Higher-Order Functions;
Recursion Patterns on Lists;
Higher-Order Programming

(slides, where noted, due to
ﬁ Graham Hutton)

i Announcements

= We will have Quiz 1 on Friday

= I'll post PS #3 sometimes after class
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‘ Outline

= Higher-order functions

= Recursion patterns on lists
= map, filter and fold

= Function composition and partial application
= “Wholemeal” programming
= Other useful higher-order Prelude functions
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‘ Higher-Order Functions

A function is called higher-order if it takes a function as an
argument or returns a function as a result

twice is higher-order because it
takes a function as its first argument.
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* Why Are They Useful?

Common programming idioms can be encoded as
functions within the language itself

Domain specific languages can be defined as
collections of higher-order functions

Algebraic properties of higher-order functions can be
used to reason about programs
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* Things to Do with a List

Run some function on every element of the list M/g

“Filter” according to a predicate: keep only certain
elements of the list, filter out rest Q&L/"’

“Reduce” a list into a value in some way, e.g., find
maximal value, sum, product, etc. 7[@/4

Other?
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‘ The Map Function

The higher-order library function called map applies a
function to every element of a list

For example:

—
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*
P

[ el, e2, e3, .. en ]

f f f f
L rl, r2, r3, .. rn ]

There is a build-in function map in Prelude
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The map function can be defined in a particularly
simple manner using a list comprehension:

Alternatively, for the purposes of proofs, the map
function can also be defined using recursion:
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* The Filter Function

The higher-order library function filter selects every element
from a list that satisfies a predicate

For example:
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Filter can be defined using a list comprehension:

Alternatively, it can be defined using recursion:
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* The Foldr Function

A number of functions on lists can be defined using
the following simple pattern of recursion:

-—P
=D

CO—

f maps the empty list to some value v, and any non-empty list to
some function @ applied to its head and f of its tail.

Programming in Haskell, slide due to G. Hutton 12

11

12



13
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For example:
V=0
D=+
V=1
@®="
V =True
@ = &&
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The higher-order library function foldr (fold right)
encapsulates this simple pattern of recursion, with the
function @ and the value v as arguments.

For example:
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Foldr itself can be defined using recursion:

However, it is best to think of foldr non-recursively, as
simultaneously replacing each (:) in a list by a given
function, and [] by a given value.
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;w example:

Replace each (:)
by (+) and [] by 0.
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;’ example:

Replace each (:)
by (*) and [] by 1.
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* Other Foldr Examples

Even though foldr encapsulates a simple pattern of
recursion, it can be used to define many more functions
than might first be expected.

Recall the length function:

t@@”‘ X< = foéclr (\elow res— 1+res) 0 xs
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‘ For example:

Hence, we have:
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Replace each (:) by
\_n=->1+nand[] by 0.
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Npw recall the reverse function:

For example:
Replace each (:) by

\X Xs = Xs ++ [X]
and [] by [].
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;ence, we have:

oo el bt

Finally, we note that the append function (++) has a
particularly compact definition using foldr: ==

(:)and [] by ys.
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* Why Is Foldr Useful?

Some recursive functions on lists, such as sum, are
simpler to define using foldr

Properties of functions defined using foldr can be proved
using algebraic properties of foldr, such as fusion and

the banana split rule

Advanced program optimizations can be simpler if foldr
is used in place of explicit recursion
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‘ Exercises

The following data type represents arbitrarily nested lists:

> a = Atom 1 I:‘f 2,37
- X List [Atom 1, Atom 2, Atom 3]

>.afomcount X

3 [ 1,237, [n3]]

Co»y = List [x] LE®%%1J
> bList [ List [ List [Atom 1] ] ]
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o Exercises NN

Write atomcount :: Num p => NL a -> ptocount
number of atoms in a nésted list. Use map and foldr.

ofow coun {Mow x) =1
atoment (LsF [1)=0

, -~ afowencit- X
Qufow Cou uf (Lrs{- (x: KQ)J odoun Coutd- (Ds{-xs)

—
afowcout (How x ) =L
obouncnnt (List xs) = foldr (+) D (map ahoucsut xs)

0t oowcount- Q@ (How x)
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i The foldl Function

foldl “folds” the list, like foldr does, but from left to right:
A_

f takes a value v and a list, as well as an implicit third argument @.
A non-empty list maps to f applied on 2 arguments:
arg1 is v @ head-of-list and arg? is tail-of-list.
f applied on the empty list passes back “accumulated” value v.
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o Exercices RN

Write f1atten :: NL a -> [a] to flatten a nested list.
Use map and foldr. E.g.,

,}lellm (bhow x) = (%7
flaben (Lict w) = Jolde (++) [T (map Flaken Xs)

Do you see a common pattern here?
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i foldl

VoL Xy Xes Xshoe Xn ]
Covi [ Xa, X3, oo X ]

C :V2 [X3/,:>.. Xn ]

Q\YD:L [ ,X”] /)

vo [ ]
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We cannot replace each (:)
by (+) as we did with foldr.
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* Other Foldl Examples
Tength’ xs = foldl (\n _ > 1+n) 0 xs_

versus:
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;w example:

> foldr (=) 0 (1,2.37
1~ (2-(3-0))
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* Other Foldl Examples

reverse’ xs = foldl (\v el - [e1]++) [] xs.
oy

versus

Note: use foldl’ from Data.List.
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* foldl vs. foldr vs. foldl’

L~

Why?
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* Outline

= Higher-order functions

= Recursion patterns
= map, filter and fold

= Function composition and partial application
= “Wholemeal” programming
= Other useful higher-order prelude functions
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* Composition

Can you write a function that has the following type:

34
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The library function (.) returns the composition of two
functions as a single function.

For example:
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Why parentheses stay around b — ¢ and a — b but
disappeararounda — c?

S—

C——

—

Two versions of foo actually:

U X = eXf"
I «fya,/aofz‘o &u‘,})wf‘

u =\x>eqm

—p
—>foo fgx=Ff(gx
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Going back to some definitions we saw earlier:

Haskell's way is to use higher-order functions:

7~
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We define length as partial

application of foldr. 39
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* Partial Application

Partial application is common in Haskell:

S

Other related terms for this style are eta-
reduction/expansion, pointfree programming style.
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i “Wholemeal” Programming

Haskell’'s way

Think in terms of whole lists instead of individual indices

Use partial application and composition to express
complex computations in a compact way

2
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What does foo do? What issues do you see?

And Haskell's way is...

1free fuhdl dl X
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Some notes:

I8) @ S T0) 1A b changes order of

operations and avoids parentheses. E.g.,

= ,J: 3 g x
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Some notes:

Can you express a general list comprehension
in terms of map and filter?
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* Exercise

Write inner product in a pointfree style.

E.g., following John Backus’s definition in FP:
def IP = (Insert +) (ApplyToAll *) Transpose
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Notes:

Pointfree is NOT always a good thing...

lambdabot in the #haskell IRC channel has a command @pl
for turning functions into equivalent pointfree expressions.
Here’'s an example:

Simplicity and readability!!!
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* Outline

= Higher-order functions

= Recursion patterns
= map, filter and fold

= Function composition and partial application
= “Wholemeal” programming
» Useful higher-order Prelude functions
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The library function all decides if every element of a list
satisfies a given predicate.

For example:
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Dually, the library function any decides if at least
one element of a list satisfies a predicate.

For example:
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The library function takeWhile selects elements from a list
while a predicate holds of all the elements.

For example:
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The function iterate generates an infinite list by applying a
function f repeatedly starting from an initial value x:

For example:

+

Dually, the function dropWhile removes elements while a
predicate holds of all the elements.

For example:
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Yo J+ Yo Yo - if

Newton’s method for finding positive sqrt(x):

* Exercise [ (e ¢)

ok X =hed & flle (gt § tferake (upowx) 4
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‘ Exercises

Express the comprehension [f x | x «— xs, p x] using
the functions map and filter.

Redefine map f and filter p using foldr.
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‘ Exercises

Voting. Write a program in that determines the winner
of a vote. E.g., in the list of votes below 5 wins:

= -

Cowmt Vv = f“‘j“«. 0 d%(/{,e‘. [:: V)
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* Exercises

rhups [7 = (7

rdups (xexs) =
K 2 filter (x) (Pelps %3 )
S Sumwarize Voles

[(23),(1,%),(2,1],(22),0(8),(6,5)J
Sutuwaori2e vo#e,s =

Sort [—( Couet v voleﬁ, v ) ’ V<— rehps Voiesj
Willer Votet — Sud & last £ Suwmarize Votes .
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Moving On To Higher

* Grounds

In Haskell we recognize and generalize patterns. We
already saw patterns on list structures. How about trees?

55
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treeSize and treeSum:

57
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treeFlatten and treeDepth:
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And more:
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What is the pattern?

= Pattern-match on constructors, Leaf and Node

= In Leaf case (i.e., base case), do a transformation on
the a-type value

= |n Node case, recurse over each subtree

= Combine results
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Generalize! Note: this is not real Haskell code.

foldMap sketch for Tree a datatype:
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Generalize! Note: this is not real Haskell code.

Definition of foldMap for NL a datatype:
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Result type b cannot be any type. It must have well-
defined <> operation and mempty value! Thatis, b must
be a Monoid type.
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In Mathematics and in
Haskell

Magna

Semigroup

Group

More on Semigroup and Monoid type classes next week!
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