

Announcements

- Everyone has GHC and VSCode running?
- Ps1 will be up after class
 - Read carefully through the Style Guide
 - Due Tuesday, Sept 17th
 - Submit in Submitty
- Ps2 will be up after Tuesday's lecture
 - Also due Sept 17th
- Plan: next Friday is a lab and in-class

exercise day Programming in Haskell, A Milanova

2

Outline Basic types Lists and tuples Function types and currying Type classes Defining functions Patern matching Guarded equations Lambda expressions Recursive functions

Why is Recursion Useful? Some functions, such as factorial, are simpler to define in terms of other functions However, many functions can <u>naturally</u> be defined in terms of themselves One can use <u>induction</u> to prove correctness of recursive functions

More Functions on Lists $\begin{array}{c} | ength' :: [a] \rightarrow Int \\ | ength' [] &= 0 \\ | ength' (_:xs) &= 1 + | ength' xs \\ ength' (_$

