
1

List Comprehensions and
ADTs
(slides, where noted, due to
Graham Hutton)

1

Outline

n List comprehensions
n String comprehensions
n Type declarations
n Algebraic data types (ADTs)
n Pattern matching
n Case expressions

n Countdown: putting these together
2Programming in Haskell, A Milanova

2

Set Comprehensions

In mathematics, the comprehension notation can
be used to construct new sets from old sets.

{x2 | x Î {1...5}}

The set {1,4,9,16,25} of all numbers x2 such that x is an element of the
set {1…5}.

Programming in Haskell, slide due to G. Hutton 3

3

Lists Comprehensions

In Haskell, a similar comprehension notation can
be used to construct new lists from old lists.

[x^2 | x ¬ [1..5]]

The list [1,4,9,16,25] of all numbers x^2 such that x is an element of
the list [1..5].

Programming in Haskell, slide due to G. Hutton 4

4

2

Note:
! The expression x ¬ [1..5] is called a generator, as it

states how to generate values for x
! Comprehensions can have multiple generators,

separated by commas. For example:

! Multiple generators resemble nested loops, with later
generators as more deeply nested loops whose
variables change value more frequently

> [(x,y) | x ¬ [1,2,3], y ¬ [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

> [(x,y) | y ¬ [4,5], x ¬ [1,2,3]]
?

5

5

> [(x,y) | y ¬ [4,5], x ¬ [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

x ¬ [1,2,3] is the last generator, so the value of the x
component of each pair changes most frequently.

Programming in Haskell, slide due to G. Hutton 6

6

Dependant Generators

Later generators can depend on the variables that are
introduced by earlier generators.

> [(x,y) | x ¬ [1..3], y ¬ [x..3]]

Programming in Haskell, modified from a slide due to G.
Hutton 7

7

Using a dependant generator can you define the library
function that concatenates a list of lists:

concat :: [[a]] ® [a]

concat xss = [x | xs ¬ xss, x ¬ xs]

For example:
> concat [[1,2,3],[4,5],[6]]

[1,2,3,4,5,6]

Programming in Haskell, modified from a slide due to G.
Hutton 8

8

3

Guards

List comprehensions can use guards to restrict the values
produced by earlier generators.

[x | x ¬ [1..10], even x]

The list [2,4,6,8,10] of all numbers x such that x is an
element of the list [1..10] and x is even.

Can you define a function that maps a positive integer to its
list of factors, e.g., > factors 15

[1,3,5,15]

factors :: Int ® [Int]

factors n = [x | x ¬ [1..n], n `mod` x == 0]
9

9

Using factors, we can define a function that decides if a
number is prime? E.g.,

prime :: Int ® Bool

prime n = factors n == [1,n]

> prime 15
False

> prime 7
True

Programming in Haskell, modified from a slide due to G.
Hutton 10

10

primes :: Int ® [Int]

primes n = [x | x <- [2..n], prime x]

And using prime as guard, we can now define a function
that returns the list of all primes up to a given limit. E.g.,:

> primes 40

[2,3,5,7,11,13,17,19,23,29,31,37]

Programming in Haskell, modified from a slide due to G.
Hutton 11

11

The Zip Function

A useful library function is zip, which maps two lists to a list
of pairs of their corresponding elements.

zip :: [a] ® [b] ® [(a,b)]

For example:

> zip [’a’,’b’,’c’] [1,2,3,4]

[(’a’,1),(’b’,2),(’c’,3)]

Programming in Haskell, modified from a slide due to G.
Hutton 12

12

4

Using zip we can define a function that returns the list of all
pairs of adjacent elements from a list:

For example:

pairs :: [a] ® [(a,a)]

pairs xs = zip xs (tail xs)

> pairs [1,2,3,4]

[(1,2),(2,3),(3,4)]

Programming in Haskell, modified from a slide due to G.
Hutton 13

13

Using pairs, we can define a function that decides if the
elements in a list are sorted. For example:

sorted :: Ord a Þ [a] ® Bool

sorted xs = and [x £ y | (x,y) ¬ pairs xs]

> sorted [1,2,3,4]
True

> sorted [1,3,2,4]
False

Programming in Haskell, modified from a slide due to G.
Hutton 14

14

Using zip we can define a function that returns the list of all
positions of a value in a list. For example:

positions :: Eq a Þ a ® [a] ® [Int]

positions x xs =

[i | (x’,i) ¬ zip xs [0..], x == x’]

> positions 0 [1,0,0,1,0,1,1,0]

[1,2,4,7]

Programming in Haskell, modified from a slide due to G.
Hutton 15

15

String Comprehensions

A string is a sequence of characters enclosed in double
quotes. Internally, however, strings are represented as lists
of characters

"abc" :: String

Means [’a’, ’b’, ’c’] :: [Char].

Programming in Haskell, modified from a slide due to G.
Hutton 16

16

5

Because strings are just special kinds of lists, any
polymorphic function that operates on lists can also be
applied to strings. For example:

> length "abcde"

5

> take 3 "abcde"

"abc"

> zip "abc" [1,2,3,4]

[(’a’,1),(’b’,2),(’c’,3)]
Programming in Haskell, modified from a slide due to G.
Hutton 17

17

Similarly, list comprehensions can also be used to define
functions on strings, such counting how many times a
character occurs in a string.

count :: Char ® String ® Int

count x xs = length [x’ | x’ ¬ xs, x == x’]

For example: > count ’s’ "Mississippi"
4

Programming in Haskell, slide due to G. Hutton 18

18

Exercises

A triple (x,y,z) of positive integers is called
pythagorean if x2 + y2 = z2. Using a list
comprehension, define a function

(1)

pyths :: Int ® [(Int,Int,Int)]

that maps an integer n to all such triples with
components in [1..n]. For example:

> pyths 5

[(3,4,5),(4,3,5)]

Programming in Haskell, slide due to G. Hutton 19

19

A positive integer is perfect if it equals the sum of all of
its factors, excluding the number itself. Using a list
comprehension, define a function

(2)

perfects :: Int ® [Int]

that returns the list of all perfect numbers up to a given
limit. For example:

> perfects 500

[6,28,496]

Programming in Haskell, slide due to G. Hutton 20

20

6

(xsi * ysi)å
i = 0

n-1

Using a list comprehension, define a function that
returns the inner product of two lists.

The inner product of two lists of integers xs and ys of
length n is given by the sum of the products of the
corresponding integers:

(3)

Programming in Haskell, slide due to G. Hutton 21

21

Outline

n List comprehensions
n String comprehensions
n Type declarations
n Algebraic datatypes (ADTs)
n Pattern matching
n Case expressions

n Countdown: putting these together
22

22

Type Declarations

In Haskell, a new name for an existing type can be defined
using a type declaration.

type String = [Char]

String is a synonym, also called type alias, for the type [Char].

Programming in Haskell, modified from a slide due to G.
Hutton 23

23

Type declarations can be used to make other types easier to
read. For example, given

origin :: Pos

origin = (0,0)

left :: Pos ® Pos

left (x,y) = (x-1,y)

type Pos = (Int,Int)

we can define:

Programming in Haskell, slide due to G. Hutton 24

24

7

Like function definitions, type declarations can also have
parameters. For example, given

type Pair a = (a,a)

we can define:

mult :: Pair Int ® Int

mult (m,n) = m * n

copy :: a ® Pair a

copy x = (x,x)

Programming in Haskell, slide due to G. Hutton 25

25

Type declarations can be nested:

type Pos = (Int,Int)

type Trans = Pos ® Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])

Programming in Haskell, slide due to G. Hutton 26

26

Algebraic Datatypes
(ADTs)

A completely new type, an algebraic data type, can be
defined by specifying its values using a data declaration.

data Bool = False | True

Bool is a new type, with two new values
False and True.

Programming in Haskell, modified from a slide due to G.
Hutton 27

27

Note:
! The two values False and True are called the

constructors for the datatype Bool

! Datatype and constructor names must always begin
with an upper-case letter

! The Bool datatype is an enumeration type – this is
Haskell’s way of defining them. Other examples:

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

data Month = Jan | Feb | … | Nov | Dec
Programming in Haskell, modified from a slide due to G.
Hutton 28

28

8

answers :: [Answer]

answers = [Yes,No,Unknown]

flip :: Answer ® Answer

flip Yes = No
flip No = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of those new types and datatypes can be used in the
same ways as those of built in types. For example, given

Programming in Haskell, slide due to G. Hutton 29

29

The constructors in a datatype declaration can also have
parameters. For example, given

data Shape = Circle Float

| Rect Float Float

square :: Float ® Shape

square n = Rect n n

area :: Shape ® Float

area (Circle r) = pi * r^2
area (Rect x y) = x * y

we can define:

Programming in Haskell, slide due to G. Hutton 30

30

Note:

! Shape has values of the form Circle r where r is a float,
and Rect x y where x and y are floats.

! Circle and Rect can be viewed as functions that
construct values of type Shape:

Circle :: Float ® Shape

Rect :: Float ® Float ® Shape

Programming in Haskell, slide due to G. Hutton 31

31

Algebraic data types are tagged unions (aka sums) of
products (aka records)

32

union

Haskell keyword

the new type

new constructors (a.k.a. tags, disjuncts, summands)
Line is a binary constructor, Triangle is a ternary …

data Shape = Circle Float

| Rect Float Float

Programming in Haskell, A Milanova

32

9

Not surprisingly, data declarations themselves can also
have parameters. For example, given

data Maybe a = Nothing | Just a

we can define:

Programming in Haskell, slide due to G. Hutton 33

33

Recursive Types

In Haskell, algebraic datatypes can be declared in terms of
themselves. That is, they can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors Zero :: Nat and Succ ::
Nat ® Nat.

Programming in Haskell, modified from a slide due to G.
Hutton 34

34

Note:
! A value of type Nat is either Zero, or of the form Succ n

where n :: Nat. That is, Nat contains the following infinite
sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•
•
•

Programming in Haskell, modified from a slide due to G.
Hutton 35

35

! We can think of values of type Nat as natural numbers,
where Zero represents 0, and Succ represents the
successor function 1+.

! For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1 + (1 + (1 + 0)) 3=

Programming in Haskell, modified from a slide due to G.
Hutton 36

36

10

Using recursion, it is easy to define functions that convert
between values of type Nat and Int:

nat2int :: Nat ® Int

nat2int Zero = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int ® Nat

int2nat 0 = Zero

int2nat n = Succ (int2nat (n-1))
Programming in Haskell, modified from a slide due to G.
Hutton 37

37

Two naturals can be added by converting them to
integers, adding, and then converting back:

However, using recursion the function add can be defined
without the need for conversions:

add :: Nat ® Nat ® Nat

add m n = int2nat (nat2int m + nat2int n)

add Zero n = n

add (Succ m) n = Succ (add m n)

Programming in Haskell, modified from a slide due to G.
Hutton 38

38

Using recursion, a suitable new algebraic datatype to
represent arithmetic expressions can be declared by:

For example, a certain expression is represented as
follows:

data Expr = Val Int

| Add Expr Expr
| Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))

Programming in Haskell, modified from a slide due to G.
Hutton 39

39

Using recursion, it is now easy to define functions that
process expressions. For example:

size :: Expr ® Int

size (Val n) = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y

eval :: Expr ® Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y 40

40

11

A data constructor constructs a new data object. For example:

A type constructor constructs a new type object. For example:

41

Val 1

Val 3
Mul (Val 1) (Val 3)
Add (Val 1) (Mul (Val 2) (Val 3))

safediv :: Int ® Int ® Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

Programming in Haskell, A Milanova

41

Exercises

(1) Using recursion and the function add, define a function
that multiplies two natural numbers.

(2) Define a type Tree a of binary trees built from Leaf
values of type a using a Node constructor that takes
two binary trees as parameters.

Programming in Haskell, modified from a slide due to G.
Hutton 42

42

Outline

n List comprehensions
n String comprehensions
n Type declarations
n Algebraic datatypes (ADTs)
n Pattern matching
n Case expressions

n Countdown: putting these together
43Programming in Haskell, A Milanova

43

Pattern Matching with
Case Expressions

Examine values of an algebraic data type. For example:

Two important points on case expressions:
n Test: does the given value match this pattern?
n Binding: if value matches, bind corresponding values of s

and pattern

44

area :: Shape -> Float

area s = case s of
Circle r -> pi * r^2
Rect x y -> x * y

Programming in Haskell, A Milanova

44

12

Notes:

Programming in Haskell, A Milanova 45

An underscore _ is the wildcard pattern. It matches anything.

A pattern x@pat can be used to match a pattern while
retaining the variable referring the object being matched:

foo::Expr -> String

foo e@(Add _ _) = e ++ “is Add expression”

Patterns can be nested:
bar::Expr -> String

bar e@(Add _ r@(Add _ _)) = e ++ “is …”

45

Notes:

Programming in Haskell, A Milanova 46

Patterns are matched in turn until

foo::Expr -> String

foo e@(Add _ _) = e ++ “is Add expression”

Patterns can be nested:

bar::Expr -> String

bar e@(Add _ r@(Add _ _)) = e ++ “is …”

46

Exercises

(1) Write the safediv function using a case expression.

Programming in Haskell, modified from a slide due to G.
Hutton 47

47

Outline

n List comprehensions
n String comprehensions
n Type declarations
n Algebraic datatypes (ADTs)
n Pattern matching
n Case expressions

n Countdown: putting these together
48

48

13

What is Countdown?
Example

1 3 7 10 25 50

Using the numbers

and the arithmetic operators

765

+ - * ÷

construct an expression whose value is

Programming in Haskell, slide due to G. Hutton 49

49

Rules

! All the numbers, including intermediate results, must be
positive naturals (1,2,3,…).

! Each of the source numbers can be used at most once
when constructing the expression.

! We abstract from other rules that are adopted on
television for pragmatic reasons.

Programming in Haskell, slide due to G. Hutton

50

For our example, one possible solution is

! There are 780 solutions for this example.

! Changing the target number to gives an
example that has no solutions.

Notes:

831

(25-10) * (50+1) 765=

Programming in Haskell, slide due to G. Hutton

51

Evaluating Expressions

Operators:

data Op = Add | Sub | Mul | Div

Apply an operator:

apply :: Op ® Int ® Int ® Int
apply Add x y = x + y
apply Sub x y = x - y
apply Mul x y = x * y
apply Div x y = x `div` y

Programming in Haskell, slide due to G. Hutton

52

14

Decide if the result of applying an operator to two positive
natural numbers is another positive natural number:

valid :: Op ® Int ® Int ® Bool
valid Add _ _ = True
valid Sub x y = x > y
valid Mul _ _ = True
valid Div x y = x `mod` y == 0

Expressions:

data Expr = Val Int | App Op Expr Expr

Programming in Haskell, slide due to G. Hutton

53

eval :: Expr ® [Int]
eval (Val n) = [n | n > 0]
eval (App o l r) = [apply o x y | x ¬ eval l

, y ¬ eval r
, valid o x y]

Return the overall value of an expression, provided that it is
a positive natural number:

Either succeeds and returns a singleton list or
fails and returns the empty list.

Programming in Haskell, slide due to G. Hutton

54

Formalising The Problem

Return a list of all possible ways of choosing zero or more
elements from a list:

choices :: [a] ® [[a]]

For example:

> choices [1,2]

[[],[1],[2],[1,2],[2,1]]

Programming in Haskell, slide due to G. Hutton

55

Return a list of all the values in an expression:

values :: Expr ® [Int]
values (Val n) = [n]
values (App _ l r) = values l ++ values r

Decide if an expression is a solution for a given list of
source numbers and a target number:

solution :: Expr ® [Int] ® Int ® Bool
solution e ns n = elem (values e) (choices ns)

&& eval e == [n]

Programming in Haskell, slide due to G. Hutton

56

15

Brute Force Solution

Return a list of all possible ways of splitting a list
into two non-empty parts:

split :: [a] ® [([a],[a])]

For example:

> split [1,2,3,4]

[([1],[2,3,4]),([1,2],[3,4]),([1,2,3],[4])]

Programming in Haskell, slide due to G. Hutton

57

Return a list of all possible expressions whose values are
precisely a given list of numbers:

exprs :: [Int] ® [Expr]
exprs [] = []
exprs [n] = [Val n]
exprs ns = [e | (ls,rs) ¬ split ns

, l ¬ exprs ls
, r ¬ exprs rs
, e ¬ combine l r]

The key function in this lecture.

Programming in Haskell, slide due to G. Hutton

58

combine :: Expr ® Expr ® [Expr]
combine l r =

[App o l r | o ¬ [Add,Sub,Mul,Div]]

Combine two expressions using each operator:

solutions :: [Int] ® Int ® [Expr]
solutions ns n = [e | ns' ¬ choices ns

, e ¬ exprs ns'
, eval e == [n]]

Return a list of all possible expressions that solve
an instance of the countdown problem:

Programming in Haskell, slide due to G. Hutton

59

! Many of the expressions that are considered will
typically be invalid - fail to evaluate.

! For our example, only around 5 million of the 33
million possible expressions are valid.

! Combining generation with evaluation would allow
earlier rejection of invalid expressions.

Can We Do Better?

Programming in Haskell, slide due to G. Hutton

60

16

results :: [Int] ® [Result]
results ns = [(e,n) | e ¬ exprs ns

, n ¬ eval e]

type Result = (Expr,Int)

Valid expressions and their values:

We seek to define a function that fuses together the
generation and evaluation of expressions:

Fusing Two Functions

Programming in Haskell, slide due to G. Hutton

61

results [] = []
results [n] = [(Val n,n) | n > 0]
results ns =

[res | (ls,rs) ¬ split ns
, lx ¬ results ls
, ry ¬ results rs
, res ¬ combine' lx ry]

This behaviour is achieved by defining

combine' :: Result ® Result ® [Result]

where

Programming in Haskell, slide due to G. Hutton

62

solutions' :: [Int] ® Int ® [Expr]

solutions' ns n =
[e | ns' ¬ choices ns

, (e,m) ¬ results ns'

, m == n]

New function that solves countdown problems:

combine’ (l,x) (r,y) =

[(App o l r, apply o x y)
| o ¬ [Add,Sub,Mul,Div]
, valid o x y]

Combining results:

Programming in Haskell, slide due to G. Hutton

63

! Many expressions will be essentially the same using
simple arithmetic properties, such as:

! Exploiting such properties would considerably reduce
the search and solution spaces.

Can We Do Better?

x * y y * x

x * 1 x

=

=

Programming in Haskell, slide due to G. Hutton

64

17

Exploiting Properties

Strengthening the valid predicate to take account of
commutativity and identity properties:

valid :: Op ® Int ® Int ® Bool

valid Add x y = True

valid Sub x y = x > y

valid Mul x y = True

valid Div x y = x `mod` y == 0

x £ yx £ y && x ¹ 1x £ y && x ¹ 1 && y ¹ 1

x £ y

&& y ¹ 1

Programming in Haskell, slide due to G. Hutton

65

