Higher-Order Functions;
Recursion Patterns on Lists;
Higher-Order Programming

(slides, where noted, due to
ﬁ Graham Hutton)

i Announcements

= We will have Quiz 1 on Friday

= I'll post PS #3 sometimes after class

Programming in Haskell, A Milanova

‘ Outline

= Higher-order functions

= Recursion patterns on lists
= map, filter and fold

= Function composition and partial application
= “Wholemeal” programming
= Other useful higher-order Prelude functions

Programming in Haskell, A Milanova

‘ Higher-Order Functions

A function is called higher-order if it takes a function as an
argument or returns a function as a result

twice is higher-order because it
takes a function as its first argument.

Programming in Haskell, slide due to G. Hutton

* Why Are They Useful?

Common programming idioms can be encoded as
functions within the language itself

Domain specific languages can be defined as
collections of higher-order functions

Algebraic properties of higher-order functions can be
used to reason about programs

Programming in Haskell, slide due to G. Hutton

* Things to Do with a List

Run some function on every element of the list M/g

“Filter” according to a predicate: keep only certain
elements of the list, filter out rest Q&L/"’

“Reduce” a list into a value in some way, e.g., find
maximal value, sum, product, etc. 7[@/4

Other?

Programming in Haskell, A Milanova 6

‘ The Map Function

The higher-order library function called map applies a
function to every element of a list

For example:

—

Programming in Haskell, slide due to G. Hutton

*
P

[el, e2, e3, .. en]

f f f f
L rl, r2, r3, .. rn]

There is a build-in function map in Prelude

Programming in Haskell, A Milanova 8

The map function can be defined in a particularly
simple manner using a list comprehension:

Alternatively, for the purposes of proofs, the map
function can also be defined using recursion:

Programming in Haskell, slide due to G. Hutton

* The Filter Function

The higher-order library function filter selects every element
from a list that satisfies a predicate

For example:

Programming in Haskell, slide due to G. Hutton 10

10

Filter can be defined using a list comprehension:

Alternatively, it can be defined using recursion:

Programming in Haskell, slide due to G. Hutton

11

* The Foldr Function

A number of functions on lists can be defined using
the following simple pattern of recursion:

-—P
=D

CO—

f maps the empty list to some value v, and any non-empty list to
some function @ applied to its head and f of its tail.

Programming in Haskell, slide due to G. Hutton 12

11

12

13

+

For example:
V=0
D=+
V=1
@®="
V =True
@ = &&

Programming in Haskell, slide due to G. Hutton 14

13

The higher-order library function foldr (fold right)
encapsulates this simple pattern of recursion, with the
function @ and the value v as arguments.

For example:

Programming in Haskell, slide due to G. Hutton 15

14

4

Foldr itself can be defined using recursion:

However, it is best to think of foldr non-recursively, as
simultaneously replacing each (:) in a list by a given
function, and [] by a given value.

Programming in Haskell, slide due to G. Hutton 16

15

16

;w example:

Replace each (:)
by (+) and [] by 0.

Programming in Haskell, slide due to G. Hutton 17

;’ example:

Replace each (:)
by (*) and [] by 1.

Programming in Haskell, slide due to G. Hutton 18

17

* Other Foldr Examples

Even though foldr encapsulates a simple pattern of
recursion, it can be used to define many more functions
than might first be expected.

Recall the length function:

t@@”‘ X< = foéclr (\elow res— 1+res) 0 xs

Programming in Haskell, slide due to G. Hutton 19

18

‘ For example:

Hence, we have:

Programming in Haskell, modified from a slide due to G.
Hutton 20

Replace each (:) by
_n=->1+nand[] by 0.

19

20

Npw recall the reverse function:

For example:
Replace each (:) by

\X Xs = Xs ++ [X]
and [] by [].

Programming in Haskell, slide due to G. Hutton 21

;ence, we have:

oo el bt

Finally, we note that the append function (++) has a
particularly compact definition using foldr: ==

(:)and [] by ys.

Programming in Haskell, slide due to G. Hutton 22

21

* Why Is Foldr Useful?

Some recursive functions on lists, such as sum, are
simpler to define using foldr

Properties of functions defined using foldr can be proved
using algebraic properties of foldr, such as fusion and

the banana split rule

Advanced program optimizations can be simpler if foldr
is used in place of explicit recursion

Programming in Haskell, slide due to G. Hutton 23

23

22

‘ Exercises

The following data type represents arbitrarily nested lists:

> a = Atom 1 I:‘f 2,37
- X List [Atom 1, Atom 2, Atom 3]

>.afomcount X

3 [1,237, [n3]]

Co»y = List [x] LE®%%1J
> bList [List [List [Atom 1]]]
Programming in Haskell, A Milanova [CE ij 73 24

24

o Exercises NN

Write atomcount :: Num p => NL a -> ptocount
number of atoms in a nésted list. Use map and foldr.

ofow coun {Mow x) =1
atoment (LsF [1)=0

, -~ afowencit- X
Qufow Cou uf (Lrs{- (x: KQ)J odoun Coutd- (Ds{-xs)

—
afowcout (How x) =L
obouncnnt (List xs) = foldr (+) D (map ahoucsut xs)

0t oowcount- Q@ (How x)

Programming in Haskell, A Milanova

25

25

i The foldl Function

foldl “folds” the list, like foldr does, but from left to right:
A_

f takes a value v and a list, as well as an implicit third argument @.
A non-empty list maps to f applied on 2 arguments:
arg1 is v @ head-of-list and arg? is tail-of-list.
f applied on the empty list passes back “accumulated” value v.

Programming in Haskell, A Milanova

27

27

o Exercices RN

Write f1atten :: NL a -> [a] to flatten a nested list.
Use map and foldr. E.g.,

,}lellm (bhow x) = (%7
flaben (Lict w) = Jolde (++) [T (map Flaken Xs)

Do you see a common pattern here?

Programming in Haskell, A Milanova 26

26

i foldl

VoL Xy Xes Xshoe Xn]
Covi [Xa, X3, oo X]

C :V2 [X3/,:>.. Xn]

Q\YD:L [,X”] /)

vo []

28

28

We cannot replace each (:)
by (+) as we did with foldr.

Programming in Haskell, modified from a slide due to G.
Hutton 29

29

* Other Foldl Examples
Tength’ xs = foldl (\n _ > 1+n) 0 xs_

versus:

Programming in Haskell, A Milanova 31

31

;w example:

> foldr (=) 0 (1,2.37
1~ (2-(3-0))

Programming in Haskell, modified from a slide due to G.
Hutton 30

30

* Other Foldl Examples

reverse’ xs = foldl (\v el - [e1]++) [] xs.
oy

versus

Note: use foldl’ from Data.List.

Programming in Haskell, A Milanova 32

32

* foldl vs. foldr vs. foldl’

L~

Why?

Programming in Haskell, A Milanova 33

* Outline

= Higher-order functions

= Recursion patterns
= map, filter and fold

= Function composition and partial application
= “Wholemeal” programming
= Other useful higher-order prelude functions

Programming in Haskell, A. Milanova 34

33

* Composition

Can you write a function that has the following type:

34

4

The library function (.) returns the composition of two
functions as a single function.

For example:

Programming in Haskell, modified from a slide due to G.
Hutton 36

36

4

Why parentheses stay around b — ¢ and a — b but
disappeararounda — c?

S—

C——

—

Two versions of foo actually:

U X = eXf"
I «fya,/aofz‘o &u‘,})wf‘

u =\x>eqm

—p
—>foo fgx=Ff(gx

Programming in Haskell, A Milanova

37

4

Going back to some definitions we saw earlier:

Haskell's way is to use higher-order functions:

7~

Programming in Haskell, A Milanova

We define length as partial

application of foldr. 39

39

* Partial Application

Partial application is common in Haskell:

S

Other related terms for this style are eta-
reduction/expansion, pointfree programming style.

Programming in Haskell, A Milanova

38

38

i “Wholemeal” Programming

Haskell’'s way

Think in terms of whole lists instead of individual indices

Use partial application and composition to express
complex computations in a compact way

2

Programming in Haskell, A Milanova

40

40

10

*

What does foo do? What issues do you see?

And Haskell's way is...

1free fuhdl dl X

Programming in’Haskell, A'Milanova

41

+

Some notes:

I8) @ S T0) 1A b changes order of

operations and avoids parentheses. E.g.,

= ,J: 3 g x
Programming in Haskell, A Milanova 43

43

=+

Some notes:

Can you express a general list comprehension
in terms of map and filter?

Programming in Haskell, A Milanova 42

42

* Exercise

Write inner product in a pointfree style.

E.g., following John Backus’s definition in FP:
def IP = (Insert +) (ApplyToAll *) Transpose

Programming in Haskell, A Milanova 44

44

11

+

Notes:

Pointfree is NOT always a good thing...

lambdabot in the #haskell IRC channel has a command @pl
for turning functions into equivalent pointfree expressions.
Here’'s an example:

Simplicity and readability!!!

Programming in Haskell, A Milanova; example due to

Brent Yorgey found on haskell.org 45

* Outline

= Higher-order functions

= Recursion patterns
= map, filter and fold

= Function composition and partial application
= “Wholemeal” programming
» Useful higher-order Prelude functions

Programming in Haskell, A Milanova 46

45

+

The library function all decides if every element of a list
satisfies a given predicate.

For example:

Programming in Haskell, slide due to G. Hutton 47

47

46

+

Dually, the library function any decides if at least
one element of a list satisfies a predicate.

For example:

Programming in Haskell, slide due to G. Hutton 48

48

12

+

The library function takeWhile selects elements from a list
while a predicate holds of all the elements.

For example:

Programming in Haskell, slide due to G. Hutton 49

49

+

The function iterate generates an infinite list by applying a
function f repeatedly starting from an initial value x:

For example:

+

Dually, the function dropWhile removes elements while a
predicate holds of all the elements.

For example:

Programming in Haskell, slide due to G. Hutton 50

50

Yo J+ Yo Yo - if

Newton’s method for finding positive sqrt(x):

* Exercise [(e ¢)

ok X =hed & flle (gt § tferake (upowx) 4

52

13

‘ Exercises

Express the comprehension [f x | x «— xs, p x] using
the functions map and filter.

Redefine map f and filter p using foldr.

Programming in Haskell, slide due to G. Hutton 53

‘ Exercises

Voting. Write a program in that determines the winner
of a vote. E.g., in the list of votes below 5 wins:

= -

Cowmt Vv = f“‘j“«. 0 d%(/{,e‘. [:: V)

Programming in Haskell, A Milanova 54

53

* Exercises

rhups [7 = (7

rdups (xexs) =
K 2 filter (x) (Pelps %3)
S Sumwarize Voles

[(23),(1,%),(2,1],(22),0(8),(6,5)J
Sutuwaori2e vo#e,s =

Sort [—(Couet v voleﬁ, v) ’ V<— rehps Voiesj
Willer Votet — Sud & last £ Suwmarize Votes .

Programming in Haskell, A Milanova

54

Moving On To Higher

* Grounds

In Haskell we recognize and generalize patterns. We
already saw patterns on list structures. How about trees?

55

Programming in Haskell, A Milanova 56

56

14

+

treeSize and treeSum:

57

+

treeFlatten and treeDepth:

58

57

58

And more:

Programming in Haskell, A Milanova

4+

What is the pattern?

= Pattern-match on constructors, Leaf and Node

= In Leaf case (i.e., base case), do a transformation on
the a-type value

= |n Node case, recurse over each subtree

= Combine results

Programming in Haskell, A Milanova

59

60

60

15

+

Generalize! Note: this is not real Haskell code.

foldMap sketch for Tree a datatype:

Programming in Haskell, A Milanova 61

+

Generalize! Note: this is not real Haskell code.

Definition of foldMap for NL a datatype:

Programming in Haskell, A Milanova 62

61

62

Result type b cannot be any type. It must have well-
defined <> operation and mempty value! Thatis, b must
be a Monoid type.

Programming in Haskell, A Milanova 63

In Mathematics and in
Haskell

Magna

Semigroup

Group

More on Semigroup and Monoid type classes next week!

Programming in Haskell, A Milanova 64

63

64

16

