
1

Monad Transformers (based
on notes by Stephanie
Weirich)

1

Schedule

Programming in Haskell, A Milanova 2

2

2

Monads are Useful!

Programming in Haskell, A Milanova 3

! Maybe, [] and (Either a) monads handle errors

! (State s) emulates stateful computations in a pure language

! We programmed many monadic computations

! Parser enables convenient encoding of recursive-descent parsers

! (Gen a) delivers powerful random test generation methodology

! (IO a) “hides” computation with inherent side effects

3

Outline

n Exception and State monads
n Monad transformers

n Step 1: Bottling up monad features into type classes
n Step 2: A Jumbo monad
n Step 3: Instances of monad transformers
n Step 4: Lifting

n The big picture

Download Lecture15.hs and code along

4Programming in Haskell, A Milanova

4

3

Exception Monad

5

! An expression language with only a division operation and an
evaluation function:

data Expr = Val Int
| Div Expr Expr
deriving (Show)

eval (Val i) = i
eval (Div e1 e2) = eval e1 `div` eval e2

! What can go wrong and what can we do to fix?

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

! One way is a default value, another is the (Either a) monad we
used in zipTree and in Parsec

5

6

! Two terms:

ok :: Expr
ok = Div (Div (Val 1800) (Val 2)) (Val 21)

err :: Expr
err = Div (Val 2) (Div (Val 1) (Div (Val 2) (Val 3)))

> eval ok

> eval err

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

6

4

7

! With an (Either a) monad a Left value means an error
happened somewhere along the evaluation of the tree, and a
Right n means evaluation succeeded and result is n

errorS :: Show a => a -> a -> String
errorS x y = “Error dividing “ ++ show x ++ “ by “ ++ show y

-- evalEx is the exception-throwing eval
evalEx :: Expr -> Either String Int -- Int is encaps. value
evalEx (Val n) = return n
evalEx (Div x y) = …

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

7

8

! For convenience, let’s create a unified view of Expr: showEx for
printing error message and goEx for evaluation

showEx :: (Int -> String) -> Either String Int -> String
showEx _ (Left m) = “Raise: “ ++ m
showEx s (Right n) = “Result: “ ++ s n

goEx :: Expr -> String
goEx e = evalEx e & showEx show
-- `&` is reverse application: partial function (showEx show)
-- is applied on (evalEx e) of Either String a type

> goEx ok

> goEx err

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

8

5

9

! We now want to create a profiler that counts how many division
ops an expression triggers, and the state monad (State s)
comes in useful

-- evalSt is a profiling eval, independent of previous one
evalSt :: Expr -> State Int Int --- encapsulated value is Int
evalSt (Val n) = return n
evalSt (Div x y) = do rx <- evalSt x

ry <- evalSt y
s <- S.get
S.put (s + 1)
return (rx `div` ry)

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

State Monad

9

10

! Analogously to exception monad we follow unified view: showSt
for printing result of runState and goSt for evaluation

-- shows result of runState parameterized by f to show value
showSt :: (a -> String) -> (a, Int) -> String
showSt f (v, s) = f v ++ “, count: “ ++ show s

-- profiling eval
goSt :: Expr -> String
goSt e = evalSt e & flip S.runState 0 & showSt show

> goSt ok

> goSt err

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

10

6

Monad Transformers

Programming in Haskell, A Milanova 11

! So far, each monad does one thing. Exception monad does
exception handling and state monad does stateful computation

! Our goal is to combine functionality, i.e., have an expression
evaluation that does both exception handling stateful traversal

! Solution: add functionality as type-level functions from monad to
monad with monad transformers. Identity monad passed to a
StateT monad transformer produces a monad with state
functionality, which in turn is passed to an ExceptT monad
transformer that adds exception functionality. Etc.

! Decorator design patter is a useful analogy!

11

12

! First step is to define a type class that describes a monad with
specific features

class Monad m => MonadError e m where
throwError :: e -> m a

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

Step 1: A Type Class
Describing Features

! MonadError e is a monad with the exception handling feature:

e is the type of the error message, e.g., String; m a is the monad
encapsulating value of type a, e.g., the Int result of evaluation

! Let’s make (Either e) instance of the (MonadError e) type class

instance MonadError e (Either e) where
-- throwError :: e -> Either e a
throwError msg = …

12

7

Aside

Programming in Haskell, A Milanova 13

> :k MonadError

! MonadError is a multi-parameter type class. What is its kind?

! We’ve seen many type classes, and they were all instantiated with
either kind * (read: Type) or kind * -> * (read: Type goes to Type)

> :k Show

> :k Eq

> :k Monad

> :k Foldable

{-# LANGUAGE MultiParamTypeClasses #-}

13

14

! Remove signature of evalEx and replace Left (errorS x y)
with throwError (errorS x y):

errorS :: Show a => a -> a -> String
errorS x y = “Error dividing “ ++ show x ++ “ by “ ++ show y

evalEx :: Expr -> Either String Int
evalEx (Val n) = return n
evalEx (Div x y) = do rx <- evalEx x

ry <- evalEx y
if ry == 0 then throwError (errorS rx ry)
else return (rx `div` ry)

> :t evalEx
evalEx :: MonadError String m => Expr -> m Int

! Return value is now a generic m Int where m is an instance of
(MonadError String)

14

8

15

class Monad m => MonadState s m where
get :: m s
put :: s -> m ()

! Analogously to MonadError e, MonadState s is a monad
defining the key features of state: get and put

s is the type of state, e.g., Int, m a is the monad encapsulating value
of type a, e.g., the Int result of evaluation

! Make (State s) an instance of the (MonadState s) type class:

instance MonadState s (State s) where
-- get :: State s s
get = S.get
-- put :: s -> State s ()
put = S.put

15

16

! Analogously to MonadError, let’s remove type signature and
replace S.get and S.put with get and put (the interface of
StateMonad):

evalSt :: Expr -> State Int Int
evalSt (Val n) = return n
evalSt (Div x y) = do rx <- evalSt x

ry <- evalSt y
(s :: Int) <- get
put (s + 1)
return (rx `div` ry)

> :t evalSt

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

16

9

17

! What happens if we did this:

evalSt :: Expr -> State Int Int
evalSt (Val n) = return n
evalSt (Div x y) = do rx <- evalSt x

ry <- evalSt y
s <- get -- <--
put (s + 1)
return (rx `div` ry)

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

Aside

! A type inference error, algorithm is unable to deduce a type for
term evalSt. (s :: Int) explicitly instantiates to
MonadState Int.

{-# LANGUAGE ScopedTypeVariables #-}

17

Step 2: A New Jumbo
Monad

18

! evalJumbo has the functionality for exception handling and
functionality for stateful computation. Note that m is both a
(MonadError String) and a (MonadState Int)

evalJumbo :: (MonadError String m, MonadState Int m) =>
Expr -> m Int

evalJumbo (Val n) = return n
evalJumbo (Div x y) = do rx <- evalJumbo x

ry <- evalJumbo y
if ry == 0

then throwError $ stateS rx ry
else do (s :: Int) <- get

put (s + 1)
return (rx `div` ry)

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

18

10

19

! Question is, how do we construct a monad to instantiate and run
evalJumbo with?

newtype Jumbo a =
Jumbo { runJumbo :: Int -> Either String (a, Int) }

! First, we need a newtype

! Next, define return and >>= to complete the instance of Monad.
(Don’t forget that Haskell forces us to write Applicative and Functor
as well.)

! Finally, make Jumbo an instance of MonadError String
(throwError) and MonadState Int (get and put)

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

19

20

instance Monad Jumbo where
-- return :: …
return v = …
-- >>= :: …
ja >>= f = …

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

! Our Jumbo monad will be a jumble of (Either e) monad
functionality, if you remember from awhile ago, and (State s)
functionality. We did both in Lecture11 on the State monad

! We already wrote this code. It is even more annoying now as we
need to combine with (Either e) and use a case-of

newtype Jumbo a = Jumbo { runJumbo :: Int -> Either String (a, Int) }

20

11

21

instance Applicative Jumbo where
-- pure :: a -> Jumbo a
pure = return
-- (<*>) :: Jumbo (a -> b) -> Jumbo a -> Jumbo b
(<*>) = ap

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

! We shouldn’t forget that for the monad to work in Haskell, it needs
to be Applicative as well:

newtype Jumbo a = Jumbo { runJumbo :: Int -> Either String (a, Int) }

! and a Functor:

instance Functor Jumbo where
-- fmap :: (a -> b) -> Jumbo a -> Jumbo b
fmap = liftM

21

22

instance MonadError String Jumbo where
-- throwError :: String -> Jumbo a
throwError msg = Jumbo $ _ -> Left msg

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

! Finally, let’s instantiate MonadError String

newtype Jumbo a = Jumbo { runJumbo :: Int -> Either String (a, Int) }

instance MonadState Int Jumbo where
-- get :: Jumbo Int
get = Jumbo $ \s -> Right (s,s)
-- put :: Int -> Jumbo ()
put s = Jumbo $ _ -> Right ((),s)

! and MonadState Int type classes

22

12

23

goJumbo :: …
goJumbo exp = evalJumbo exp &

flip runJumbo 0 & showJumbo
where showJumbo :: …

showJumbo = showEx (showSt show)

> goJumbo ok

> goJumbo err -- the error term

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

! Take some time to call evalJumbo

newtype Jumbo a = Jumbo { runJumbo :: Int -> Either String (a, Int) }

23

Step 3: Instances of Monad
Transformers

24

! A better way to get a “jumbo monad” is to add features to existing
monads

! A monad transformer is a type operator t that maps an existing
monad m to a new monad t m. New monad “inherits” features of m

newtype ExceptT e m a = MkExc { runExceptT :: m (Either e a) }

> :k ExceptT

We’ll start with adding exception functionality and this newtype. What
is its kind?

> :k ExceptT
ExceptT :: * -> (* -> *) -> * -> *

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

24

13

25

-- ExceptT :: Type -> (Type -> Type) -> Type -> Type
newtype ExceptT e m a = MkExc { runExceptT :: m (Either e a) }

! ExceptT takes argument e (i.e., the Left part, typically String), a
monad m and an a (i.e., in our example a is Int, the type of the
“happy path” result of expression evaluation)

! ExceptT is a lot like Either before, except that here Either is
enclosed into a monad

! So, what comes next? Notice the structure of ExceptT: We can
make (ExceptT e m) a monad, just as we made (Either e) a
monad before

! Importantly, (ExceptT e m) is of the right kind
Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

25

26

instance Monad m => Monad (ExceptT e m) where
return v = MkExc $ return (Right v)

-- >>= :: …
eta >>= f = MkExc $ runExceptT eta >>=

\s -> case s of
Left e -> return (Left e)
Right v -> runExceptT (f v)

! A lot to unpack… return wraps value v, first in Right, then this
monad

-- ExceptT :: Type -> (Type -> Type) -> Type -> Type
newtype ExceptT e m a = MkExc { runExceptT :: m (Either e a) }

! We’ll use runExceptT and MkExc similarly to the Jumbo monad

! >>= unwraps argument eta and extracts s. s can be either Left
or Right. Left simply propagates. Right first triggers (f v) then
runExceptT (f v)

26

14

27

instance Monad m => MonadError e (ExceptT e m) where
-- throwError :: e -> ExceptT e m a
throwError msg = MkExc (return (Left msg))

! Lots to unpack again… return wraps the Either value, Left in
this case, into parameter monad m

-- ExceptT :: Type -> (Type -> Type) -> Type -> Type
newtype ExceptT e m a = MkExc { runExceptT :: m (Either e a) }

! To conclude, make (ExceptT e m) an instance of
(MonadError e) implementing throwError

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

27

28

newtype StateT s m a = MkStateT { runStateT :: (s -> m (a,s)) }

> :k StateT

Now we’ll define the State functionality starting with this newtype:
What is its kind?

> :k StateT
StateT :: * -> (* -> *) -> * -> *

Notice the similarity with the ExceptT newtype:

-- ExceptT :: Type -> (Type -> Type) -> Type -> Type
newtype ExceptT e m a = MkExc { runExceptT :: m (Either e a) }

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

28

15

29

instance Monad m => Monad (StateT s m) where
return v = MkStateT $ \s -> return (v,s)

-- >>= :: …
sta >>= f = MkStateT $ \s -> do

(r,s’) <- runStateT sta s
runStateT (f r) s’

! To unpack this… encapsulated type is NOT m (s -> (a,s))

-- StateT :: Type -> (Type -> Type) -> Type -> Type
newtype StateT s m a = MkStateT { runStateT :: s -> m (a,s) }

! We’ll use runStateT and MkStateT analogously to ExceptT

! >>= runs sta on s and extracts (r,s’). It then runs (f r)
monad on s’, much like what the old state transformer did

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

29

30

instance Monad m => MonadState s (StateT s m) where
-- get :: StateT s m s
get = MkStateT $ \s -> return (s,s)
-- put :: s -> StateT s m ()
put = MkStateT $ _ -> return ((),s)

! What remains is making (StateT s m) an instance of
(MonadState s) by implementing put and get

-- StateT :: Type -> (Type -> Type) -> Type -> Type
newtype StateT s m a = MkStateT { runStateT :: s -> m (a,s) }

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

30

16

31

So far, we have
! Provided m is a monad, (ExceptT e m) is a Monad

! Thus, we can use return and >>= to construct (complex)
exception-throwing computations

! Provided m is a monad, (ExceptT e m) is also a (MonadError e)
! Thus, we can use throwError

! (ExceptT e m) also be a (MonadState s)
! Then we’ll be able to use get and put as well
! And as you might expect, we’ll instantiate m with some

MonadState instance and reuse m’s implementation of get
and put

Step 4: Lifting

What we don’t have, but would be nice to have

Programming in Haskell, A Milanova

31

32

Analogously, so far, we have
! Provided m is a monad, (StateT s m) is a monad

! Thus, we can use return and >>= to construct (complex)
stateful computations

! Provided m is a monad, (StateT s m) is also a (MonadState s)
! Thus, we can use get and put

! (StateT s m) also be a (MonadError e)
! Then we’ll be able to use throwError
! Same here, we’ll instantiate m with a MonadError and reuse

its throwError

What we don’t have, but would be nice to have

Programming in Haskell, A Milanova

32

17

33

! The whole point is to instantiate and run evalJumbo. It uses
MonadError features and MonadState features

evalJumbo :: (MonadError String m, MonadState Int m) =>
Expr -> m Int

evalJumbo (Val n) = return n
evalJumbo (Div x y) = do rx <- evalJumbo x

ry <- evalJumbo y
if ry == 0

then throwError $ stateS rx ry
else do (s :: Int) <- get

put (s + 1)
return (rx `div` ry)

! To run evalJumbo, we need to instantiate (m Int) into either
StateT Int (…) Int or ExceptT String (…) Int

Programming in Haskell, A Milanova

33

34

class MonadTrans (t :: (Type -> Type) -> Type -> Type) where
lift :: Monad m => m a -> t m a

! Generic solution: the MonadTrans type class that, informally
speaking, defines an interface for lifting (i.e., transforming) one
monad into another

! We need to specify the kind for the monad transformer parameter

Notes:

{-# LANGUAGE KindSignatures #-}

! Now, move to Lecture15’.hs

34

18

35

instance MonadTrans (StateT s) where
-- lift :: m a -> StateT s m a
-- Extracts value “a” from argument monad and
-- encapsulates into a state:
lift ma = MkStateT $ \s -> do r <- ma

return (r,s)

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

! First, make (StateT s) instance of MonadTrans. Why (StateT s)?

instance MonadError e m => MonadError e (StateT s m) where
throwError :: e -> (StateT s m) a –- generic was e -> m a
throwError err = lift $ throwError err

! And finally, using lift, we make StateT s m an error monad:

! Let’s pick evalJumbo :: Expr -> StateT Int (…) Int

35

Programming in Haskell, A Milanova 36

! So far so good!

! If m is an instance of (MonadError e), then we have that
(StateT s m) is an instance of (MonadError e) as well, and it
supports throwError

instance MonadError e m => MonadError e (StateT s m) where
throwError :: e -> (StateT s m) a
throwError err = lift $ throwError err

lift (throwError err) is of type State s m a
throwError err is of type m a

(as lift is m a -> State s m a)

! This is hard to wrap head around, but bottom line is callee
throwError comes from inner monad m:

36

19

Programming in Haskell, A Milanova 37

! So how do we use the (StateT s m) monad transformer?

evalJumbo :: (MonadError String m, MonadState Int m) =>
Expr -> m Int

…

! Remember what our goal was: construct a computation that has
both MonadError (throwError) and MonadState (get and
put) features, then instantiate evalJumbo

! One way is to instantiate m with (Either String), provided that
(Either e) instantiates (MonadError e)

> runStateT (evalJumbo ok :: StateT Int (Either String) Int) 0

> runStateT (evalJumbo err :: StateT Int (Either String) Int) 0

37

Programming in Haskell, A Milanova 38

! Another way is to instantiate m with (ExceptT String Identity),
having in mind the definition of ExceptT:

> runStateT (evalJumbo ok :: StateT Int (ExceptT String Identity) Int) 0

-- ExceptT :: Type -> (Type -> Type) -> Type -> Type
newtype ExceptT e m a = MkExc { runExceptT :: m (Either e a) }

! What happens if we run this:

! Ah, value we want (either Raise error message or Int Result) is
enclosed into a MkExc constructor, as well as an Identity monad

38

20

Programming in Haskell, A Milanova 39

> runExceptT
(runStateT

(evalJumbo ok :: StateT Int (ExceptT String Identity) Int) 0)
Identity (Right (42,2))

> runExceptT
(runStateT

(evalJumbo err :: StateT Int (ExceptT String Identity) Int) 0)
Identity (Left "Error dividing 1 by 0")

! As an exercise, write a goStEx wrapper which will avoid the mess

39

40

instance MonadTrans (ExceptT e) where
-- lift :: m a -> ExceptT e m a
-- Extracts value from ma and encloses into Right
lift ma = …

! First, make (ExceptT e) instance of MonadTrans:

instance MonadState s m => MonadState s (ExceptT e m) where
get :: ExceptT e m s
get = …
put :: s -> Except e m ()
put v = …

! Next, make ExceptT e m a state monad (provide m is a state
monad):

! Let’s turn around: evalJumbo :: Expr -> ExceptT String (…) Int

Exercise

40

21

Programming in Haskell, A Milanova 41

> …

> …

! We have
evalJumbo ok :: ExceptT String (StateT Int Identity) Int

! Do you get the same result?

41

Big Picture

Programming in Haskell, A Milanova 42

! What is the point of all this?

! We have many monads that do one thing: e.g., ExceptT, StateT,
SomeT

! We’ll make those monads into transformers by having each
ExceptT, StateT, SomeT define corresponding instance of
MonadTrans

! We can compose these in some sequence producing a Jumbo
monad in a way that is very similar to the Decorator Design pattern

42

