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Set Comprehensions

In mathematics, the comprehension notation can 
be used to construct new sets from old sets.

{x2 |  x Î {1...5}}

The set {1,4,9,16,25} of all numbers x2 such that x is an element of the 
set {1…5}.
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Lists Comprehensions

In Haskell, a similar comprehension notation can 
be used to construct new lists from old lists.

[x^2 | x ¬ [1..5]]

The list [1,4,9,16,25] of all numbers x^2 such that x is an element of 
the list [1..5].
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Note:
! The expression x ¬ [1..5] is called a generator, as it 

states how to generate values for x
! Comprehensions can have multiple generators, 

separated by commas. For example:

! Multiple generators resemble nested loops, with later 
generators as more deeply nested loops whose 
variables change value more frequently

> [(x,y) | x ¬ [1,2,3], y ¬ [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

> [(x,y) | y ¬ [4,5], x ¬ [1,2,3]]
?

5

5

> [(x,y) | y ¬ [4,5], x ¬ [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

x ¬ [1,2,3] is the last generator, so the value of the x 
component of each pair changes most frequently.
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Dependant Generators

Later generators can depend on the variables that are 
introduced by earlier generators.

> [(x,y) | x ¬ [1..3], y ¬ [x..3]]
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Using a dependant generator can you define the library 
function that concatenates a list of lists:

concat :: [[a]] ® [a]

concat xss = [x | xs ¬ xss, x ¬ xs]

For example:
> concat [[1,2,3],[4,5],[6]]

[1,2,3,4,5,6]
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Guards

List comprehensions can use guards to restrict the values 
produced by earlier generators.

[x | x ¬ [1..10], even x]

The list [2,4,6,8,10] of all numbers x such that x is an 
element of the list [1..10] and x is even.

Can you define a function that maps a positive integer to its 
list of factors, e.g., > factors 15

[1,3,5,15]

factors :: Int ® [Int]

factors n = [x | x ¬ [1..n], n `mod` x == 0]
9

9

Using factors, we can define a function that decides if a 
number is prime? E.g., 

prime :: Int ® Bool

prime n = factors n == [1,n]

> prime 15
False

> prime 7
True
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primes :: Int ® [Int]

primes n = [x | x <- [2..n], prime x]

And using prime as guard, we can now define a function 
that returns the list of all primes up to a given limit. E.g.,:

> primes 40

[2,3,5,7,11,13,17,19,23,29,31,37]
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The Zip Function

A useful library function is zip, which maps two lists to a list 
of pairs of their corresponding elements.

zip :: [a] ® [b] ® [(a,b)]

For example:

> zip [’a’,’b’,’c’] [1,2,3,4]

[(’a’,1),(’b’,2),(’c’,3)]
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Using zip we can define a function that returns the list of all 
pairs of adjacent elements from a list:

For example:

pairs :: [a] ® [(a,a)]

pairs xs = zip xs (tail xs)

> pairs [1,2,3,4]

[(1,2),(2,3),(3,4)]
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Using pairs, we can define a function that decides if the 
elements in a list are sorted. For example:

sorted :: Ord a Þ [a] ® Bool

sorted xs = and [x £ y | (x,y) ¬ pairs xs]

> sorted [1,2,3,4]
True

> sorted [1,3,2,4]
False
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Using zip we can define a function that returns the list of all 
positions of a value in a list. For example:

positions :: Eq a Þ a ® [a] ® [Int]

positions x xs =

[i | (x’,i) ¬ zip xs [0..], x == x’]

> positions 0 [1,0,0,1,0,1,1,0]

[1,2,4,7]
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String Comprehensions

A string is a sequence of characters enclosed in double 
quotes.  Internally, however, strings are represented as lists 
of characters

"abc" :: String

Means [’a’, ’b’, ’c’] :: [Char].
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Because strings are just special kinds of lists, any 
polymorphic function that operates on lists can also be 
applied to strings.  For example:

> length "abcde"

5

> take 3 "abcde"

"abc"

> zip "abc" [1,2,3,4]

[(’a’,1),(’b’,2),(’c’,3)]
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Similarly, list comprehensions can also be used to define 
functions on strings, such counting how many times a 
character occurs in a string.

count :: Char ® String ® Int

count x xs = length [x’ | x’ ¬ xs, x == x’]

For example: > count ’s’ "Mississippi"
4
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Exercises

A triple (x,y,z) of positive integers is called 
pythagorean if x2 + y2 = z2.  Using a list 
comprehension, define a function

(1)

pyths :: Int ® [(Int,Int,Int)]

that maps an integer n to all such triples with 
components in [1..n].  For example:

> pyths 5

[(3,4,5),(4,3,5)]
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A positive integer is perfect if it equals the sum of all of 
its factors, excluding the number itself.  Using a list 
comprehension, define a function

(2)

perfects :: Int ® [Int]

that returns the list of all perfect numbers up to a given 
limit.  For example:

> perfects 500

[6,28,496]
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(xsi * ysi )å
i = 0

n-1

Using a list comprehension, define a function that 
returns the inner product of two lists.

The inner product of two lists of integers xs and ys of 
length n is given by the sum of the products of the 
corresponding integers:

(3)
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Type Declarations

In Haskell, a new name for an existing type can be defined 
using a type declaration.

type String = [Char]

String is a synonym, also called type alias, for the type [Char].
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Type declarations can be used to make other types easier to 
read.  For example, given

origin :: Pos

origin = (0,0)

left :: Pos ® Pos

left (x,y) = (x-1,y)

type Pos = (Int,Int)

we can define:
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Like function definitions, type declarations can also have 
parameters.  For example, given

type Pair a = (a,a)

we can define:

mult :: Pair Int ® Int

mult (m,n) = m * n

copy :: a ® Pair a

copy x = (x,x)
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Type declarations can be nested:

type Pos = (Int,Int)

type Trans = Pos ® Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])
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Algebraic Datatypes 
(ADTs)

A completely new type, an algebraic data type, can be 
defined by specifying its values using a data declaration.

data Bool = False | True

Bool is a new type, with two new values 
False and True.
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Note:
! The two values False and True are called the 

constructors for the datatype Bool

! Datatype and constructor names must always begin 
with an upper-case letter

! The Bool datatype is an enumeration type – this is 
Haskell’s way of defining them. Other examples:

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

data Month = Jan | Feb | … | Nov | Dec
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answers :: [Answer]

answers = [Yes,No,Unknown]

flip :: Answer ® Answer

flip Yes     = No
flip No      = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of those new types and datatypes can be used in the 
same ways as those of built in types.  For example, given 
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The constructors in a datatype declaration can also have 
parameters.  For example, given

data Shape = Circle Float

| Rect Float Float

square :: Float ® Shape

square n = Rect n n

area :: Shape ® Float

area (Circle r) = pi * r^2
area (Rect x y) = x * y

we can define:
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Note:

! Shape has values of the form Circle r where r is a float, 
and Rect x y where x and y are floats.

! Circle and Rect can be viewed as functions that 
construct values of type Shape:

Circle :: Float ® Shape

Rect :: Float ® Float ® Shape
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Algebraic data types are tagged unions (aka sums) of 
products (aka records)

32

union 

Haskell keyword

the new type

new constructors (a.k.a. tags, disjuncts, summands)
Line is a binary constructor, Triangle is a ternary …

data Shape = Circle Float

| Rect Float Float

Programming in Haskell, A Milanova
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Not surprisingly, data declarations themselves can also 
have parameters.  For example, given

data Maybe a = Nothing | Just a

we can define:
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Recursive Types

In Haskell, algebraic datatypes can be declared in terms of 
themselves.  That is, they can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors Zero :: Nat and Succ :: 
Nat ® Nat.
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Note:
! A value of type Nat is either Zero, or of the form Succ n 

where n :: Nat.  That is, Nat contains the following infinite 
sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•
•
•
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! We can think of values of type Nat as natural numbers, 
where Zero represents 0, and Succ represents the 
successor function 1+.

! For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1 + (1 + (1 + 0)) 3=
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Using recursion, it is easy to define functions that convert 
between values of type Nat and Int:

nat2int :: Nat ® Int

nat2int Zero     = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int ® Nat

int2nat 0 = Zero

int2nat n = Succ (int2nat (n-1))
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Two naturals can be added by converting them to 
integers, adding, and then converting back:

However, using recursion the function add can be defined 
without the need for conversions:

add :: Nat ® Nat ® Nat

add m n = int2nat (nat2int m + nat2int n)

add Zero     n = n

add (Succ m) n = Succ (add m n) 
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Using recursion, a suitable new algebraic datatype to 
represent arithmetic expressions can be declared by:

For example, a certain expression is represented as 
follows:

data Expr = Val Int

| Add Expr Expr
| Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))

Programming in Haskell, modified from a slide due to G. 
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Using recursion, it is now easy to define functions that 
process expressions.  For example:

size :: Expr ® Int

size (Val n)   = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y 

eval :: Expr ® Int

eval (Val n)   = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y 40
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A data constructor constructs a new data object. For example:

A type constructor constructs a new type object. For example:

41

Val 1

Val 3
Mul (Val 1) (Val 3)
Add (Val 1) (Mul (Val 2) (Val 3))

safediv :: Int ® Int ® Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

Programming in Haskell, A Milanova
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Exercises

(1) Using recursion and the function add, define a function 
that multiplies two natural numbers.

(2) Define a type Tree a of binary trees built from Leaf
values of type a using a Node constructor that takes 
two binary trees as parameters.
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Pattern Matching with 
Case Expressions

Examine values of an algebraic data type. For example:

Two important points on case expressions:
n Test: does the given value match this pattern?
n Binding: if value matches, bind corresponding values of s

and pattern

44

area :: Shape -> Float

area s = case s of 
Circle r -> pi * r^2
Rect x y -> x * y 

Programming in Haskell, A Milanova
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Notes:
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An underscore _ is the wildcard pattern. It matches anything.

A pattern x@pat can be used to match a pattern while 
retaining the variable referring the object being matched:

foo::Expr -> String

foo e@(Add _ _) = e ++ “is Add expression”

Patterns can be nested:
bar::Expr -> String

bar e@(Add _ r@(Add _ _)) = e ++ “is …”

45

Notes:
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Patterns are matched in turn until 

foo::Expr -> String

foo e@(Add _ _) = e ++ “is Add expression”

Patterns can be nested:

bar::Expr -> String

bar e@(Add _ r@(Add _ _)) = e ++ “is …”

46

Exercises

(1) Write the safediv function using a case expression.
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What is Countdown? 
Example

1 3 7 10 25 50

Using the numbers

and the arithmetic operators

765

+ - * ÷

construct an expression whose value is
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Rules

! All the numbers, including intermediate results, must be 
positive naturals (1,2,3,…).

! Each of the source numbers can be used at most once
when constructing the expression.

! We abstract from other rules that are adopted on 
television for pragmatic reasons.
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For our example, one possible solution is

! There are 780 solutions for this example.

! Changing the target number to          gives an 
example that has no solutions.

Notes:

831

(25-10) * (50+1) 765=
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Evaluating Expressions

Operators:

data Op = Add | Sub | Mul | Div

Apply an operator:

apply :: Op ® Int ® Int ® Int
apply Add x y = x + y
apply Sub x y = x - y
apply Mul x y = x * y
apply Div x y = x `div` y
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Decide if the result of applying an operator to two positive 
natural numbers is another positive natural number:

valid :: Op ® Int ® Int ® Bool
valid Add _ _ = True
valid Sub x y = x > y
valid Mul _ _ = True
valid Div x y = x `mod` y == 0

Expressions:

data Expr = Val Int | App Op Expr Expr

Programming in Haskell, slide due to G. Hutton
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eval :: Expr ® [Int]
eval (Val n)     = [n | n > 0]
eval (App o l r) = [apply o x y | x ¬ eval l

, y ¬ eval r
, valid o x y]

Return the overall value of an expression, provided that it is 
a positive natural number:

Either succeeds and returns a singleton list or 
fails and returns the empty list.
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Formalising The Problem

Return a list of all possible ways of choosing zero or more 
elements from a list:

choices :: [a] ® [[a]]

For example:

> choices [1,2]

[[],[1],[2],[1,2],[2,1]]
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Return a list of all the values in an expression:

values :: Expr ® [Int]
values (Val n)     = [n]
values (App _ l r) = values l ++ values r

Decide if an expression is a solution for a given list of 
source numbers and a target number:

solution :: Expr ® [Int] ® Int ® Bool
solution e ns n = elem (values e) (choices ns)

&& eval e == [n]
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Brute Force Solution

Return a list of all possible ways of splitting a list 
into two non-empty parts:

split :: [a] ® [([a],[a])]

For example:

> split [1,2,3,4]

[([1],[2,3,4]),([1,2],[3,4]),([1,2,3],[4])]
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Return a list of all possible expressions whose values are 
precisely a given list of numbers:

exprs :: [Int] ® [Expr]
exprs []  = []
exprs [n] = [Val n]
exprs ns  = [e | (ls,rs) ¬ split ns

, l       ¬ exprs ls
, r       ¬ exprs rs
, e       ¬ combine l r]

The key function in this lecture.
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combine :: Expr ® Expr ® [Expr]
combine l r =

[App o l r | o ¬ [Add,Sub,Mul,Div]]

Combine two expressions using each operator:

solutions :: [Int] ® Int ® [Expr]
solutions ns n = [e | ns' ¬ choices ns

, e   ¬ exprs ns'
, eval e == [n]]

Return a list of all possible expressions that solve 
an instance of the countdown problem:
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! Many of the expressions that are considered will 
typically be invalid - fail to evaluate. 

! For our example, only around 5 million of the 33 
million possible expressions are valid.

! Combining generation with evaluation would allow 
earlier rejection of invalid expressions.

Can We Do Better?
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results :: [Int] ® [Result]
results ns = [(e,n) | e ¬ exprs ns

, n ¬ eval e]

type Result = (Expr,Int)

Valid expressions and their values:

We seek to define a function that fuses together the 
generation and evaluation of expressions:

Fusing Two Functions 
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results []  = []
results [n] = [(Val n,n) | n > 0]
results ns  =

[res | (ls,rs) ¬ split ns
, lx      ¬ results ls
, ry ¬ results rs
, res     ¬ combine' lx ry]

This behaviour is achieved by defining

combine' :: Result ® Result ® [Result]

where
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solutions' :: [Int] ® Int ® [Expr]

solutions' ns n =
[e | ns'   ¬ choices ns

, (e,m) ¬ results ns'

, m == n]

New function that solves countdown problems:

combine’ (l,x) (r,y) =

[(App o l r, apply o x y)
| o ¬ [Add,Sub,Mul,Div]
, valid o x y]

Combining results:
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! Many expressions will be essentially the same using 
simple arithmetic properties, such as:

! Exploiting such properties would considerably reduce
the search and solution spaces.

Can We Do Better?

x * y y * x

x * 1 x

=

=
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Exploiting Properties

Strengthening the valid predicate to take account of 
commutativity and identity properties:

valid :: Op ® Int ® Int ® Bool

valid Add x y  = True

valid Sub x y  = x > y

valid Mul x y  = True

valid Div x y  = x `mod` y == 0

x £ yx £ y && x ¹ 1x £ y && x ¹ 1 && y ¹ 1

x £ y

&& y ¹ 1

Programming in Haskell, slide due to G. Hutton
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