Monad Transformers (based
on notes by Stephanie
Weirich)

i Schedule

| | pIESEIauuns | |

Tue Nov 26 Property Testing B PS8 due on Tuesday
and QuickCheck Lecture Week14
Lecture14.hs
Tue Dec 3 Lecture Week15 Checkpoint #2: attend office
Fri Dec 6 Transformers Lecture15.hs hours this week (or earlier)

Lecture15’.hs
Jumbo Quiz 6 on Fri

Project due
5-8 min presentation in class

[
Monad

Tue Dec 10 Project
presentations

Programming in Haskell, A Milanova 2

i Monads are Useful!

We programmed many monadic computations

Maybe, [] and (Either a) monads handle errors

(State s) emulates stateful computations in a pure language

Parser enables convenient encoding of recursive-descent parsers

(Gen a) delivers powerful random test generation methodology

(I0 a) “hides” computation with inherent side effects

Programming in Haskell, A Milanova

i Outline

= Exception and State monads
= Monad transformers

= Step 1: Bottling up monad features into type classes
= Step 2: A Jumbo monad
= Step 3: Instances of monad transformers
= Step 4: Lifting
= The big picture

Download Lecture15.hs and code along

Programming in Haskell, A Milanova

* Exception Monad

An expression language with only a division operation and an
evaluation function:

What can go wrong and what can we do to fix?

One way is a default value, another is the (Either a) monad we
used in zipTree and in Parsec

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

Two terms:

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

With an (Either a) monad a Left value means an error
happened somewhere along the evaluation of the tree, and a
Right n means evaluation succeeded and result is n

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

For convenience, let’s create a unified view of Expr: showEx for
printing error message and goEx for evaluation

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich) 8

* State Monad

We now want to create a profiler that counts how many division
ops an expression triggers, and the state monad (State s)
comes in useful

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich) 9

Analogously to exception monad we follow unified view: showSt
for printing result of runState and goSt for evaluation

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich) 10

10

i Monad Transformers

So far, each monad does one thing. Exception monad does
exception handling and state monad does stateful computation

Our goal is to combine functionality, i.e., have an expression
evaluation that does both exception handling stateful traversal

Solution: add functionality as type-level functions from monad to
monad with monad transformers. Identity monad passed to a
StateT monad transformer produces a monad with state
functionality, which in turn is passed to an ExceptT monad
transformer that adds exception functionality. Etc.

Decorator design patter is a useful analogy!

Programming in Haskell, A Milanova 11

11

Step 1: A Type Class

* Describing Features

First step is to define a type class that describes a monad with
specific features

MonadError e is a monad with the exception handling feature:

is the type of the error message, e.g., String; m a is the monad
encapsulating value of type a, e.g., the Int result of evaluation

Let's make (Either e) instance of the (MonadError e) type class

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich) 12

12

* Aside {-# LANGUAGE MultiParamTypeClasses #-}

We’ve seen many type classes, and they were all instantiated with
either kind * (read: Type) or kind * -> * (read: Type goes to Type)

MonadError is a multi-parameter type class. What is its kind?

e ﬁamu m pacom
Programming in Haskell, A Milanova 13

13

Remove signature of evalEx and replace Left (errorS x y)
with throwError (errorS x y):

Return value is now a generic m Int where mis an instance of
(MonadError String) > evaltx or iz Erther S'#hg Lut 14

14

Analogously to MonadError e, MonadState s is a monad
defining the key features of state: get and put

is the type of state, e.g., Int, m ais the monad encapsulating value
of type a, e.g., the Int result of evaluation

Make (State s) aninstance of the (MonadState s) type class:

S

15

15

Analogously to MonadError, let's remove type signature and
replace S.get and S. put with get and put (the interface of
StateMonad):

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich) 16

16

* Aside {-# LANGUAGE ScopedTypeVariables #-}

What happens if we did this:

A type inference error, algorithm is unable to deduce a type for
term evalSt. (s :: Int) explicitly instantiates to
MonadState Int.

Programming in Haskell, A Milanova (based on lecture by

Stephanie Weirich) 17

17

Step 2: A New Jumbo

* Monad

evalJumbo has the functionality for exception handling and
functionality for stateful computation. Note that m is both a
and a (MonadState Int)

MonadError String

throwError $ stateS rx ry

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich) 18

18

Question is, how do we construct a monad to instantiate and run
evalJumbo with?

First, we need a newtype

Next, define return and >>= to complete the instance of Monad.
(Don’t forget that Haskell forces us to write Applicative and Functor
as well.)

Finally, make Jumbo an instance of MonadError String
(throwError) and MonadState Int (getand put)

Programming in Haskell, A Milanova (based on lecture by

Stephanie Weirich) 19

19

Our Jumbo monad will be a jumble of (Either e) monad
functionality, if you remember from awhile ago, and (State s)
functionality. We did both in Lecture11 on the State monad

We already wrote this code. It is even more annoying now as we
need to combine with (Either e) and use a case-of

Programming in Haskell, A Milanova (based on lecture by

Stephanie Weirich) 20

20

10

We shouldn’t forget that for the monad to work in Haskell, it needs
to be Applicative as well:

and a Functor:

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

21

Finally, let's instantiate MonadError String

and MonadState Int type classes

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

22

11

Take some time to call evalJumbo

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich) 23

23

Step 3: Instances of Monad
* Transformers

A better way to get a “jumbo monad” is to add features to existing
monads

A monad transformer is a type operator t that maps an existing
monad m to a new monad t m. New monad “inherits” features of m

We'll start with adding exception functionality and this newtype. What
is its kind?

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

24

12

ExceptT takes argument e (i.e., the Left part, typically String), a
monad m and an a (i.e., in our example a is Int, the type of the
“happy path” result of expression evaluation)

ExceptT is a lot like Either before, except that here Either is
enclosed into a monad

So, what comes next? Notice the structure of ExceptT: We can
make (ExceptT e m) a monad, just as we made (Either e) a
monad before

Importantly, (ExceptT e m) is of the right kind . #— &

Programming in Haskell, A Milanova (based on lecture by 2
Stephanie Weirich) 5

25

We’'ll use runExceptT and MkExc similarly to the Jumbo monad

Alot to unpack... return wraps value v, firstin Right, then this
monad

>>= unwraps argument eta and extracts s. s can be either Left
or Right. Left simply propagates. Right first triggers (f v) then
runExceptT (f v)

26

13

To conclude, make (ExceptT e m) an instance of
(MonadError e) implementing throwError

Lots to unpack again... return wraps the Either value, Left in
this case, into parameter monad m

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

27

Now we’ll define the State functionality starting with this newtype:
What is its kind?

Notice the similarity with the ExceptT newtype:

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

28

14

We’'ll use runStateT and MkStateT analogously to ExceptT

To unpack this... encapsulated type is NOT m (s -> (a,s))

>>=runs sta on s and extracts (r,s’). ltthenruns (f r)
monad on s’, much like what the old state transformer did

Programming in Haskell, A Milanova (based on lecture by 2
Stephanie Weirich) 9

29

What remains is making (StateT s m) an instance of
(MonadState s) by implementing put and get

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich) 30

30

15

i Step 4: Lifting

So far, we have

Provided m is a monad, (ExceptT e m) is a Monad

Thus, we can use return and >>= to construct (complex)
exception-throwing computations

Provided m is a monad, (ExceptT e m) is also a (MonadError e)
Thus, we can use throwError

What we don’t have, but would be nice to have

(ExceptT e m) also be a (MonadState s)
Then we’'ll be able to use get and put as well
And as you might expect, we’ll instantiate m with some
MonadState instance and reuse m's implementation of get
and put

Programming in Haskell, A Milanova 31

31

Analogously, so far, we have

Provided m is a monad, (StateT s m) is a monad

Thus, we can use return and >>= to construct (complex)
stateful computations

Provided m is a monad, (StateT s m) is also a (MonadState s)
Thus, we can use get and put

What we don’t have, but would be nice to have

(StateT s m) also be a (MonadError e)
Then we'll be able to use throwError

Same here, we'll instantiate m with a MonadError and reuse
its throwError

Programming in Haskell, A Milanova 32

32

16

The whole point is to instantiate and run evalJumbo. It uses
MonadError features and MonadState features

To run evalJumbo, we need to instantiate (m Int) into either
StateT Int (..) IntorExceptT String (.) Int

Programming in Haskell, A Milanova 33

33

{-# LANGUAGE KindSignatures #-}

Generic solution: the MonadTrans type class that, informally
speaking, defines an interface for lifting (i.e., transforming) one
monad into another

Notes:

We need to specify the kind for the monad transformer parameter

Now, move to Lecture15’.hs

34

34

Let's pick evalJumbo :: Expr -> StateT Int (.) Int

First, make (StateT s) instance of MonadTrans. Why (StateT s)?

And finally, using 11 ft, we make StateT s m an error monad:

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich) 35

35

So far so good!

If mis an instance of (MonadError e), then we have that
(StateT s m) is an instance of (MonadError e) as well, and it
supports throwError

This is hard to wrap head around, but bottom line is callee
throwError comes from inner monad m:

Programming in Haskell, A Milanova

36

18

So how do we use the (StateT s m) monad transformer?

Remember what our goal was: construct a computation that has
both MonadError (throwError) and MonadState (get and
put) features, then instantiate evalJumbo

One way is to instantiate m with (Either String), provided that
(Either e) instantiates (MonadError e)

Programming in Haskell, A Milanova

37

Another way is to instantiate m with (ExceptT String Identity),
having in mind the definition of ExceptT:

What happens if we run this:

Ah, value we want (either Raise error message or Int Result) is
enclosed into a MKExc constructor, as well as an Identity monad

Programming in Haskell, A Milanova 38

38

19

As an exercise, write a goStEx wrapper which will avoid the mess

Programming in Haskell, A Milanova 39

39

‘ Exercise

Let’s turn around: evalJumbo :: Expr -> ExceptT String (..) Int

First, make (ExceptT e) instance of MonadTrans:

Next, make ExceptT e m a state monad (provide m is a state
monad):

lo

20

We have
evalJumbo ok :: ExceptT String (StateT Int Identity) Int

Do you get the same result?

Programming in Haskell, A Milanova 41

41

* Big Picture

What is the point of all this?

We have many monads that do one thing: e.g., ExceptT, StateT,
SomeT

We’ll make those monads into transformers by having each
ExceptT, StateT, SomeT define corresponding instance of
MonadTrans

We can compose these in some sequence producing a Jumbo
monad in a way that is very similar to the Decorator Design pattern

Programming in Haskell, A Milanova 42

42

21

