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Announcements

n We will have Quiz 1 on Friday

n I’ll post PS #3 sometimes after class
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Outline

n Higher-order functions
n Recursion patterns on lists

n map, filter and fold
n Function composition and partial application
n “Wholemeal” programming
n Other useful higher-order Prelude functions
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Higher-Order Functions

A function is called higher-order if it takes a function as an 
argument or returns a function as a result

twice :: (a ® a) ® a ® a

twice f x = f (f x)

twice is higher-order because it
takes a function as its first argument.
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Why Are They Useful?

! Common programming idioms can be encoded as 
functions within the language itself

! Domain specific languages can be defined as 
collections of higher-order functions

! Algebraic properties of higher-order functions can be 
used to reason about programs

Programming in Haskell, slide due to G. Hutton 5

5

Things to Do with a List
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! Run some function on every element of the list

! “Filter” according to a predicate: keep only certain 
elements of the list, filter out rest

! “Reduce” a list into a value in some way, e.g., find 
maximal value, sum, product, etc.

! Other?
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The Map Function

The higher-order library function called map applies a 
function to every element of a list

map ::                   

For example:

> map (+1) [1,3,5,7]

[2,4,6,8]
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[ e1,  e2,  e3, …  en ]

[ r1,  r2,  r3, …  rn ]

There is a build-in function map in Prelude
8

f fff

> map f xs
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Alternatively, for the purposes of proofs, the map 
function can also be defined using recursion: 

The map function can be defined in a particularly 
simple manner using a list comprehension:

map f xs = [f x | x ¬ xs]

map f []     = []

map f (x:xs) = f x : map f xs
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The Filter Function

The higher-order library function filter selects every element 
from a list that satisfies a predicate

filter ::                          

For example:

> filter even [1..10]

[2,4,6,8,10]
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Alternatively, it can be defined using recursion:

Filter can be defined using a list comprehension:

filter p xs = [x | x ¬ xs, p x]

filter p [] = []

filter p (x:xs)

| p x       = x : filter p xs

| otherwise = filter p xs
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The Foldr Function

A number of functions on lists can be defined using 
the following simple pattern of recursion:

f []     = v

f (x:xs) = x Å f xs

f maps the empty list to some value v, and any non-empty list to 
some function Å applied to its head and f of its tail.
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[    x1 ,   …    xn-1 ,    xn ]     v
[    x1 ,   …    xn-1 ]  res1

…

[    x1 ]   resn-1

resn

13

f []     = v

f (x:xs) = x Å f xs
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For example:

sum []     = 0

sum (x:xs) = x + sum xs

and []     = True

and (x:xs) = x && and xs

product []     = 1

product (x:xs) = x * product xs

v = 0

Å = +

v = 1

Å = *

v = True

Å = &&
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The higher-order library function foldr (fold right) 
encapsulates this simple pattern of recursion, with the 
function Å and the value v as arguments.

For example: sum xs = foldr (+) 0 xs

product xs = foldr (*) 1 xs

or xs = foldr (||) False xs

and xs = foldr (&&) True xs
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Foldr itself can be defined using recursion:

foldr ::

foldr f v []     = v

foldr f v (x:xs) = f x (foldr f v xs)

However, it is best to think of foldr non-recursively, as 
simultaneously replacing each (:) in a list by a given 
function, and [] by a given value.
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sum [1,2,3]

foldr (+) 0 [1,2,3]
=

foldr (+) 0 (1:(2:(3:[])))
=

1+(2+(3+0))
=

6
=

For example:

Replace each (:)
by (+) and [] by 0.
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product [1,2,3]

foldr (*) 1 [1,2,3]
=

foldr (*) 1 (1:(2:(3:[])))
=

1*(2*(3*1))
=

6
=

For example:

Replace each (:)
by (*) and [] by 1.
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Other Foldr Examples

Even though foldr encapsulates a simple pattern of 
recursion, it can be used to define many more functions 
than might first be expected.

Recall the length function:

length :: [a] ® Int

length []     = 0

length (_:xs) = 1 + length xs
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length [1,2,3]

length (1:(2:(3:[])))
=

1+(1+(1+0))
=

3
=

Hence, we have:

length xs = foldr (\_ n ® 1+n) 0 xs

Replace each (:) by 
\_ n -> 1+n and [] by 0.

For example:

Programming in Haskell, modified from a slide due to G. 
Hutton 20
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Now recall the reverse function:

reverse []     = []

reverse (x:xs) = reverse xs ++ [x]

reverse [1,2,3]

reverse (1:(2:(3:[])))
=

(([] ++ [3]) ++ [2]) ++ [1]
=

[3,2,1]
=

For example:
Replace each (:) by 

\x xs ® xs ++ [x] 
and [] by [].
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Hence, we have:

reverse ls = foldr (\x xs ® xs ++ [x]) [] ls

Finally, we note that the append function (++) has a 
particularly compact definition using foldr:

xs ++ ys = foldr (:) ys xs Replace each (:) by 
(:) and [] by ys.
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Why Is Foldr Useful?

! Some recursive functions on lists, such as sum, are 
simpler to define using foldr

! Properties of functions defined using foldr can be proved 
using algebraic properties of foldr, such as fusion and 
the banana split rule

! Advanced program optimizations can be simpler if foldr
is used in place of explicit recursion
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Exercises
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The following data type represents arbitrarily nested lists:

data NL a = Atom a

| List [NL a]

> a = Atom 1
> x = List [Atom 1, Atom 2, Atom 3] 
> atomcount x
3

> y = List [x]
> z = List [ List [ List [Atom 1] ] ]

24
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Exercises
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Write atomcount :: Num p => NL a -> p to count 
number of atoms in a nested list. Use map and foldr.

data NL a = Atom a

| List [NL a]

25

Exercises
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Write flatten :: NL a -> [a] to flatten a nested list. 
Use map and foldr. E.g., 

data NL a = Atom a

| List [NL a]

> flatten (List [Atom 0, List [List [Atom 1]]])

[0,1]

Do you see a common pattern here?
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The foldl Function
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foldl “folds” the list, like foldr does, but from left to right:

f v (x:xs) = f (v Å x) xs

f v []     = v

f takes a value v and a list, as well as an implicit third argument Å.
A non-empty list maps to f applied on 2 arguments: 

arg1 is v Å head-of-list and arg2 is tail-of-list. 
f applied on the empty list passes back “accumulated” value v.

27

foldl

v    [    x1 ,      x2 ,    x3 ,   …     xn ]
v1 [  x2 ,     x3 ,   …     xn ]

v2 [ x3 ,   …     xn ]
…

vn-1 [  xn ]
vn [    ]

28

foldl Å v [x1,x2,x3] = ((v Å x1) Å x2) Å x3  

28
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sum [1,2,3]

foldl (+) 0 [1,2,3]
=

foldl (+) 0 (1:(2:(3:[])))
=

(((0+1)+2)+3)
=

6
=

For example:

We cannot replace each (:)
by (+) as we did with foldr.

Programming in Haskell, modified from a slide due to G. 
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foldl (-) 0 [1,2,3]

foldl (-) 0 (1:(2:(3:[])))
=

(((0-1)-2)-3)
=

-6
=

For example:

Programming in Haskell, modified from a slide due to G. 
Hutton 30
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Other Foldl Examples

length’ :: [a] ® Int

length’ xs = foldl ?  ?  xs
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length’ xs = foldl (\n _ ® 1+n) 0 xs

length’ xs = foldr (\_ n ® 1+n) 0 xs

versus:

31
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Other Foldl Examples

reverse’ :: [a] ® Int

reverse’ (x:xs) = reverse’ xs ++ [x]
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reverse’ xs = foldl (\v el ® [el]++v) [] xs

reverse’ xs = foldr (\el v ® v++[el]) [] xs

versus

Note: use foldl’ from Data.List. 
32

32



9

foldl vs. foldr vs. foldl’
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Prelude Data.List> :set +s
Prelude Data.List> foldl (+) 0 [0..1000000]
500000500000
(0.23 secs, 161,298,112 bytes)

Prelude Data.List> foldr (+) 0 [0..1000000]
500000500000
(0.17 secs, 161,588,432 bytes)

Prelude Data.List> foldl' (+) 0 [0..1000000]
500000500000
(0.05 secs, 88,071,320 bytes)

Why?

33

Outline

n Higher-order functions
n Recursion patterns

n map, filter and fold
n Function composition and partial application
n “Wholemeal” programming
n Other useful higher-order prelude functions
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Composition

Can you write a function that has the following type:

? :: (b ® c) ® (a ® b) ® (a ® c)

foo :: (b ® c) ® (a ® b) ® (a ® c)

foo f g = \x -> f (g x)

35
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The library function (.) returns the composition of two 
functions as a single function.

(.) :: (b ® c) ® (a ® b) ® (a ® c)

f . g = \x ® f (g x)

For example:

odd n :: Int ® Bool

odd n = not (even n)

Programming in Haskell, modified from a slide due to G. 
Hutton

odd’ :: Int ® Bool

odd’ = not . even

f (g (h (i (j (k x))))) == (f.g.h.i.j.k) x

36
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Why parentheses stay around b ® c and a ® b but 
disappear around a ® c? 

> :t (.)

(b ® c) ® (a ® b) ® a ® c

Programming in Haskell, A Milanova

Two versions of foo actually: 

foo :: (b ® c) ® (a ® b) ® (a ® c)

foo f g = \x -> f (g x)

foo f g x = f (g x)

37
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Partial Application
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Partial application is common in Haskell:  

foo f g x = f (g x)

compFandG = foo f g

Other related terms for this style are eta-
reduction/expansion, pointfree programming style.

38

Going back to some definitions we saw earlier:
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Haskell’s way is to use higher-order functions: 

length xs = foldr (\_ n ® 1+n) 0 xs

length = foldr (\_ n ® 1+n) 0

We define length as partial 
application of foldr. 39

39

“Wholemeal” Programming
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! Haskell’s way

! Think in terms of whole lists instead of individual indices

! Use partial application and composition to express 
complex computations in a compact way

40
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What does foo do? What issues do you see?

foo :: [Int]->Int
foo [] = 0
foo (x:xs) 

| x `mod` 3 == 0 = x^3 + foo xs
| otherwise = foo xs

And Haskell’s way is…

cube x = x^3
div3 x = x `mod` 3 == 0
foo’ = foldr (+) 0 . map cube . filter div3 

41
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Some notes:
! Fusion law for map: 

! Can you express a general list comprehension 
in terms of map and filter? 

map f . map g = map (f.g)

[ f x | x <- xs, p x ]

42
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Some notes:

! changes order of 
operations and avoids parentheses. E.g.,
($) :: (a -> b) -> a -> b

foo’ xs = sum (map cube (filter div3 xs))

foo’ xs = sum $ map cube $ filter div3 xs

43
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Write inner product in a pointfree style. 

E.g., following John Backus’s definition in FP:
def IP = (Insert +) (ApplyToAll *) Transpose

ip [[x1,x2,...,xn],[y1,y2,...,yn]] == 
x1*y1 + x2*y2 + … xn*yn

Exercise

44
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Programming in Haskell, A Milanova; example due to 
Brent Yorgey found on haskell.org 45

Notes:

Pointfree is NOT always a good thing... 
lambdabot in the #haskell IRC channel has a command @pl 
for turning functions into equivalent pointfree expressions. 
Here’s an example:

Simplicity and readability!!!

@pl \f g x y -> f (x ++ g x) (g y) 
join . ((flip . ((.) .)) .) . (. ap (++)) . (.)

45

Outline

n Higher-order functions
n Recursion patterns

n map, filter and fold
n Function composition and partial application
n “Wholemeal” programming
n Useful higher-order Prelude functions
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The library function all decides if every element of a list 
satisfies a given predicate.

all :: (a ® Bool) ® [a] ® Bool

all p xs = and [p x | x ¬ xs]

For example:

> all even [2,4,6,8,10]

?
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Dually, the library function any decides if at least
one element of a list satisfies a predicate.

any :: (a ® Bool) ® [a] ® Bool

any p xs = or [p x | x ¬ xs]

For example:

> any (== ’ ’) "abc def"

?

Programming in Haskell, slide due to G. Hutton 48
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The library function takeWhile selects elements from a list 
while a predicate holds of all the elements.

takeWhile :: (a ® Bool) ® [a] ® [a]

takeWhile p [] = []
takeWhile p (x:xs)

| p x       = x : takeWhile p xs

| otherwise = []

For example:

> takeWhile (/= ’ ’) "abc def"

?
49Programming in Haskell, slide due to G. Hutton
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Dually, the function dropWhile removes elements while a 
predicate holds of all the elements.

dropWhile :: (a ® Bool) ® [a] ® [a]

dropWhile p [] = []
dropWhile p (x:xs)

| p x       = dropWhile p xs

| otherwise = x:xs

For example:

> dropWhile (== ’ ’) "   abc"

?
50Programming in Haskell, slide due to G. Hutton
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The function iterate generates an infinite list by applying a 
function f repeatedly starting from an initial value x:

iterate :: (a ® a) ® a ® [a]

iterate f x = x : iterate f (f x) 

For example:
> take 10 $ iterate (+1) 0
?

iterate f x == [x, f x, f (f x), f (f (f x)) … ]

51
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Newton’s method for finding positive sqrt(x): 

root :: Float
root x = rootiter x 1

rootiter :: Float -> Float -> Float
rootiter x y 

| satisfactory x y = y
| otherwise rootiter x (improve x y)

satisfactory x y = abs (y * y - x) < 0.01

improve x y = (y + x/y) / 2

Exercise

52



14

Exercises

(2) Redefine map f and filter p using foldr.

(1) Express the comprehension [f x | x ¬ xs, p x] using 
the functions map and filter.

53Programming in Haskell, slide due to G. Hutton
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Exercises
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(3) Voting. Write a program in that determines the winner 
of a vote. E.g., in the list of votes below 5 wins:

votes = [Int]

votes = [1,2,5,3,1,2,5,6,6,5,5,5,5,4]

count :: Eq a => a -> [a] -> Int

…
> count 5 votes
6

54

Exercises
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rdups :: [a] -> [a]

…
> rdups votes
[1,2,5,3,6,4]

55

Moving On To Higher 
Grounds
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In Haskell we recognize and generalize patterns. We 
already saw patterns on list structures. How about trees?

data Tree a = Leaf a

| Node (Tree a) (Tree a) 

56
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treeSize and treeSum:

treeSize :: Tree a ® Int

treeSize (Leaf n)   = 1

treeSize (Node x y) = treeSize x + treeSize y

treeSum :: Tree a ® Int

treeSum (Leaf n)   = n

treeSum (Node x y) = treeSum x + treeSum y

57
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treeFlatten and treeDepth:

flatten :: Tree a ® [a]

flatten (Leaf n)   = [n]

flatten (Node x y) = flatten x ++ flatten y

depth :: Tree a ® Int

depth (Leaf n)   = 0

depth (Node x y) = 1 + max (depth x) (depth y)

58

58
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And more:
atomcount :: NL a ® Int

atomcount (Atom n)   = 1

atomcount (List ls) = foldl (+) 0 

(map atomcount ls) 

flatten’ :: NL a ® [a]

flatten’ (Leaf n)   = [n]

flatten’ (List ls) = foldl (++) [] 

(map flatten’ ls)

data NL a = Atom a

| List [NL a]

59
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What is the pattern?

§ Pattern-match on constructors, Leaf and Node

§ In Leaf case (i.e., base case), do a transformation on 
the a-type value

§ In Node case, recurse over each subtree

§ Combine results

60
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Generalize! Note: this is not real Haskell code. 

foldMap :: (a -> b) -> c -> b

foldMap :: (a -> b) -> Tree a -> b
foldMap f (Leaf n) = f n -- transform
foldMap f (Node l r) = foldMap f l <> -- combine

foldMap f r   

foldMap sketch for Tree a datatype: 

61
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Generalize! Note: this is not real Haskell code. 

foldMap :: (a -> b) -> c -> b

foldMap :: (a -> b) -> NL a -> b
foldMap f (Atom n) = f n -- transform
foldMap f (List ls) = foldl <> empty

(map (foldMap f) ls)   

Definition of foldMap for NL a datatype: 

62
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Result type b cannot be any type. It must have well-
defined <> operation and mempty value! That is, b must 
be a Monoid type.

foldMap :: (a -> b) -> c -> b

foldMap :: (a -> b) -> NL a -> b
foldMap f (Atom n) = f n -- transform
foldMap f (List ls) = foldl <> mempty

(map (foldMap f) ls)   

63
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Magna

Semigroup

Monoid

Group

In Mathematics and in 
Haskell

class Semigroup a where

(<>) :: a -> a -> a  

class Semigroup a => Monoid a where

mempty :: a

More on Semigroup and Monoid type classes next week! 
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