maxInt

> maxInteger::Integer
> maxInteger = maxBound

> data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving (Eq,Ord,Show,Enum,Bounded,Read)

> daysOfWeek :: [Day]
> daysOfWeek = [minBound..]

42

Outline

n Eq and other overloaded operations
n Deriving
n Read and Show
n Ord
n Enum and Bounded
n Semigroup and Monoid
n Kinds and higher-kinded type classes
n Functor, Foldable and Monad type classes

43Programming in Haskell, A Milanova

43

Semigroup and Monoid

Programming in Haskell, A Milanova 44

class Semigroup a where

(<>) :: a -> a -> a

class Semigroup a => Monoid a where

mempty :: a

44

12

Exercise

Programming in Haskell, A Milanova 45

What are some instances of Monoid?

45

Programming in Haskell, A Milanova 46

What about Integers?

46

Programming in Haskell, A Milanova 47

Disambiguate by defining a newtype:

newtype Sum = Sum { getSum :: Int }

> x = Sum 10
> getSum x

instance Semigroup Sum where

x <> y = Sum $ getSum x + getSum y

instance Monoid Sum where

mempty = Sum 0

47

Programming in Haskell, A Milanova 48

Disambiguate by defining a newtype:

newtype Product = Product { getProduct :: Int }

> x = Product 10

instance Semigroup Product where
x <> y = Product $ getProduct x * getProduct y

instance Monoid Product where

mempty = Product 1

48

13

Programming in Haskell, A Milanova 49

newtype can be polymorphic:

newtype Sum a = Sum { getSum :: a }

> x = Sum 10
> getSum x

instance Num a => Semigroup (Sum a) where

x <> y = Sum $ getSum x + getSum y

instance Num a => Monoid (Sum a) where

mempty = Sum 0

49

Programming in Haskell, A Milanova 50

Why are Monoids and wrapper types useful anyway?

foldList :: Monoid a => [a] -> a

foldList xs = List.foldr (<>) mempty xs

50

Functor

Programming in Haskell, A Milanova 51

map takes a function and applies it on every element in a
list:

map :: (a -> b) -> [a] -> [b]

But what about trees? We can imagine a treeMap which
takes a function from a to b, a Tree a and applies the
function on every element in the tree:

data Tree a = Leaf | Node a (Tree a) (Tree a)

deriving (Eq,Show)

treeMap :: (a -> b) -> Tree a -> Tree b

51

Programming in Haskell, A Milanova 52

More generally, you can apply a ”map” to any ”container”
that holds values of some type a

And yes, there is a type class for that!

class Functor f where

fmap :: (a -> b) -> f a -> f b

instance Eq a => Eq (Tree a) where

…
instance Functor Tree where

…

52

14

Programming in Haskell, A Milanova 53

Functor is a type class, but it is different from the ones
we’ve seen so far. It is a “constructor” class

Functor applies on constructors (or “containers”) like []
and Tree, rather than on primitive types like Int and
Double

instance Functor [] where

-- fmap :: (a -> b) -> [a] -> [b]
fmap = map

The Functor instance for the [] type is as follows:

53

Programming in Haskell, A Milanova 54

We can define class Functor for the Tree type:

data Tree a = Leaf | Node a (Tree a) (Tree a)

deriving (Eq,Show)

instance Functor Tree where

-- fmap :: (a -> b) -> Tree a -> Tree b
fmap = treeMap where

treeMap …

54

Programming in Haskell, A Milanova 55

<$> is defined as a synonym (alias) of fmap in the
Data.Functor library:

> Data.Char.toUpper <$> “abcd”

> Data.Char.toUpper <$> ‘a’

> Data.Char.toUpper <$> Node ‘a’ Leaf Leaf

55

Exercise

Programming in Haskell, A Milanova 56

Define a Functor instance for the following type:

data Two a = MkTwo a a

deriving (Eq,Show,Read,Ord)

instance Functor Two where

-- (a -> b) -> Two a -> Two b
fmap =

56

15

Exercise

Programming in Haskell, A Milanova 57

Consider newtypes that wrap around Bool, and define
corresponding instances of Semigroup and Monoid:

newtype And = And { getAnd :: Bool }
newtype Or = Or { getOr :: Bool }

getAnd (foldList (fmap And [True,False,False])) == False
getOr (foldList (fmap Or [True,False,False])) == True

57

What Are Kinds?

Programming in Haskell, A Milanova 58

How are Tree and Two different from Int and Bool?

Well, types themselves have types! They are called kinds.

The kind of Int and Bool is *, pronounced “type”.

The kind of Tree, Two, [] is * -> *. These are all type
constructors that take one type argument.

The way to think of these is that they are “functions that
take a type and return a new type”. The new types are
constructed types as opposed to primitive types like Bool.

58

Exercise

Programming in Haskell, A Milanova 59

You can always ask Haskell for the kind of something:

>:k Tree

>:k Int

>:k Bool

>:k Tree Int

>:k ->

59

Exercise

Programming in Haskell, A Milanova 60

You can always ask Haskell for the kind of something:

>:k []

>:k [Int]

data Either a b = Left a | Right b

>:k Either

60

16

Programming in Haskell, A Milanova 61

Some type classes are different than other. Knowing the
kinds of types is important when making instances of type
classes

Valid instances of Functor (and Monad) all have the type
* -> * (also called Type -> Type). We cannot write
Functor Bool or Functor Int!

Valid instances of Show, Eq, Ord all have the type *
(Type). The instance needs to be Show (Tree a) not
Show Tree.

61

Foldable

Programming in Haskell, A Milanova 62

class Foldable t where

foldMap :: Monoid m => (a -> m) -> t a -> m

What are some instances of Foldable?

62

Exercise

Programming in Haskell, A Milanova 63

Instantiate the NL a datatype into a Foldable and define
atomcount and flatten using foldMap.

data NL a = Atom a

| List [NL a]

63

Programming in Haskell, A Milanova 64

Type class declaration: class ClassName t where

...

class Functor f where

fmap :: (a -> b) -> f a -> f b

class Foldable f where

foldMap :: Monoid m => (a -> m) -> f a -> m

class Semigroup a where

(<>) :: a -> a -> a

First order:

Higher order:

class Eq a where
(==) :: a -> a -> Bool

64

17

Programming in Haskell, A Milanova 65

First-order type class: class ClassName t where

... t ...

instance Semigroup Sum where

-- (<>) :: Sum -> Sum -> Sum
x <> y = …

Instantiation of a first-order type class:

instance Eq (Tree a) where

-- (==) :: (Tree a) -> (Tree a) -> Bool
Leaf == Leaf = True
…

65

Programming in Haskell, A Milanova 66

Higher-order type class: class ClassName f where

… f a … f b …

instance Functor [] where

fmap :: (a -> b) -> [a] -> [b]

instance Foldable NL where

foldMap :: Monoid m => (a -> m) -> NL a -> m

Instantiation of a higher-order type class:

66

Monad

Programming in Haskell, A Milanova 67

And now, all we’ve been waiting for!!!

The Monad type class!

main :: IO ()
main = do
putStrLn “What is your name?”
inpStr <- getLine
putStrLn $ “Welcome to Haskell, “ ++ inpStr ++ “!”
return ()

Well, IO is an instance of the Monad type class.

67

Monad

Programming in Haskell, A Milanova 68

class Monad m where
-- | Sequentially compose two actions, passing any

value that is produced by first action to the second
(>>=) :: m a -> (a -> m b) -> m b

-- | Inject a value into a monad type
return :: a -> m a

-- More functions that we’ll leave for now.

68

18

Programming in Haskell, A Milanova 69

We’ve been using bind (>>=) quite awhile, but we haven’t
seen it yet because of syntactic sugar

ex :: IO Int
ex = do
x <- doSomething
return x

Is equivalent to

ex = doSomething >>= (\x -> return x)

69

Programming in Haskell, A Milanova 70

70

