
1

Property Testing (based on
notes by Stephanie Weirich)

1

Schedule

Programming in Haskell, A Milanova 2

2

2

Outline

n Property-based testing with QuickCheck
n QuickCheck properties
n quickCheck function
n Conditional testing

n Generating data with QuickCheck
n Generator combinators
n Generator monad Gen a
n Arbitrary type class
n Shrinking

3Programming in Haskell, A Milanova

3

Property-based Testing

Programming in Haskell, A Milanova 4

! QuickCheck is a technique that exploits type classes and monads
to deliver a powerful automatic testing methodology

! QuickCheck is based on the idea of property-based testing.
Instead of writing unit tests, one writes properties of a function;
QuickCheck then automatically generates random tests that run
and verify (or falsify) that function implements those properties

! Properties are specifications

4

3

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich) 5

! QuickCheck emphasizes specifications. Therefore:

1. Developer is forced to think about what the code should do

2. Tool finds corner cases that leads to either code or specification
getting fixed (property specification can be incorrect!)

3. Specifications live on as rich, machine-checkable documentation
of how the code should behave

5

Installation

n cabal install QuickCheck

n Download Lecture14.hs and code along

Programming in Haskell, A Milanova 6

6

4

Properties

7

! A QuickCheck property is a function returning a Bool. E.g.:

prop_revapp :: [Int] -> [Int] -> Bool
prop_revapp xs ys = reverse (xs ++ ys) ==

reverse xs ++ reverse ys

! Property is an assertion about the function (reverse in our case)
that the programmer believes is true

! QuickCheck convention is to use prefix prop_ for properties

! Note the monomorphic types: [Int] -> [Int] -> Bool rather
than [a] -> [a] -> Bool. This is necessary for QuickCheck to
generate test cases; naturally, it can generate tests for a concrete
type (e.g. Int)

7

8

! To check a property, we invoke quickCheck with that property:

quickCheck :: (Testable prop) => prop -> IO ()
-- Defined in Test.QuickCheck.Test

! Only properties that are in the Testable type class can be
checked. [Int] -> [Int] -> Bool is a “Testable” property so
we can try quickCheck on the prop_revapp example

! quickCheck runs in the IO monad. Therefore, we’ll run it in ghci
to see the result

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

8

5

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich 9

! Back to our property:

prop_revapp :: [Int] -> [Int] -> Bool
prop_revapp xs ys = reverse (xs ++ ys) ==

reverse xs ++ reverse ys

! So, what happens when we run quickCheck on our property?

> :l Lecture14.hs
> import Test.QuickCheck
> quickCheck prop_revapp

9

10

! Let’s run with the counter example suggested by QuickCheck:

> prop_revapp [0] [1]

! So, what went wrong?

! Well, QuickCheck fails if either code is wrong, or property is wrong.
In this case, our property is wrong. Should be:

prop_revapp_ok :: [Int] -> [Int] -> Bool
prop_revapp_ok xs ys = reverse (xs ++ ys) ==

reverse ys ++ reverse xs
Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

10

6

Programming in Haskell, A Milanova 11

! Running the new property should pass:

> quickCheck prop_revapp_ok
+++ Ok, passed 100 tests.

! We can ask QuickCheck to generate and test with more than 100
tests:

> quickCheckN n = QC.quickCheck . QC.withMaxSuccess n
> :t quickCheckN
(Testable p) => Int -> p -> IO ()
> quickCheckN 1000 prop_revapp_ok

11

QuickCheck QuickSort

12

! Here is a version of QuickSort:

qsort :: forall a. Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort lhs ++ (x : qsort rhs)

where lhs = [y | y <- xs, y < x]
rhs = [z | z <- xs, z > x]

! Testing qsort in ghci:

> qsort [10,9..1] > qsort $ [2,4..20] ++ [1,3..11]

! Looks good, but something’s not quite right. Can you spot it?
Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

12

7

13

! What are some properties that we might want to check?

! Let’s start with simplest one, whether result list is ordered

isOrdered (x:y:zs) =
isOrdered …
isOrdered …

prop_qsort_isOrdered :: …
prop_qsort_isOrdered xs =

> quickCheckN 1000 prop_qsort_isOrdered

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

13

14

! More properties. Idempotency is the property that applying qsort
more than once does not change result:

prop_qsort_idemp :: …
prop_qsort_idemp xs = qsort (qsort xs) ==

qsort xs

> quickCheckN 1000 prop_qsort_idemp

! Passed again, so far so good!

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

14

8

Conditional Properties

15

! More properties. Minimal element should be head of the list and
maximal element should be last of the list:

prop_qsort_min :: [Int] -> Bool
prop_qsort_min xs = head (qsort xs) ==

minimum xs

> quickCheck prop_qsort_min
*** Failed! Exception: 'Prelude.head: empty list' (after 1 test):
[]

! These properties make sense only if the list is non-empty

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

15

16

! We need a conditional property where output satisfied property
only if the input meets the precondition (non-empty in this case):

prop_qsort_nn_min :: [Int] -> Property
prop_qsort_nn_min xs = not (null xs) ==>

head (qsort xs) == minimum xs

> quickCheckN 1000 prop_qsort_nn_min
+++ OK, passed 1000 tests; 170 discarded.

! What does 170 discarded mean?

! Note: result type is now Property, not Bool. ==> is a
QuickCheck combinator that allows us to write more complex
property checks

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

16

9

17

! Another way to test is that our implementation is behaviorally
equivalent to an existing one:

prop_qsort_sort :: [Int] -> Bool
prop_qsort_sort xs = qsort xs == List.sort xs

> quickCheckN 1000 prop_qsort_sort

! And here we go, a counterexample:

> qsort [0,0] -- [0,0] is a counterexample

! Testing against implementation of sort in List.sort:

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

17

18

! Looking back at qsort:

! The problem is duplicate elements; either qsort assumes a single
occurrence of x as precondition, or it intentionally discards
duplicates

! Is this a bug or a feature? Maybe the developer wanted qsort to
leave only distinct elements. Let’s assume this is the case and test

qsort :: forall a. Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort lhs ++ (x : qsort rhs)

where lhs = [y | y <- xs, y < x]
rhs = [z | z <- xs, z > x]

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

18

10

Programming in Haskell, A Milanova 19

isDistinct :: Eq a => [a] -> Bool
isDistinct (x:ys) = …
isDistinct [] = …

prop_is_distinct :: [Int] -> Bool
prop_is_distinct = isDistinct . qsort

! Test qsort assuming it produces only distinct elements by design:

> quickCheckN 1000 prop_qsort_distinct_sort

prop_qsort_distinct_sort :: [Int] -> Property
prop_qsort_distinct_sort xs = …

! Now write a conditional property testing qsort against List.sort

19

20

! QuickCheck managed to generate enough tests in our case
because the probability of a random list having no duplicates is
relatively high

! But what if we have a “rare” condition?

insert :: forall a. Ord a => a -> [a] -> [a]
insert x = aux where

-- aux :: [a] -> [a]
aux [] = [x]
aux (y:ys) | x <= y = x : y : ys

| otherwise = y : aux ys

! Suppose that we want to test insert of isort:

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

20

11

21

prop_insert_ordered' :: Int -> [Int] -> Bool
prop_insert_ordered' x xs = isOrdered (insert x xs)

! Property to test whether insert leaves list sorted:

! But it doesn’t go well. What happens?

> quickCheck prop_insert_ordered'
*** Failed! Falsified (after 4 tests and 7 shrinks):
0 –- counterexample for x
[0,-1] –- counterexample value for xs

! Let’s try to fix this

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

21

22

prop_insert_ordered :: Int -> [Int] -> Property
prop_insert_ordered x xs =

isOrdered xs ==> isOrdered (insert x xs)

! Property to test whether insert leaves list sorted:

! Still doesn’t go well. What happens?

> quickCheck prop_insert_ordered
*** Gave up! Passed only 80 tests; 1000 discarded tests.

! Probability of generating random ordered lists is too low

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

22

12

Outline

n Property-based testing with QuickCheck
n QuickCheck properties
n quickCheck function
n Conditional testing

n Generating data
n Generator combinators
n Generator monad Gen a
n Arbitrary type class
n Shrinking

23Programming in Haskell, A Milanova

23

Generator Type

Programming in Haskell, A Milanova 24

! How does QuickCheck generate random data to test with?

! QuickCheck defines a type Gen a, a polymorphic type that stands
for “generators of values of type a”. It has powerful mechanisms for
creating random data and multiple ways of constructing generators

! Randomness is inherently impure, and therefore, it is incapsulated
in the Gen monad structure. A bit more on the monad later

! If we want to write useful QuickCheck tests, we need to know how
to configure generators. Similarly to the parsers, we use
QuickCheck’s combinators to construct larger generators from
smaller ones

24

13

25

genSmallInt :: Gen Int
genSmallInt = QC.chooseInt (1, 10)

! We can define a function that generates small Ints using the Gen
type and QuickCheck’s function chooseInt:

! To see what the generator type yields, use QuickCheck’s sample:

>:t sample
sample :: Show a => Gen a -> IO ()
>:t sample’
sample’ :: Show a => Gen a -> IO [a]
> sample’ genSmallInt
…

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

25

Generator Combinators

26

choose :: System.Random.Random a => (a, a) -> Gen a

> sample’ $ choose (0,3)

! choose takes an interval and produces a generator of elements in
the interval. Type class System.Random.Random describes type
that can be sampled:

elements :: [a] => Gen a

> sample’ $ elements [10,20,30]

! elements takes an input list and returns a generator of elements
drawn randomly from that list:

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

26

14

27

oneof :: [Gen a] -> Gen a

> sample’ $ oneof [choose (0,3), elements [10,20,30]]
[20,0,10,3,30,3,3,1,10,30,10]

! oneof randomly chooses between multiple generators:

listOf :: Gen a => Gen [a]

> sample’ $ listOf (elements [1,2,3])

! Related listOf produces a generator of random lists where
elements are generated by the argument generator

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

27

28

frequency :: [(Int,Gen a)] -> Gen a

> sample’ $ frequency [(1,choose (0,3))
, (5,elements [10,20,30])]

[30,10,20,10,30,10,2,20,10,20,10]

! frequency allows us to produce weighted combinations of
multiple generators:

! and compare to

oneof :: [Gen a] -> Gen a

> sample’ $ oneof [choose (0,3), elements [10,20,30]]
[20,0,10,3,30,3,3,1,10,30,10]

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

28

15

Generator Monad

Programming in Haskell, A Milanova 29

! As we expected, Gen a is a Monad! We won’t be defining return
and bind the way we did for other recent monads (State and
Parser). For practice, let’s still write their signatures:

instance Monad Gen where
-- return :: …
…
-- (>>=) :: …
…

! You can look at the QuickCheck source code for the definitions

! So, what’s the point of these functions?

29

30

! return takes a value and returns a generator of this value. E.g.,

genThree :: Gen Int
genThree = return 3

> sample’ genThree
[3,3,3,3,3,3,3,3,3,3,3]

! And bind takes a generator and a function and applies the function
to the value returned by the generator. E.g.,

genFive :: Gen Int
genFive = genThree >>= \x -> return (x + 2)

> sample’ genFive
…

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

30

16

31

! A more interesting generator, generates 3 or 5:

genThreeOrFive :: Gen Int
genThreeOrFive = QC.choose (True,False) >>= (\x ->

return (if x then 3 else 5)

> sample’ genThreeOrFive
[5,3,5,3,5,3,5,5,5,5,3]

! Bind allows us to define larger generators from smaller ones:

genPair :: Gen a -> Gen b -> Gen (a,b)
genPair = …

-- or just liftM2 (,)

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

31

Aside: liftM functions

32

! liftM, liftM2, and liftM3 are defined in Control.Monad and
are available to any instance of Monad, including Gen

! In the case of the Gen monad, types specialize as follows:

! We saw how to define liftM2 (essentially) in genPair

liftM :: (a -> b) -> Gen a -> Gen b

liftM2 :: (a -> b -> c) -> Gen a -> Gen b -> Gen c

liftM3 :: (a -> b -> c -> d) ->
Gen a -> Gen b -> Gen c -> Gen D

! We’ve seen liftM many times before. What is it?
Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

32

17

Exercise

33

genBool :: Gen Bool
genBool = …

genTriple :: Gen a -> Gen b -> Gen c -> Gen (a,b,c)
genTriple = …

-- generates Nothing or values from ga
genMaybe :: Gen a -> Gen (Maybe a)
genMaybe ga = QC.oneof [return Nothing, fmap Just ga]

! As we are versed with the monad bind, define these functions:

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

33

Arbitrary Type Class

Programming in Haskell, A Milanova 34

! To keep track of generators QuickCheck defines a type class
containing types for which random values can be generated

class Arbitrary a where
arbitrary :: Gen a

! Thus, we make a type an instance of Arbitrary by defining the
arbitrary function. This tells QuickCheck how to generate random
values for our type

! As expected, QuickCheck knows how to generate Ints, Floats,
Bools, etc. instances, and we can do these:

> sample’ (arbitrary :: Gen Int)
…
> sample’ (arbitrary :: Gen (Int,Float,Bool))
…

34

18

Generating Trees

35

! To define generation for a user-defined data types, e.g., Tree a,
we make the data type an instance of the Arbitrary type class

! First try. It doesn’t work. Why goes wrong here?

data Tree a = Empty | Branch a (Tree a) (Tree a)
deriving (Show, Foldable)

genTree1 :: (Arbitrary a) => Gen (Tree a)
genTree1 = liftM3 Branch arbitrary genTree1 genTree1

> sample’ (genTree1 :: Gen (Tree Int))
…

! Tree data type with values in nodes:

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

35

36

! Try again. This is better, but still undesirable. Try in ghci. What is
happening?

genTree2 :: (Arbitrary a) => Gen (Tree a)
genTree2 = QC.oneof [return Empty

, liftM3 Branch arbitrary genTree2 genTree2]

! Try again. This one fixes the problem (though still need tweaks):

genTree3 :: (Arbitrary a) => Gen (Tree a)
genTree3 = QC.frequency

[(1,return Empty)
, (2,liftM3 Branch arbitrary genTree3 genTree3)]

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

36

19

37

! genTree2 generated too many Empty trees; distribution is
undesirable. Since Tree is Foldable, we can use length to see
distribution of sizes:

! QuickCheck’s function sized is a higher-order function that takes
a generator with a size parameter and progressively increases size

! genTree3 is too slow, it generated too many large trees

> map length <$> sample’ (genTree2 :: Gen (Tree Int))

! sized is essential for generating trees (and possibly other types)
Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

37

38

! Final version of ”arbitrary” function is tricky. Try this out!

genTree :: forall a. (Arbitrary a) => Gen (Tree a)
genTree = QC.sized gen where

gen :: (Arbitrary a) => Int -> Gen (Tree a)
gen n = QC.frequency [(1, return Empty)

, (n, liftM3 Branch arbitrary
(gen (n `div` 2))
(gen (n `div` 2)))]

Notes:
! Need forall a. for Haskell to infer a type for gen
! We let QuickCheck determine frequency with sized and for each

recursive call we decrease value with div
! sized runs gen function first with small n increasing n

progressively
Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

38

20

Shrinking

39

! One last thing before we can instantiate Arbitrary for Trees

! When properties fail QuickCheck provides a counter example, e.g.,

> quickCheck prop_qsort_sort --- qsort vs List.sort
*** Failed! Falsified (after 7 tests and 2 shrinks):
[-1,-1] --- the counter example

! It is important to produce as small a counter example as possible.
It is a lot easier to debug!

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

39

40

! The following function has a glaring bug, can you spot it?

treeSum :: Tree Int -> Int
treeSum = aux where

aux Empty = 0
aux (Branch x l r) = if x == 0 then 0 else aux l + x + aux r

! Let’s define a property and ask QuickCheck to find it too. What
happens in example below?

prop_treeSum :: Tree Int -> Bool
prop_treeSum t = treeSum t == sum t --- Tree is Foldable!

> quickCheck prop_treeSum

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

40

21

41

! It didn’t work, but if we make Tree an Arbitrary instance it will.
We need to tell QuickCheck how to generate random trees

instance (Arbitrary a) => Arbitrary (Tree a) where
arbitrary = genTree

! What happens now when you run prop_treeSum?

prop_treeSum :: Tree Int -> Bool
prop_treeSum t = treeSum t == sum t --- Tree is Foldable!

> quickCheck prop_treeSum

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

41

42

shrinkTree :: Arbitrary a => Tree a -> [Tree a]
shrinkTree = aux where

aux Empty = [] -- empty trees cannot be shrunk
aux (Branch x l r) = [l , r]

-- left and right subtrees are smaller
++ map (\l' -> Branch x l' r) (shrinkTree l)

-- shrink left subtree
++ map (\r' -> Branch x l r') (shrinkTree r)

-- shrink right subtree
++ map (\x' -> Branch x' l r) (shrink x)

-- shrink the value

! A heuristic to shrink the tree

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

42

22

43

! Because shrinking is so important, QuickCheck includes a
shrinking function as optional member of Arbitrary

instance (Arbitrary a) => Arbitrary (Tree a) where
arbitrary :: …
arbitrary = genTree
shrink :: …
shrink = shrinkTree

! Test what happens now when you run prop_treeSum!

prop_treeSum :: Tree Int -> Bool
prop_treeSum t = treeSum t == sum t --- Tree is Foldable!

> quickCheck prop_treeSum

Programming in Haskell, A Milanova (based on lecture by
Stephanie Weirich)

43

Exercises

Programming in Haskell, A Milanova 44

! Write generators and shrinking functions for Lists. QuickCheck
does have library functions of these of course, but it is a good
exercise to try. Then test a bunch of list functions

! Write generators and shrinking functions for trees with values at
leaves (as opposed to our Tree a which had values at nodes)

! USE QuickCheck in projects, as much as you can!

! Write generators and shrinking functions for the AVL trees

44

23

n Happy Thanksgiving!

n Week after Thanksgiving we’ll cover monad
transformers

n Quiz on QuickCheck and monad
transformers

Programming in Haskell, A Milanova 45

45

