
1

Programming in Haskell
CSCI-4966 and CSCI-6966
Fall 2024

www.cs.rpi.edu/~milanova/csci4966/

Ana Milanova
Office: Lally 314

Email: milanova@cs.rpi.edu
Office hours: Wednesdays 1pm-2pm, Fridays after class or

by appointment

1

Introductions

n Ana Milanova

n You
n Tell us

n Your name
n Graduate or undergraduate student
n Concentration, interests, research area
n Haskell experience?

Programming in Haskell, A Milanova 2

2

3

Outline

n Logistics
www.cs.rpi.edu/~milanova/csci4966/

n Why Haskell?

n Course topics and homework

n Intro to Haskell
Programming in Haskell, A Milanova

3

Programming in Haskell, A Milanova 4

Logistics

n Course webpage
http://www.cs.rpi.edu/~milanova/csci4966

n Schedule, Reading, Notes
n Schedule, lecture slides and assigned reading

n Submitty
n All homework submission and grades, forum
n Check forum regularly for announcements

4

5

Logistics

n Resources
n Programming in Haskell,
Second Edition by Graham Hutton

n https://www.haskell.org/

Programming in Haskell, A Milanova

5

Programming in Haskell, A Milanova 6

Logistics

n Syllabus
www.cs.rpi.edu/~milanova/csci4966/syllabus.htm

Outcomes, policies and grading

n In-class quizzes (6): 20%
n Programming homework (8-10): 47%
n Project: 25%
n Attendance and participation: 8%

6

http://www.cs.rpi.edu/~milanova/csci4430/
mailto:milanova@cs.rpi.edu
http://www.cs.rpi.edu/~milanova/csci2600/
http://www.cs.rpi.edu/~milanova/csci4450
http://www.cs.rpi.edu/~milanova/csci4966/syllabus.htm

2

Logistics

n Homework is to be completed individually
unless otherwise specified

n Project can be completed individually or in
teams of two (recommended)

n Quizzes are in-class, open-notes, and may
be completed individually or in small groups;
we will drop the lowest quiz

7Programming in Haskell, A Milanova

7

Programming in Haskell, A Milanova 8

Logistics

n Graduate students enrolled in CSCI-6966
n Grade breakdown:

n In-class quizzes (6-8): 17%
n Homework assignments (8-10): 45%
n Project: 30%
n Attendance and participation: 8%

n Some assignments may have additional
problems. Graduate students are expected to
complete a more challenging project

8

Late Homework

n Homework must be submitted in Submitty by
12pm on the due date

n You have 10 late days for the semester, with
a max of 5 late days per assignment

n Exceptions to policy will be granted only in
rare cases

Programming in Haskell, A Milanova 9

9

Academic Integrity

n Trust

n Discussion is allowed, even encouraged

n Taking written notes out of discussion is NOT
allowed. Actual work should be your own

n Posting solutions on public forums (e.g.,
Discord, Github) is not allowed

10Programming in Haskell, A Milanova

10

Why Haskell?

n Acquiring the skill to program in Haskell will
make you a better programmer in any
language

n Haskell has influenced plenty of features now
in “mainstream” programming languages

n Haskell is firmly grounded in theory
n Lambda calculus, type theory, category theory

Programming in Haskell, A Milanova 11

11

List Comprehensions

n Python:

n An AST construct

n Haskell:

n Syntactic sugar over a monadic computation
12

[x for x in range(10)]
[x for x in range(10) if x%2==0]

[x | x<-[0..9]]
[x | x<-[0..9], x`mod`2==0]

Programming in Haskell, A Milanova

12

3

Pattern Matching

n Python, since Python 3.10:

n Haskell:

Programming in Haskell, A Milanova 13

match shape:
case Triangle(point1=p1,point2=p2,point3=p3):
print ((p1,p2,p3))

case Circle(center=(0,0)):
…

case shape of
Triangle p1 p2 p3 -> (p1,p2,p3)
Circle (0,0) -> …

13

Generators

n Python:

Programming in Haskell, A Milanova 14

def inf():
a = 1
while True:

yield a
a = a+1

g = inf()
print(next(g),next(g))

import itertools
s = list(itertools.islice(g,10))

14

Generators

n Haskell:

-- generates the infinite list of integers 1,2,3…

-- yields [1,2,3,4,5,6,7,8,9,10]

Programming in Haskell, A Milanova 15

[1..]

take 10 [1..]

15

Optional Type, and More!

n Python Optional type hint:

n Haskell’s Maybe type:

16

def fun(input: int) -> Optional[int]:

return (1 if f(input) else None)

fun::Int -> Maybe Int

fun input =

if (f input) then Nothing else Just 1

Programming in Haskell, A Milanova

16

17

Outline

n Logistics
www.cs.rpi.edu/~milanova/csci4966/

n Why Haskell?

n Course topics and homework

n Intro to Haskell
Programming in Haskell, A Milanova

17

Course Topics

n Basics
n Types, base types, defining functions, recursion
n List comprehensions, ADTs, pattern matching
n Higher-order functions and recursion patterns
n Interactive programming and basic IO

18Programming in Haskell, A Milanova

18

http://www.cs.rpi.edu/~milanova/csci4966/

4

Course Topics

n More advanced
n The lambda calculus and lazy evaluation
n Parametric polymorphism and type inference
n Type classes

19Programming in Haskell, A Milanova

19

Course Topics

n Advanced
n Monads

n Maybe, List, IO, State and Continuation monads
n Composition
n Parsing with monads

n Functors and applicative functors
n Effectful programming
n Monoids and foldables
n Other, TBD

Programming in Haskell, A Milanova 20

20

Homework Assignments

n There will be 8-10 homework assignments
n Each makes about 4-5% of your grade
n A set of programming problems covering material

n Part of Friday’s lecture will be a lab and at least
part of the homework should be completed by
end of lecture

Programming in Haskell, A Milanova 21

21

Project

n A larger programming assignment
n Project proposal
n Checkpoints
n Coding (of course!)
n Present

n Could be anything: code “from scratch” using
Prelude or use Hackage

n Complete in groups of 2-3 (recommended) or
individually

22Programming in Haskell, A Milanova

22

Intro to Haskell
(slides due to Graham Hutton,
with modifications)

23

What is a Functional
Language?

n Functional programming is style of
programming in which the basic method of
computation is the application of functions
to arguments

n A functional language is one that supports
and encourages the functional style

Opinions differ, and it is difficult to give a precise definition, but
generally speaking:

Programming in Haskell, slide due to G. Hutton

24

5

Example

Summing the integers 1 to 10 in Java:

int total = 0;

for (int i = 1; i £ 10; i++)

total = total + i;

The computation method is variable assignment

25Programming in Haskell, slide due to G. Hutton

25

Example

Summing the integers 1 to 10 in Haskell:

sum [1..10]

The computation method is function application

26Programming in Haskell, slide due to G. Hutton

26

Another Example

Inner product in a “Von Neuman style” language:

c := 0

for i := 1 step 1 until n do

c := c + a[i]*b[i]

Variable assignment and state transition

27
Programming in Haskell, A Milanova; example from John
Backus’s 1977 Turing Award lecture

27

Another Example

Inner product in the functional language FP:

Def InnerProduct =
(Insert +) ∘ (ApplyToAll *) ∘ Transpose

Function application, reduction, higher-order
programming

28
Programming in Haskell, A Milanova; example from John
Backus’s 1977 Turing Award lecture

28

In Haskell

Programming in Haskell, A Milanova 29

ip = sum . (map product) . transpose

29

Historical Background

1930s:

Alonzo Church develops the lambda calculus,
a simple but powerful theory of functions

30Programming in Haskell, slide due to G. Hutton

30

6

Historical Background

1950s:

John McCarthy develops Lisp, the first functional
language, with some influences from the lambda
calculus, but retaining variable assignments

31Programming in Haskell, slide due to G. Hutton

31

Historical Background

1960s:

Peter Landin develops ISWIM, the first pure
functional language, based strongly on the
lambda calculus, with no assignments

32Programming in Haskell, slide due to G. Hutton

32

Historical Background

1970s:

John Backus develops FP, a functional
language that emphasizes higher-order
functions and reasoning about programs

33Programming in Haskell, slide due to G. Hutton

33

Historical Background

1970s:

Robin Milner and others develop ML, the first
modern functional language, which introduced
type inference and polymorphic types

34Programming in Haskell, slide due to G. Hutton

34

Historical Background

1970s - 1980s:

David Turner develops a number of lazy functional
languages, culminating in the Miranda system

35Programming in Haskell, slide due to G. Hutton

35

Historical Background

1987:

An international committee starts the development
of Haskell, a standard lazy functional language

36Programming in Haskell, slide due to G. Hutton

36

7

Historical Background

1990s:

Phil Wadler and others develop type classes and
monads, two of the main innovations of Haskell

37Programming in Haskell, slide due to G. Hutton

37

Historical Background

2003:

The committee publishes the Haskell Report,
defining a stable version of the language; an
updated version was published in 2010

38Programming in Haskell, slide due to G. Hutton

38

Historical Background

2010-date:

Standard distribution, library support, new
language features, development tools, use in
industry, influence on other languages, etc

39Programming in Haskell, slide due to G. Hutton

39

A Taste of Haskell

f [] = []

f (x:xs) = f ys ++ [x] ++ f zs

where

ys = [a | a ¬ xs, a £ x]

zs = [b | b ¬ xs, b > x]

?
40Programming in Haskell, slide due to G. Hutton

40

Defining Characteristics of
Haskell

41

n Functional: functions are first-class values,
computation method is function application

n Pure: there is no mutation, all function calls are
“referential transparency”

n Lazy: expressions are NOT evaluated until they are
needed in computation

n Statically typed: every expression has a type
determined and checked at compile time!

41

Characteristics of Haskell

Programming in Haskell, A Milanova 42

n Syntactic sugar

n Abstraction

n Compact code

n Recursion
n Other…

42

8

43

Outline

n Logistics
www.cs.rpi.edu/~milanova/csci4966/

n Why Haskell?

n Course topics and homework

n Intro to Haskell. Now let’s get started!
Programming in Haskell, A Milanova

43

Glasgow Haskell Compiler

n GHC is the leading implementation of Haskell,
and comprises a compiler and interpreter

n The interactive nature of the interpreter makes it
well suited for teaching and prototyping

n GHC is freely available from:

n You may find the Get Started page useful as
well:

www.haskell.org/downloads

Programming in Haskell, modified from a slide due to G.
Hutton 44

https://www.haskell.org/get-started/

44

Haskell Programming

n We’ll start with the interpreter
n run GHCi and
n an Editor (VSCode, Emacs, vim)

n Later (for project) we’ll program “in the large”:
n Hackage
n cabal
n Modules

Programming in Haskell, A Milanova 45

45

Starting GHCi

$ ghci

GHCi, version X: http://www.haskell.org/ghc/ :? for help

Prelude>

The interpreter can be started from the terminal
command prompt by simply typing ghci:

The GHCi prompt > means that the interpreter is now ready to
evaluate an expression.

Programming in Haskell, slide due to G. Hutton 46

46

For example, it can be used as a desktop calculator
to evaluate simple numeric expressions:

> 2+3*4

14

> (2+3)*4

20

> sqrt (3^2 + 4^2)

5.0

Programming in Haskell, slide due to G. Hutton 47

47

The Standard Prelude

Haskell comes with a large number of standard
library functions. In addition to the familiar
numeric functions such as + and *, the library
also provides many useful functions on lists

• Select the first element of a list:

> head [1,2,3,4,5]
1

Programming in Haskell, slide due to G. Hutton 48

48

http://www.cs.rpi.edu/~milanova/csci4966/

9

> tail [1,2,3,4,5]

?

> [1,2,3,4,5] !! 2

?

> take 3 [1,2,3,4,5]
?

Programming in Haskell, modified from slide due to G.
Hutton 49

49

> drop 3 [1,2,3,4,5]

?

> length [1,2,3,4,5]

?

> sum [1,2,3,4,5]

?

Programming in Haskell, modified from slide due to G.
Hutton 50

50

> product [1,2,3,4,5]

?

> [1,2,3] ++ [4,5]

?

> reverse [1,2,3,4,5]
?

Programming in Haskell, modified from slide due to G.
Hutton 51

51

Function Application

In mathematics, function application is denoted
using parentheses, and multiplication is often
denoted using juxtaposition or space

f(a,b) + c d

Apply the function f to a and b, and add the result to the product of
c and d.

Programming in Haskell, slide due to G. Hutton 52

52

In Haskell, function application is denoted using
space, and multiplication is denoted using *.

f a b + c*d

As previously, but in Haskell syntax.

Programming in Haskell, slide due to G. Hutton 53

53

Moreover, function application is assumed to have
higher priority than all other operators.

f a + b

Means (f a) + b, rather than f (a + b).

Programming in Haskell, slide due to G. Hutton 54

54

10

Examples

Mathematics Haskell

f(x)

f(x,y)

f(g(x))

f(x,g(y))

f(x)g(y)

f x

f x y

f (g x)

f x (g y)

f x * g y

Programming in Haskell, slide due to G. Hutton 55

55

Haskell Scripts

n As well as the functions in the standard
library, you can also define your own
functions

n New functions are defined within a script, a
text file comprising a sequence of definitions

n By convention, Haskell scripts usually have a
.hs suffix on their filename. This is not
mandatory, but is useful for identification
purposes

Programming in Haskell, slide due to G. Hutton 56

56

My First Script

double x = x + x

quadruple x = double (double x)

When developing a Haskell script, it is useful to
keep two windows open, one running an editor for
the script, and the other running GHCi

Start an editor, type in the following two function
definitions, and save the script as test.hs:

Programming in Haskell, slide due to G. Hutton 57

57

$ ghci test.hs

Leaving the editor open, in another window start up
GHCi with the new script:

> quadruple 10
40

> take (double 2) [1,2,3,4,5,6]
[1,2,3,4]

Now both the standard library and the file test.hs
are loaded, and functions from both can be used:

Programming in Haskell, slide due to G. Hutton 58

58

factorial n = product [1..n]

average ns = sum ns `div` length ns

Leaving GHCi open, return to the editor, add the
following two definitions, and resave:

! div is enclosed in back quotes, not forward;

! x `f` y is just syntactic sugar for f x y.

Note:

Programming in Haskell, slide due to G. Hutton 59

59

> :reload
Reading file "test.hs"

> factorial 10
3628800

> average [1,2,3,4,5]
3

GHCi does not automatically detect that the script
has been changed, so a reload command must be
executed before the new definitions can be used:

Programming in Haskell, slide due to G. Hutton 60

60

11

Demo

Programming in Haskell, A Milanova 61

61

Useful GHCi Commands

Command Meaning

:load name load script name
:reload reload current script
:type expr show type of expr
:? show all commands
:quit quit GHCi

Programming in Haskell, modified by a slide due to G.
Hutton 62

62

Naming Requirements

n Function and argument names must begin
with a lower-case letter. For example:

myFun fun1 arg_2 x’

! By convention, list arguments usually have an s suffix on their name. For
example:

xs ns nss
Programming in Haskell, modified from slide due to G.
Hutton 63

! Idiomatic Haskell uses camelCase for variable names:

myFun maxBound numDigits

63

The Layout Rule

In a sequence of definitions, each definition must
begin in precisely the same column:

a = 10

b = 20

c = 30

a = 10

b = 20

c = 30

a = 10

b = 20

c = 30

Programming in Haskell, slide due to G. Hutton 64

64

means

The layout rule avoids the need for explicit syntax
to indicate the grouping of definitions.

a = b + c
where

b = 1
c = 2

d = a * 2

a = b + c
where

{b = 1;
c = 2}

d = a * 2

implicit grouping explicit grouping

Programming in Haskell, slide due to G. Hutton 65

65

To Get Started

n Download and install GHC from haskel.org.
Run GHCi. Load and reload a .hs program.

n Fix the syntax errors in the program below
and test your solution using GHCi.

Programming in Haskell, modified from slide due to G.
Hutton

N = a ’div’ length xs

where

a = 10

xs = [1,2,3,4,5]

66

66

12

To Get Started

n Define last’, your implantation of library
function last that selects the last element of a
list

n Similarly, define init’ that like the library
function init removes the last element from a
list

Programming in Haskell, A Milanova 67

Solve the problems below using only functions
and constructs introduced in this lecture. Hint:
list comprehensions may come in handy.

67

To Get Started

n Define sumsq that takes a positive integer n
and returns the sum of squares of first n ints:

n Write function comb that takes positive
integers m and n and returns “n choose m”:

n Write function prime that takes a positive
integer n and returns 0 if n is prime, and
some positive integer otherwise

Programming in Haskell, A Milanova 68

comb n m = n!/(m!*(m-n)!)

sumsq n = 12 + 22 + ... + n2

68

