
1

Types and Functions
(slides, where noted, due to
Graham Hutton)

1

Announcements

n Everyone has GHC and VSCode running?
n Ps1 will be up after class

n Read carefully through the Style Guide
n Due Tuesday, Sept 17th

n Submit in Submitty
n Ps2 will be up after Tuesday’s lecture

n Also due Sept 17th

n Plan: next Friday is a lab and in-class
exercise day

Programming in Haskell, A Milanova 2

2

Outline

n Basic types
n Lists and tuples
n Function types and currying
n Type classes (a little bit)
n Defining functions

n Pattern matching
n Guarded sections
n Lambda expressions

n Recursive functions 3

3

What is a Type?

A type is a name for a collection of related values.
For example, in Haskell the basic type

TrueFalse

Bool

contains the two logical values:

Programming in Haskell, slide due to G. Hutton 4

4

2

Type Errors

Applying a function to one or more arguments of
the wrong type is called a type error.

> 1 + False

Error…

1 is a number and False is a logical value, but + requires
two numbers.

Programming in Haskell, slide due to G. Hutton 5

5

More on Type Error
Messages

Programming in Haskell, A Milanova 6

> 1 + False

<interactive>:1:1: error:
• No instance for (Num Bool) arising from a use of ‘+’
• In the expression: 1 + False

In an equation for ‘it’: it = 1 + False

> ‘a’ ++ “na”

<interactive>:2:1: error:
• Couldn't match expected type ‘[Char]’ with actual type ‘Char’
• In the first argument of ‘(++)’, namely ‘'a'’

In the expression: 'a' ++ "na"
In an equation for ‘it’: it = 'a' ++ "na"

6

Types in Haskell

n If evaluating an expression e would
produce a value of type t, then e has type
t, written

e :: t

! Every well-formed expression has a type, which can be
automatically calculated at compile time using a
process called type inference

Programming in Haskell, slide due to G. Hutton 7

7

! All type errors are found at compile time, which makes
programs safer and faster by removing the need for type
checks at run time

! In GHCi, the :type (or just :t) command calculates the
type of an expression, without evaluating it:

> not False

True

> :type not False

not False :: Bool
Programming in Haskell, slide due to G. Hutton 8

8

3

Basic Types

Haskell has a number of basic types, including:

Bool - logical values

Char - single characters

Float - single-precision floating-point

String - strings of characters

Int - integer numbers

Double - double-precision floating-point

Programming in Haskell, slide due to G. Hutton 9

9

Int is the machine-sized integer:

Integer is an arbitrarily large integer, limited by available
memory on the machine:

> maxBound::Int

> ?

> minBound::Int

> ?

Int vs. Integer

> n::Integer

> n = 12345678901234567890
10

10

List Types

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

In general:

A list is sequence of values of the same type:

[a] is the type of lists with elements of type a

Programming in Haskell, slide due to G. Hutton 11

11

! The type of a list says nothing about its length:

[False,True] :: [Bool]

[False,True,False] :: [Bool]

[[’a’],[’b’,’c’]] :: [[Char]]

Note:

! The type of the elements is unrestricted. For example,
we can have lists of lists:

Programming in Haskell, slide due to G. Hutton 12

12

4

Tuple Types

A tuple is a sequence of values of different types:

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

In general:

(t1,t2,…,tn) is the type of n-tuples whose i-th
components have type ti for any i in 1…n

13

13

! The type of a tuple encodes its size:

(False,True) :: (Bool,Bool)

(False,True,False) :: (Bool,Bool,Bool)

(’a’,(False,’b’)) :: (Char,(Bool,Char))

(True,[’a’,’b’]) :: (Bool,[Char])

Note:

! The type of the components is unrestricted:

Programming in Haskell, slide due to G. Hutton 14

14

Programming in Haskell, A Milanova 15

Exercises

>:t [False,True,False]

>?
>:t (False,True,1)
>?

>maxBound::Int
>?
>:i maxBound

>?

>:t [False,True,1]

>?

15

Function Types

not :: Bool ® Bool

even :: Int ® Bool

In general:

A function is a mapping from values of one type
to values of another type:

t1 ® t2 is the type of functions that map
values of type t1 to values to type t2

Programming in Haskell, slide due to G. Hutton 16

16

5

! The arrow ® is typed at the keyboard as ->.

! The argument and result types are unrestricted. For
example, functions with multiple arguments or results
are possible using lists or tuples:

Note:

add :: (Int,Int) ® Int

add (x,y) = x + y

zeroto :: Int ® [Int]
zeroto n = [0..n]

Programming in Haskell, slide due to G. Hutton 17

17

Functions with multiple arguments are also
possible by returning functions as results:

add’ :: Int ® (Int ® Int)

add’ x y = x + y

add’ takes an integer x and returns a function add’ x. In turn, this
function takes an integer y and returns the result x+y.

Curried Functions

Programming in Haskell, slide due to G. Hutton 18

18

! add and add’ produce the same final result, but add
takes its two arguments at the same time, whereas add’
takes them one at a time:

Note:

! Functions that take their arguments one at a time are
called curried functions, celebrating the work of Haskell
Curry on such functions.

add :: (Int,Int) ® Int

add’ :: Int ® (Int ® Int)

Programming in Haskell, slide due to G. Hutton 19

19

! Functions with more than two arguments can be curried
by returning nested functions:

mult :: Int ® (Int ® (Int ® Int))

mult x y z = x * y * z

mult takes an integer x and returns a function mult x, which in turn takes an
integer y and returns a function mult x y, which finally takes an integer z and

returns the result x*y*z.

Programming in Haskell, slide due to G. Hutton 20

20

6

Why is Currying Useful?

Curried functions are more flexible than functions
on tuples, because useful functions can often be
made by partially applying a curried function

For example:

add’ 1 :: Int ® Int

take 5 :: [Int] ® [Int]

drop 5 :: [Int] ® [Int]

Programming in Haskell, slide due to G. Hutton 21

21

Currying Conventions

n The arrow ® associates to the right

Int ® Int ® Int ® Int

To avoid excess parentheses when using curried
functions, two simple conventions are adopted:

Means Int ® (Int ® (Int ® Int)).

Programming in Haskell, slide due to G. Hutton 22

22

! As a consequence, it is then natural for function
application to associate to the left.

mult x y z

Means ((mult x) y) z.

All functions in Haskell are curried.
Programming in Haskell, modified from a slide due to G.
Hutton 23

23

Polymorphic Functions

A function is called polymorphic (“of many forms”)
if its type contains one or more type variables

length :: [a] ® Int

For any type a, length takes a list of values of type a and returns
an integer.

Programming in Haskell, slide due to G. Hutton 24

24

7

! Type variables can be instantiated to different types in
different circumstances:

Note:

! Type variables must begin with a lower-case letter, and
are usually named a, b, c, etc.

> length [False,True]

2

> length [1,2,3,4]

4

a = Bool

a = Int

Programming in Haskell, slide due to G. Hutton 25

25

! Many of the functions defined in the standard prelude
are polymorphic. For example:
head :: ?

take :: ?

zip :: ?
(E.g., zip [1,2] [3,4] = [(1,3),(2,4)]

id :: ?

fst :: ?
Programming in Haskell, slide due to G. Hutton

Exercises

26

26

Overloaded Functions

A polymorphic function is called overloaded if its
type contains one or more class constraints

(+) :: Num a Þ a ® a ® a

For any numeric type a, (+) takes two values of type a and returns a
value of type a

Programming in Haskell, slide due to G. Hutton 27

27

! Constrained type variables can be instantiated to any
types that satisfy the constraints:

Note:

> 1 + 2

3

> 1.0 + 2.0

3.0

> ’a’ + ’b’
ERROR

Char is not a numeric
type

a = Int

a = Float

Programming in Haskell, slide due to G. Hutton 28

28

8

Programming in Haskell, A Milanova 29

More Type Errors

> ’a’ + ’b’

<interactive>:29:1: error:
• No instance for (Num Char) arising from a use of ‘+’
• In the expression: 'a' + 'b'

In an equation for ‘it’: it = 'a' + 'b'

29

29

Num - Numeric types

Eq - Equality types

Ord - Ordered types

! Haskell has a number of type classes, including:

! For example:
(+) :: Num a Þ a ® a ® a

(==) :: Eq a Þ a ® a ® Bool

(<) :: Ord a Þ a ® a ® Bool
Programming in Haskell, slide due to G. Hutton 30

30

Hints and Tips

n When defining a new function in Haskell, it
is useful to begin by writing down its type
n We’ll ask that you always add the type!

n When stating the types of polymorphic
functions that use numbers, equality or
orderings, include the necessary class
constraints
n If you write a type that doesn’t, Haskell will

complain
Programming in Haskell, modified from a slide due to G.
Hutton 31

31

More on Type Errors

Programming in Haskell, A Milanova 32

add :: a ® a ® a
add x y = x + y

> :l add.hs
add.hs:83:11: error:

• No instance for (Num a) arising from a use of ‘+’
Possible fix:

add (Num a) to the context of
the type signature for:

add :: forall a. a -> a -> a
• In the expression: x + y

In an equation for ‘add’: add x y = x + y

32

32

9

Exercises

[’a’,’b’,’c’]

(’a’,’b’,’c’)

[(False,’0’),(True,’1’)]

([False,True],[’0’,’1’])

[tail,init,reverse]

What are the types of the following values?(1)

Programming in Haskell, slide due to G. Hutton 33

33

second xs = head (tail xs)

swap (x,y) = (y,x)

pair x y = (x,y)

double x = x*2

palindrome xs = reverse xs == xs

twice f x = f (f x)

What are the types of the following functions?(2)

Exercises

Programming in Haskell, slide due to G. Hutton 34

34

Outline

n Basic types
n Lists and tuples
n Function types and currying
n Type classes
n Defining functions

n Pattern matching
n Guarded equations
n Lambda expressions

n Recursive functions 35

35

Conditional Expressions

As in most programming languages, functions can be
defined using conditional expressions

abs :: Int ® Int

abs n = if n ≥ 0 then n else -n

abs takes an integer n and returns n if it is non-negative and -
n otherwise.

Programming in Haskell, slide due to G. Hutton 36

36

10

Conditional expressions can be nested:

signum :: Int ® Int

signum n = if n < 0 then -1 else
if n == 0 then 0 else 1

! In Haskell, conditional expressions must always have an
else branch, which avoids any possible ambiguity
problems with nested conditionals.

Note:

Programming in Haskell, slide due to G. Hutton 37

37

Guarded Equations

As an alternative to conditionals, functions can also be
defined using guarded equations.

abs n | n ≥ 0 = n

| otherwise = -n

As previously, but using guarded equations.

Programming in Haskell, slide due to G. Hutton

abs n

| n ≥ 0 = n
| otherwise = -n

38

38

Guarded equations can be used to make definitions
involving multiple conditions easier to read:

! The catch all condition otherwise is defined in the
prelude by otherwise = True.

Note:

signum n

| n < 0 = -1
| n == 0 = 0
| otherwise = 1

Programming in Haskell, slide due to G. Hutton 39

39

Pattern Matching

Many functions have a particularly clear definition using
pattern matching on their arguments.

not :: Bool ® Bool

not False = True
not True = False

not maps False to True, and True to False.

Programming in Haskell, slide due to G. Hutton 40

40

11

Functions can often be defined in many different ways using
pattern matching. For example:

(&&) :: Bool ® Bool ® Bool

True && True = True
True && False = False
False && True = False

False && False = False

True && True = True

_ && _ = False

can be defined more compactly by

Programming in Haskell, slide due to G. Hutton 41

41

True && b = b

False && _ = False

However, the following definition is more efficient, because
it avoids evaluating the second argument if the first
argument is False:

! The underscore symbol _ is a wildcard pattern that
matches any argument value.

Note:

Programming in Haskell, slide due to G. Hutton 42

42

! Patterns may not repeat variables. For example, the
following definition gives an error:

b && b = b

_ && _ = False

! Patterns are matched in order. What happens if we
changed the order of patterns?

_ && _ = False

True && True = True

Programming in Haskell, slide due to G. Hutton 43

43

Define safediv n d to compute n `div` d but safely. If d
is 0, safediv returns [], otherwise it returns the singleton
list containing the result. E.g., safediv 10 0 = [] and
safediv 6 2 = [3].
a) conditional expression

b) guarded sections

c) pattern matching

Exercises

44

44

12

List Patterns

Internally, every non-empty list is constructed by
repeated use of an operator (:) called “cons” that
adds an element to the start of a list.

[1,2,3,4]

Means 1:(2:(3:(4:[]))).

Programming in Haskell, slide due to G. Hutton 45

45

Functions on lists can be defined using x:xs patterns.

head :: [a] ® a

head (x:_) = x

tail :: [a] ® [a]

tail (_:xs) = xs

head and tail map any non-empty list to its first and remaining
elements.

Programming in Haskell, slide due to G. Hutton 46

46

Note:

! x:xs patterns must be parenthesised, because
application has priority over (:). For example, the
following definition gives an error:

! x:xs patterns only match non-empty lists:

> head []

*** Exception: empty list

head x:_ = x

Programming in Haskell, slide due to G. Hutton 47

47

Lambda Expressions

Functions can be constructed without naming the functions
by using lambda expressions.

lx ® x + x

the nameless function that takes a number x and returns the
result x + x.

Programming in Haskell, modified from a slide due to G.
Hutton

\x -> x + x

48

48

13

! The symbol l is the Greek letter lambda, and is typed at
the keyboard as a backslash \

! In Haskell, the use of the l symbol for nameless
functions comes from the lambda calculus, the theory of
functions on which Haskell is based

Note:

Programming in Haskell, slide due to G. Hutton 49

49

Why Are Lambda's Useful?
Lambda expressions can be used to give a formal meaning
to functions defined using currying.

For example:

add :: Int ® Int ® Int
add x y = x + y

add :: Int ® (Int ® Int)
add = lx ® (ly ® x + y)

means

Programming in Haskell, slide due to G. Hutton 50

50

odds n = map f [0..n-1]

where
f x = x * 2 + 1

simplifies to:

odds n = map (lx ® x * 2 + 1) [0..n-1]

Lambda expressions can be used to avoid naming
functions that are only referenced once. One-off functions.

For example:

Programming in Haskell, modified from a slide due to G.
Hutton

Rendered this way in Haskell:

odds n = map (\x -> x * 2 + 1) [0..n-1]

51

51

Operator Sections

An operator written between its two arguments can be
converted into a curried function written before its two
arguments by using parentheses.

For example:

> 1 + 2

3

> (+) 1 2

3

Programming in Haskell, slide due to G. Hutton 52

52

14

This convention also allows one of the arguments of the operator to be
included in the parentheses.

For example:

> (1+) 2
3

> (+2) 1
3

In general, if Å is an operator then functions of the form (Å), (xÅ) and
(Åy) are called sections.

Programming in Haskell, slide due to G. Hutton 53

53

Why Are Sections Useful?

Useful functions can sometimes be constructed in a simple way using
sections. For example:

- successor function

- reciprocation function

- doubling function

- halving function

(1+)

(*2)

(/2)

(1/)

Programming in Haskell, slide due to G. Hutton 54

54

55

Exercises
Consider a function safetail that behaves in the same way as tail,
except that safetail maps the empty list to the empty list, whereas
tail gives an error in this case. Define safetail using:

(a) a conditional expression;
(b) guarded equations;
(c) pattern matching.

Hint: the library function null :: [a] ® Bool can be used to test if a
list is empty.

(1)

55

55

Outline

n Basic types
n Lists and tuples
n Function types and currying
n Type classes
n Defining functions

n Pattern matching
n Guarded equations
n Lambda expressions

n Recursive functions 5656

56

15

Recursive Functions

In Haskell, functions are often recursive. E.g.:

fac 0 = 1

fac n = n * fac (n-1)

fac maps 0 to 1, and any other integer to the product of
itself and the factorial of its predecessor.

Programming in Haskell, modified from a slide due to G.
Hutton 57

57

Why is Recursion Useful?

n Some functions, such as factorial, are
simpler to define in terms of other
functions

n However, many functions can naturally be
defined in terms of themselves

n One can use induction to prove
correctness of recursive functions

Programming in Haskell, modified from a slide due to G.
Hutton

58

58

Recursion on Lists

Recursion is not restricted to numbers; it can also be used to define
functions on lists

product :: Num a Þ [a] ® a

product [] = 1
product (n:ns) = n * product ns

product maps the empty list to 1, and any non-empty
list to its head multiplied by the product of its tail.

Programming in Haskell, modified from a slide due to G.
Hutton

59

59

Programming in Haskell, A Milanova 60

More Functions on Lists

n sumByTwo. E.g., >sumByTwo [1,2,3,4]

>[3,7]

length’ :: [a] ® Int

length’ [] = 0
length’ (_:xs) = 1 + length’ xs

sumByTwo :: ?

sumByTwo [] = ?
sumByTwo ? = ?

60

16

Multiple Arguments

Functions with more than one argument can also be defined using
recursion. For example:

! Zipping the elements of two lists:

zip :: [a] ® [b] ® [(a,b)]

zip [] _ = []

zip _ [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

Programming in Haskell, modified from a slide due to G.
Hutton

61

61

drop :: ?

! Remove the first n elements from a list:

(++) :: [a] ® [a] ® [a]

! Appending two lists:

Programming in Haskell, modified from a slide due to G.
Hutton

62

62

Exercises
(1) Define the following library functions using recursion:

and :: [Bool] ® Bool

! Decide if all logical values in a list are true:

concat :: [[a]] ® [a]

! Concatenate a list of lists:

Programming in Haskell, modified from a slide due to G.
Hutton

63

63

(!!) :: [a] ® Int ® a

! Select the nth element of a list:

elem :: Eq a Þ a ® [a] ® Bool

! Decide if a value is an element of a list:

replicate :: Int ® a ® [a]

! Produce a list with n identical elements:

Programming in Haskell, modified from a slide due to G.
Hutton

64

64

17

(2) Define a recursive function

merge :: Ord a Þ [a] ® [a] ® [a]

that merges two sorted lists of values to give a single sorted list.
For example:

> merge [2,5,6] [1,3,4]

[1,2,3,4,5,6]

Programming in Haskell, modified from a slide due to G.
Hutton

65

65

(3) Define a recursive function

msort :: Ord a Þ [a] ® [a]

Programming in Haskell, modified from a slide due to G.
Hutton

66

66

Programming in Haskell, A Milanova 67

67

