
1

Higher-Order Functions;
Recursion Patterns on Lists;
Higher-Order Programming
(slides, where noted, due to
Graham Hutton)

1

Announcements

n We will have Quiz 1 on Friday

n I’ll post PS #3 sometimes after class

Programming in Haskell, A Milanova 2

2

Outline

n Higher-order functions
n Recursion patterns on lists

n map, filter and fold
n Function composition and partial application
n “Wholemeal” programming
n Other useful higher-order Prelude functions

3Programming in Haskell, A Milanova

3

Higher-Order Functions

A function is called higher-order if it takes a function as an
argument or returns a function as a result

twice :: (a ® a) ® a ® a

twice f x = f (f x)

twice is higher-order because it
takes a function as its first argument.

Programming in Haskell, slide due to G. Hutton 4

4

2

Why Are They Useful?

! Common programming idioms can be encoded as
functions within the language itself

! Domain specific languages can be defined as
collections of higher-order functions

! Algebraic properties of higher-order functions can be
used to reason about programs

Programming in Haskell, slide due to G. Hutton 5

5

Things to Do with a List

Programming in Haskell, A Milanova 6

! Run some function on every element of the list

! “Filter” according to a predicate: keep only certain
elements of the list, filter out rest

! “Reduce” a list into a value in some way, e.g., find
maximal value, sum, product, etc.

! Other?

6

The Map Function

The higher-order library function called map applies a
function to every element of a list

map ::

For example:

> map (+1) [1,3,5,7]

[2,4,6,8]

Programming in Haskell, slide due to G. Hutton 7

7

[e1, e2, e3, … en]

[r1, r2, r3, … rn]

There is a build-in function map in Prelude
8

f fff

> map f xs

Programming in Haskell, A Milanova

8

3

Alternatively, for the purposes of proofs, the map
function can also be defined using recursion:

The map function can be defined in a particularly
simple manner using a list comprehension:

map f xs = [f x | x ¬ xs]

map f [] = []

map f (x:xs) = f x : map f xs

Programming in Haskell, slide due to G. Hutton 9

9

The Filter Function

The higher-order library function filter selects every element
from a list that satisfies a predicate

filter ::

For example:

> filter even [1..10]

[2,4,6,8,10]

Programming in Haskell, slide due to G. Hutton 10

10

Alternatively, it can be defined using recursion:

Filter can be defined using a list comprehension:

filter p xs = [x | x ¬ xs, p x]

filter p [] = []

filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

Programming in Haskell, slide due to G. Hutton 11

11

The Foldr Function

A number of functions on lists can be defined using
the following simple pattern of recursion:

f [] = v

f (x:xs) = x Å f xs

f maps the empty list to some value v, and any non-empty list to
some function Å applied to its head and f of its tail.

Programming in Haskell, slide due to G. Hutton 12

12

4

[x1 , … xn-1 , xn] v
[x1 , … xn-1] res1

…

[x1] resn-1

resn

13

f [] = v

f (x:xs) = x Å f xs

13

For example:

sum [] = 0

sum (x:xs) = x + sum xs

and [] = True

and (x:xs) = x && and xs

product [] = 1

product (x:xs) = x * product xs

v = 0

Å = +

v = 1

Å = *

v = True

Å = &&

Programming in Haskell, slide due to G. Hutton 14

14

The higher-order library function foldr (fold right)
encapsulates this simple pattern of recursion, with the
function Å and the value v as arguments.

For example: sum xs = foldr (+) 0 xs

product xs = foldr (*) 1 xs

or xs = foldr (||) False xs

and xs = foldr (&&) True xs

Programming in Haskell, slide due to G. Hutton 15

15

Foldr itself can be defined using recursion:

foldr ::

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

However, it is best to think of foldr non-recursively, as
simultaneously replacing each (:) in a list by a given
function, and [] by a given value.

Programming in Haskell, slide due to G. Hutton 16

16

5

sum [1,2,3]

foldr (+) 0 [1,2,3]
=

foldr (+) 0 (1:(2:(3:[])))
=

1+(2+(3+0))
=

6
=

For example:

Replace each (:)
by (+) and [] by 0.

Programming in Haskell, slide due to G. Hutton 17

17

product [1,2,3]

foldr (*) 1 [1,2,3]
=

foldr (*) 1 (1:(2:(3:[])))
=

1*(2*(3*1))
=

6
=

For example:

Replace each (:)
by (*) and [] by 1.

Programming in Haskell, slide due to G. Hutton 18

18

Other Foldr Examples

Even though foldr encapsulates a simple pattern of
recursion, it can be used to define many more functions
than might first be expected.

Recall the length function:

length :: [a] ® Int

length [] = 0

length (_:xs) = 1 + length xs

Programming in Haskell, slide due to G. Hutton 19

19

length [1,2,3]

length (1:(2:(3:[])))
=

1+(1+(1+0))
=

3
=

Hence, we have:

length xs = foldr (_ n ® 1+n) 0 xs

Replace each (:) by
_ n -> 1+n and [] by 0.

For example:

Programming in Haskell, modified from a slide due to G.
Hutton 20

20

6

Now recall the reverse function:

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

reverse [1,2,3]

reverse (1:(2:(3:[])))
=

(([] ++ [3]) ++ [2]) ++ [1]
=

[3,2,1]
=

For example:
Replace each (:) by

\x xs ® xs ++ [x]
and [] by [].

Programming in Haskell, slide due to G. Hutton 21

21

Hence, we have:

reverse ls = foldr (\x xs ® xs ++ [x]) [] ls

Finally, we note that the append function (++) has a
particularly compact definition using foldr:

xs ++ ys = foldr (:) ys xs Replace each (:) by
(:) and [] by ys.

Programming in Haskell, slide due to G. Hutton 22

22

Why Is Foldr Useful?

! Some recursive functions on lists, such as sum, are
simpler to define using foldr

! Properties of functions defined using foldr can be proved
using algebraic properties of foldr, such as fusion and
the banana split rule

! Advanced program optimizations can be simpler if foldr
is used in place of explicit recursion

Programming in Haskell, slide due to G. Hutton 23

23

Exercises

Programming in Haskell, A Milanova 24

The following data type represents arbitrarily nested lists:

data NL a = Atom a

| List [NL a]

> a = Atom 1
> x = List [Atom 1, Atom 2, Atom 3]
> atomcount x
3

> y = List [x]
> z = List [List [List [Atom 1]]]

24

7

Exercises

Programming in Haskell, A Milanova 25

Write atomcount :: Num p => NL a -> p to count
number of atoms in a nested list. Use map and foldr.

data NL a = Atom a

| List [NL a]

25

Exercises

Programming in Haskell, A Milanova 26

Write flatten :: NL a -> [a] to flatten a nested list.
Use map and foldr. E.g.,

data NL a = Atom a

| List [NL a]

> flatten (List [Atom 0, List [List [Atom 1]]])

[0,1]

Do you see a common pattern here?

26

The foldl Function

Programming in Haskell, A Milanova 27

foldl “folds” the list, like foldr does, but from left to right:

f v (x:xs) = f (v Å x) xs

f v [] = v

f takes a value v and a list, as well as an implicit third argument Å.
A non-empty list maps to f applied on 2 arguments:

arg1 is v Å head-of-list and arg2 is tail-of-list.
f applied on the empty list passes back “accumulated” value v.

27

foldl

v [x1 , x2 , x3 , … xn]
v1 [x2 , x3 , … xn]

v2 [x3 , … xn]
…

vn-1 [xn]
vn []

28

foldl Å v [x1,x2,x3] = ((v Å x1) Å x2) Å x3

28

8

sum [1,2,3]

foldl (+) 0 [1,2,3]
=

foldl (+) 0 (1:(2:(3:[])))
=

(((0+1)+2)+3)
=

6
=

For example:

We cannot replace each (:)
by (+) as we did with foldr.

Programming in Haskell, modified from a slide due to G.
Hutton 29

29

foldl (-) 0 [1,2,3]

foldl (-) 0 (1:(2:(3:[])))
=

(((0-1)-2)-3)
=

-6
=

For example:

Programming in Haskell, modified from a slide due to G.
Hutton 30

30

Other Foldl Examples

length’ :: [a] ® Int

length’ xs = foldl ? ? xs

Programming in Haskell, A Milanova

length’ xs = foldl (\n _ ® 1+n) 0 xs

length’ xs = foldr (_ n ® 1+n) 0 xs

versus:

31

31

Other Foldl Examples

reverse’ :: [a] ® Int

reverse’ (x:xs) = reverse’ xs ++ [x]

Programming in Haskell, A Milanova

reverse’ xs = foldl (\v el ® [el]++v) [] xs

reverse’ xs = foldr (\el v ® v++[el]) [] xs

versus

Note: use foldl’ from Data.List.
32

32

9

foldl vs. foldr vs. foldl’

Programming in Haskell, A Milanova 33

Prelude Data.List> :set +s
Prelude Data.List> foldl (+) 0 [0..1000000]
500000500000
(0.23 secs, 161,298,112 bytes)

Prelude Data.List> foldr (+) 0 [0..1000000]
500000500000
(0.17 secs, 161,588,432 bytes)

Prelude Data.List> foldl' (+) 0 [0..1000000]
500000500000
(0.05 secs, 88,071,320 bytes)

Why?

33

Outline

n Higher-order functions
n Recursion patterns

n map, filter and fold
n Function composition and partial application
n “Wholemeal” programming
n Other useful higher-order prelude functions

34Programming in Haskell, A. Milanova

34

Composition

Can you write a function that has the following type:

? :: (b ® c) ® (a ® b) ® (a ® c)

foo :: (b ® c) ® (a ® b) ® (a ® c)

foo f g = \x -> f (g x)

35

35

The library function (.) returns the composition of two
functions as a single function.

(.) :: (b ® c) ® (a ® b) ® (a ® c)

f . g = \x ® f (g x)

For example:

odd n :: Int ® Bool

odd n = not (even n)

Programming in Haskell, modified from a slide due to G.
Hutton

odd’ :: Int ® Bool

odd’ = not . even

f (g (h (i (j (k x))))) == (f.g.h.i.j.k) x

36

36

10

Why parentheses stay around b ® c and a ® b but
disappear around a ® c?

> :t (.)

(b ® c) ® (a ® b) ® a ® c

Programming in Haskell, A Milanova

Two versions of foo actually:

foo :: (b ® c) ® (a ® b) ® (a ® c)

foo f g = \x -> f (g x)

foo f g x = f (g x)

37

37

Partial Application

Programming in Haskell, A Milanova 38

Partial application is common in Haskell:

foo f g x = f (g x)

compFandG = foo f g

Other related terms for this style are eta-
reduction/expansion, pointfree programming style.

38

Going back to some definitions we saw earlier:

Programming in Haskell, A Milanova

Haskell’s way is to use higher-order functions:

length xs = foldr (_ n ® 1+n) 0 xs

length = foldr (_ n ® 1+n) 0

We define length as partial
application of foldr. 39

39

“Wholemeal” Programming

Programming in Haskell, A Milanova 40

! Haskell’s way

! Think in terms of whole lists instead of individual indices

! Use partial application and composition to express
complex computations in a compact way

40

11

Programming in Haskell, A Milanova 41

What does foo do? What issues do you see?

foo :: [Int]->Int
foo [] = 0
foo (x:xs)

| x `mod` 3 == 0 = x^3 + foo xs
| otherwise = foo xs

And Haskell’s way is…

cube x = x^3
div3 x = x `mod` 3 == 0
foo’ = foldr (+) 0 . map cube . filter div3

41

Programming in Haskell, A Milanova 42

Some notes:
! Fusion law for map:

! Can you express a general list comprehension
in terms of map and filter?

map f . map g = map (f.g)

[f x | x <- xs, p x]

42

Programming in Haskell, A Milanova 43

Some notes:

! changes order of
operations and avoids parentheses. E.g.,
($) :: (a -> b) -> a -> b

foo’ xs = sum (map cube (filter div3 xs))

foo’ xs = sum $ map cube $ filter div3 xs

43

Programming in Haskell, A Milanova 44

Write inner product in a pointfree style.

E.g., following John Backus’s definition in FP:
def IP = (Insert +) (ApplyToAll *) Transpose

ip [[x1,x2,...,xn],[y1,y2,...,yn]] ==
x1*y1 + x2*y2 + … xn*yn

Exercise

44

12

Programming in Haskell, A Milanova; example due to
Brent Yorgey found on haskell.org 45

Notes:

Pointfree is NOT always a good thing...
lambdabot in the #haskell IRC channel has a command @pl
for turning functions into equivalent pointfree expressions.
Here’s an example:

Simplicity and readability!!!

@pl \f g x y -> f (x ++ g x) (g y)
join . ((flip . ((.) .)) .) . (. ap (++)) . (.)

45

Outline

n Higher-order functions
n Recursion patterns

n map, filter and fold
n Function composition and partial application
n “Wholemeal” programming
n Useful higher-order Prelude functions

46Programming in Haskell, A Milanova

46

The library function all decides if every element of a list
satisfies a given predicate.

all :: (a ® Bool) ® [a] ® Bool

all p xs = and [p x | x ¬ xs]

For example:

> all even [2,4,6,8,10]

?

Programming in Haskell, slide due to G. Hutton 47

47

Dually, the library function any decides if at least
one element of a list satisfies a predicate.

any :: (a ® Bool) ® [a] ® Bool

any p xs = or [p x | x ¬ xs]

For example:

> any (== ’ ’) "abc def"

?

Programming in Haskell, slide due to G. Hutton 48

48

13

The library function takeWhile selects elements from a list
while a predicate holds of all the elements.

takeWhile :: (a ® Bool) ® [a] ® [a]

takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs

| otherwise = []

For example:

> takeWhile (/= ’ ’) "abc def"

?
49Programming in Haskell, slide due to G. Hutton

49

Dually, the function dropWhile removes elements while a
predicate holds of all the elements.

dropWhile :: (a ® Bool) ® [a] ® [a]

dropWhile p [] = []
dropWhile p (x:xs)

| p x = dropWhile p xs

| otherwise = x:xs

For example:

> dropWhile (== ’ ’) " abc"

?
50Programming in Haskell, slide due to G. Hutton

50

The function iterate generates an infinite list by applying a
function f repeatedly starting from an initial value x:

iterate :: (a ® a) ® a ® [a]

iterate f x = x : iterate f (f x)

For example:
> take 10 $ iterate (+1) 0
?

iterate f x == [x, f x, f (f x), f (f (f x)) …]

51

51

52

Newton’s method for finding positive sqrt(x):

root :: Float
root x = rootiter x 1

rootiter :: Float -> Float -> Float
rootiter x y

| satisfactory x y = y
| otherwise rootiter x (improve x y)

satisfactory x y = abs (y * y - x) < 0.01

improve x y = (y + x/y) / 2

Exercise

52

14

Exercises

(2) Redefine map f and filter p using foldr.

(1) Express the comprehension [f x | x ¬ xs, p x] using
the functions map and filter.

53Programming in Haskell, slide due to G. Hutton

53

Exercises

Programming in Haskell, A Milanova 54

(3) Voting. Write a program in that determines the winner
of a vote. E.g., in the list of votes below 5 wins:

votes = [Int]

votes = [1,2,5,3,1,2,5,6,6,5,5,5,5,4]

count :: Eq a => a -> [a] -> Int

…
> count 5 votes
6

54

Exercises

Programming in Haskell, A Milanova 55

rdups :: [a] -> [a]

…
> rdups votes
[1,2,5,3,6,4]

55

Moving On To Higher
Grounds

Programming in Haskell, A Milanova 56

In Haskell we recognize and generalize patterns. We
already saw patterns on list structures. How about trees?

data Tree a = Leaf a

| Node (Tree a) (Tree a)

56

15

treeSize and treeSum:

treeSize :: Tree a ® Int

treeSize (Leaf n) = 1

treeSize (Node x y) = treeSize x + treeSize y

treeSum :: Tree a ® Int

treeSum (Leaf n) = n

treeSum (Node x y) = treeSum x + treeSum y

57

57

treeFlatten and treeDepth:

flatten :: Tree a ® [a]

flatten (Leaf n) = [n]

flatten (Node x y) = flatten x ++ flatten y

depth :: Tree a ® Int

depth (Leaf n) = 0

depth (Node x y) = 1 + max (depth x) (depth y)

58

58

Programming in Haskell, A Milanova 59

And more:
atomcount :: NL a ® Int

atomcount (Atom n) = 1

atomcount (List ls) = foldl (+) 0

(map atomcount ls)

flatten’ :: NL a ® [a]

flatten’ (Leaf n) = [n]

flatten’ (List ls) = foldl (++) []

(map flatten’ ls)

data NL a = Atom a

| List [NL a]

59

Programming in Haskell, A Milanova 60

What is the pattern?

§ Pattern-match on constructors, Leaf and Node

§ In Leaf case (i.e., base case), do a transformation on
the a-type value

§ In Node case, recurse over each subtree

§ Combine results

60

16

Programming in Haskell, A Milanova 61

Generalize! Note: this is not real Haskell code.

foldMap :: (a -> b) -> c -> b

foldMap :: (a -> b) -> Tree a -> b
foldMap f (Leaf n) = f n -- transform
foldMap f (Node l r) = foldMap f l <> -- combine

foldMap f r

foldMap sketch for Tree a datatype:

61

Programming in Haskell, A Milanova 62

Generalize! Note: this is not real Haskell code.

foldMap :: (a -> b) -> c -> b

foldMap :: (a -> b) -> NL a -> b
foldMap f (Atom n) = f n -- transform
foldMap f (List ls) = foldl <> empty

(map (foldMap f) ls)

Definition of foldMap for NL a datatype:

62

Programming in Haskell, A Milanova 63

Result type b cannot be any type. It must have well-
defined <> operation and mempty value! That is, b must
be a Monoid type.

foldMap :: (a -> b) -> c -> b

foldMap :: (a -> b) -> NL a -> b
foldMap f (Atom n) = f n -- transform
foldMap f (List ls) = foldl <> mempty

(map (foldMap f) ls)

63

Programming in Haskell, A Milanova 64

Magna

Semigroup

Monoid

Group

In Mathematics and in
Haskell

class Semigroup a where

(<>) :: a -> a -> a

class Semigroup a => Monoid a where

mempty :: a

More on Semigroup and Monoid type classes next week!

64

