Higher-Order Functions; Recursion Patterns on Lists; Higher-Order Programming (slides, where noted, due to Graham Hutton)

1

3

Outline

- Higher-order functions
- Recursion patterns on lists
 - map, filter and fold
- Function composition and partial application
- "Wholemeal" programming
- Other useful higher-order Prelude functions

Programming in Haskell, A Milanova

3

Announcements

- We will have Quiz 1 on Friday
- I'll post PS #3 sometimes after class

Programming in Haskell, A Milanova

2

Higher-Order Functions

A function is called <u>higher-order</u> if it takes a function as an argument or returns a function as a result

twice :: $(a \rightarrow a) \rightarrow a \rightarrow a$ twice f x = f (f x)

twice is higher-order because it takes a function as its first argument.

Programming in Haskell, slide due to G. Hutton

Why Are They Useful?

- Common programming idioms can be encoded as functions within the language itself
- <u>Domain specific languages</u> can be defined as collections of higher-order functions
- Algebraic properties of higher-order functions can be used to reason about programs

Programming in Haskell, slide due to G. Hutton

5

5

The Map Function

The higher-order library function called \underline{map} applies a function to every element of a list

map ::
$$(a \rightarrow b) \rightarrow [a7 \rightarrow [b7]$$

For example:

Programming in Haskell, slide due to G. Hutton

8

Things to Do with a List

- Run some function on every element of the list
- "Reduce" a list into a value in some way, e.g., find maximal value, sum, product, etc.
- Other?

Programming in Haskell, A Milanova

6

There is a build-in function map in Prelude

Programming in Haskell, A Milanova

The <u>map</u> function can be defined in a particularly simple manner using a list comprehension:

$$map f xs = [f x | x \leftarrow xs]$$

Alternatively, for the purposes of proofs, the map function can also be defined using recursion:

map f [] = []
map f
$$(x:xs)$$
 = f x : map f xs

Programming in Haskell, slide due to G. Hutton

9

Filter can be defined using a list comprehension:

filter p xs =
$$[x \mid x \leftarrow xs, p x]$$

Alternatively, it can be defined using recursion:

Programming in Haskell, slide due to G. Hutton

12

11

L TI

The Filter Function

The higher-order library function <u>filter</u> selects every element from a list that satisfies a predicate

filter ::
$$(a \rightarrow B_{\infty} l) \rightarrow [a] \rightarrow [a]$$

For example:

Programming in Haskell, slide due to G. Hutton

10

12

10

The Foldr Function

A number of functions on lists can be defined using the following simple pattern of recursion:

f maps the empty list to some value v, and any non-empty list to some function \oplus applied to its head and f of its tail.

Programming in Haskell, slide due to G. Hutton

Exercises

Write atomcount :: Num $p \Rightarrow NL$ a $\rightarrow p$ to count number of atoms in a nested list. Use map and foldr.

atom count (list xs) = 1 atom count (list xs) = foldr (+) 0 (map atom count xs)

et ofou Court

Programming in Haskell, A Milanova

QQ (Atour x)

25

The fold! Function

foldl "folds" the list, like foldr does, but from left to right:

$$f v (x:xs) = f (v \oplus x) xs$$
$$f v [] = v$$

f takes a value v and a list, as well as an implicit third argument \oplus . A non-empty list maps to f applied on 2 arguments:

arg1 is $v \oplus$ head-of-list and arg2 is tail-of-list. f applied on the empty list passes back "accumulated" value v.

Programming in Haskell, A Milanova

27

Exercises

Write flatten :: $NL \ a \rightarrow [a]$ to flatten a nested list. Use map and foldr. E.g.,

> flatten (List [Atom 0, List [List [Atom 1]]])
[0,1]

Do you see a common pattern here?

Programming in Haskell, A Milanova

26

26


```
Other FoldI Examples

reverse':: [a] → Int
reverse' (x:xs) = reverse' xs ++ [x]

reverse' xs = foldl (\v el → [el]++v) [] xs

versus

reverse' xs = foldr (\el v → v++[el]) [] xs

Note: use foldl' from Data.List.

Programming in Haskell, A Milanova 32
```


Outline
Higher-order functions
Recursion patterns

map, filter and fold

Function composition and partial application
"Wholemeal" programming
Other useful higher-order prelude functions

Programming in Haskell, A. Milanova

Partial Application

Partial application is common in Haskell:

foo f g x = f (g x)
$$\int_{0}^{\infty} uu x = expr$$

$$compFandG = foo f g$$

Other related terms for this style are etareduction/expansion, pointfree programming style.

Programming in Haskell, A Milanova

38

40

38

Haskell's way

I Think in terms of whole lists instead of individual indices

 Use partial application and composition to express complex computations in a compact way

Programming in Haskell, A Milanova

Haskell A Milanova

Notes:

Pointfree is NOT always a good thing...

lambdabot in the #haskell IRC channel has a command @pl for turning functions into equivalent pointfree expressions. Here's an example:

Simplicity and readability!!!

Programming in Haskell, A Milanova; example due to Brent Yorgey found on haskell.org

4

45

47

The library function <u>all</u> decides if every element of a list satisfies a given predicate.

all ::
$$(a \rightarrow Bool) \rightarrow [a] \rightarrow Bool$$

all p xs = and [p x | x \infty xs]

For example:

> all even [2,4,6,8,10]

Programming in Haskell, slide due to G. Hutton

47

Outline

- Higher-order functions
- Recursion patterns
 - map, filter and fold
- Function composition and partial application
- "Wholemeal" programming
- Useful higher-order Prelude functions

Programming in Haskell, A Milanova

46

48

46

Dually, the library function <u>any</u> decides if at least one element of a list satisfies a predicate.

any ::
$$(a \rightarrow Bool) \rightarrow [a] \rightarrow Bool$$

any p xs = or [p x | x \leftarrow xs]

For example:

Programming in Haskell, slide due to G. Hutton


```
Newton's method for finding positive sqrt(x):

root :: Float
root x = rootiter x 1

rootiter :: Float -> Float -> Float
rootiter x y
| satisfactory x y = y
| otherwise rootiter x (improve x y)

satisfactory x y = abs (y * y - x) < 0.01

improve x y = (y + x/y) / 2

root x = head S filler (Salisbody x) & iterate (improve x) 1

52
```


Exercises

- (1) Express the comprehension [f x | x ← xs, p x] using the functions map and filter.
- (2) Redefine map f and filter p using foldr.

Programming in Haskell, slide due to G. Hutton

53

53

54


```
treeSize and treeSum:
treeSize :: Tree a \rightarrow Int
treeSize (Leaf n) = 1
treeSize (Node x y) = treeSize x + treeSize y
treeSum :: Tree d → Int Num a => Pree a → a
treeSum (Leaf n) = n
treeSum (Node x y) = treeSum x + treeSum y
```


treeFlatten and treeDepth: flatten :: Tree $a \rightarrow [a]$ flatten (Leaf n) = [n]flatten (Node x y) = flatten x ++ flatten y depth :: Tree $a \rightarrow Int$ depth (Leaf n) = 0depth (Node x y) = 1 + max (depth x) (depth y)

58

