

Outline

- **List comprehensions**
- **s** String comprehensions
- **Type declarations**
- **Algebraic data types (ADTs)**
- Pattern matching
- **Case expressions**
- \blacksquare Countdown: putting these together Programming in Haskell, A Milanova 2

Dependant Generators Later generators can depend on the variables that are introduced by earlier generators. $>$ [(x,y) | x \leftarrow [1..3], y \leftarrow [x..3]] $\left[\left(4,1\right),\left(4,2\right),\left(4,5\right),\left(2,2\right),\left(2,3\right),\left(3,3\right)\right]$ Programming in Haskell, modified from a slide due to G. Hutton 7

Using a dependant generator can you define the library function that concatenates a list of lists: concat :: $\lceil \lceil a \rceil \rceil \rightarrow \lceil a \rceil$ concat xss = $[x \mid xs \leftarrow xss, x \leftarrow xs]$ For example: $>$ concat $[[1,2,3],[4,5],[6]]$ [1,2,3,4,5,6] Programming in Haskell, modified from a slide due to G. Hutton 8

17

- Algebraic datatypes (ADTs)
- Pattern matching
- **Case expressions**
- **Countdown: putting these together**

22

$data$ Nat = Zero | Succ Nat Two naturals can be added by converting them to integers, adding, and then converting back: add :: Nat \rightarrow Nat \rightarrow Nat add $m = int2$ nat (nat2int $m + nat2$ int n) However, using recursion the function add can be defined without the need for conversions: add $7e$ ro $n = n$ add (Succ m) $n =$ Succ (add m n) Programming in Haskell, modified from a slide due to G. Hutton 38

37

Using recursion, it is now easy to define functions that process expressions. For example: size :: Expr \rightarrow Int size $(Va1 n) = 1$ size (Add x y) = size $x + size y$ size (Mul x y) = size $x + size y$ eval :: Expr \rightarrow Int Val_1 tiil eval $(Va1 n) = n$ eval (Add x y) = eval x + eval y $\bigvee c \bigvee c \bigvee c \bigvee f$ eval (Mul x y) = eval x * eval y ⁴⁰

Pattern Matching with Case Expressions Examine values of an algebraic data type. For example: Two important points on case expressions: \blacksquare Test: does the given value match this pattern? ⁿ Binding: if value matches, bind corresponding values of **s** and pattern area :: Shape -> Float area $s = case s of$ Circle $r \rightarrow pi * r^2$ Rect $x \ y \rightarrow x^* y$

Programming in Haskell, A Milanova

44

Evaluating Expressions Operators: data $Op = Add \mid Sub \mid Mul \mid Div$ Apply an operator: apply :: Op \rightarrow Int \rightarrow Int \rightarrow Int apply Add $x y = x + y$ apply Sub $x \ y = x - y$ apply Mul $x y = x * y$ apply Div $x \ y = x \ idiv$ y Programming in Haskell, slide due to G. Hutton

Formalising The Problem Return a list of all possible ways of choosing zero or more elements from a list: choices :: [a] \rightarrow [[a]] For example: > choices [1,2] $[1,1],[2],[1,2],[2,1]]$ Programming in Haskell, slide due to G. Hutton

Return a list of all the values in an expression: values :: Expr \rightarrow [Int] values $(Val n) = [n]$ values (App \Box l r) = values l ++ values r Decide if an expression is a solution for a given list of source numbers and a target number: solution :: Expr \rightarrow [Int] \rightarrow Int \rightarrow Bool solution e ns n = elem (values e) (choices ns) $&8$ eval e == [n]

Programming in Haskell, slide due to G. Hutton

