* Schedule

raskel

Tue Nov 5/ The State Monad | Ch. 12 Quiz 4 on Fri PS7 due Tuesday
- - Fri Nov 8 Lecture Week11 Lecture11.hs, Lecture11hs
d State.hs
Monadic Parsing ue i 12| parsig oy s O 19 :
FrNov 15 bit); Monadic (Checkpoint #1: gend office
1 Parsing or

Tue Nov19/ | Parsec Quiz 5 on Fri
Fri Nov 22 5-8 min presentation in cl
on Friday

Tue Nov 26 Property Testing;

QuickCheck
Tue Dec 3 TBD Quiz 6 on Fri Checkpoint #2: attend office
Fri Dec 6 hours this week (or earlier)
TueDec10 | Project Project due
p i 5-8 min presentation in class
Programming in Haskell, A Milanova 2

* Quiz 4 * Quiz 4

Passing state explicitly:
bt 32 LBxp — ((Stimg, LExg) — Tut — (L ,I‘ul)

vs. a state transformer:

bt ss Lo (Sing, Loxp) — S Stade Tut Lixp

Programming in Haskell, A Milanova 3 Programming in Haskell, A Milanova 4

Outline

Lexing and parsing
Parser type

Parser monad
Lexer primitives

Recursive-descent monadic parsing

Programming in Haskell, A Milanova

Lexing and Parsing

Syntax is the form or structure of expressions,
statements, and program units of a given language

Syntax of a Java while statement:
while (boolean_expr) statement

Semantics is the meaning of expressions, statements
and program units of a given language

Semantics of while (boolean_expr) statement

Execute statement repeatedly (O or more times) as long as
boolean_expr evaluates to true

Programming in Haskell, A Milanova

A formal language is a set of strings (also called
sentences) over a finite alphabet

A generator is a set of rules that generate the strings in
the language

A recognizer reads input strings and determines
whether they belong to the language

Programming in Haskell, A Milanova

Regular languages describe tokens (e.g., identifiers,
symbols and constants)

Generated by a Regular Expression

Recognized by DFA (lexer)

Context-free languages describe constructs of more
complex constructs (e.g., expressions and statements)
Generated by a Context-Free Grammar
Recognized by a Pushdown Automaton (parser)
Character Token Parse

Stream | Lexer | Stream | Parser | Tree

Programming in Haskell, A Milanova

& Example

Consider expression: x1 + -123 * x2

Token sequence: ‘1’d:xﬂ ‘1’nt:—123‘

Identifiers: Tetter (letter | digit)*

s

Symbols: +, *
Integers: (-l) digit*

An example grammar and parse tree: .
expr 12= oy 4 exepr | expr Hexpr | (expr) | i | Vuf
expr is 0 wou {eci ual

#, 0 ,d oud i ane terwiveds . Tlat o focews luf/,(im' by loxer.

Programming in Haskell, A Milanova

* Parser Type

Back to Haskell. Haskell allows us to compose lexers and parsers
conveniently and parse into complex structures

A parser takes an input string and produces (typically) some
structured object, e.g., a parse tree:

A parser consumes only part of the string input. Therefore, we
expand the type into a tuple of the structured object and the
remainder of the input string:

Programming in Haskell, A Milanova (based on notes by
Stephanie Weirich and Graham Hutton)

wd 4+ et % id
Qipr 5= expr +expr [Qp(‘jy‘ﬂ.e,z/n‘ / (exfr) | d | b
A<
Cpe + expr opr ¥ d
(/ I\
Wb ST e e
!
1 A WA

Programming in Haskell, A Milanova 10

10

11

The Parser type is polymorphic

Also, it must account for parse errors and ambiguous grammars

An empty list means the input string is ill-formed according to the
grammar

A non-singleton list result means there is more than one way to
parse the string (into a parse tree) according to grammar

Programming in Haskell, A Milanova 12

12

ruu Porser P Yomal

And as a last step, we’ll wrap the type in a newtype declaration:

Why do we need to wrap in a newtype?

Does the type look familiar?

Very similar to the state transformer:

Programming in Haskell, A Milanova 13

* Building a Small Parser

A parser that parses a single character

Programming in Haskell, A Milanova 14

Let us now modify item to parse a single digit:

15

14

* Exercise

Write a parser that reads one character and returns the negate
function if character is -, id if it is + and fails otherwise

Programming in Haskell, A Milanova (based on notes by
Stephanie Weirich) 16

16

Now generalize: satisfy parser returns character if it matches
input predicate, fails otherwise

We'll get back to satisfy in just a little bit.

Programming in Haskell, A Milanova

17

* Parser is a Functor

How do we combine (i.e., compose) smaller parsers into larger
ones that parse into more complex structures?

We'll instantiate Parser as a Monad and make use of bind to
combine parsers. In Haskell, we need to first instantiate Parser into
a Functor and an Applicative Functor, and then Monad

s7)

Programming in Haskell, A Milanova 18

17

Parser is an Applicative

* Functor

Note: We do not need Monads to parse context free grammars, we
can parse with applicative functors

Programming in Haskell, A Milanova

19

18

* Parser is a Monad

We’'ll use monads because

(1) the do notation is a super convenient way to encode
grammars

(2) we've done so much with monads already!

Programming in Haskell, A Milanova 20

19

20

Download Parser.hs and Lecture12.hs and code as we move on

satisfy becomes a bit easier now that we can use the do
notation

Programming in Haskell, A Milanova 21

‘ Basic Primitives

Programming in Haskell, A Milanova

22

21

Programming in Haskell, A Milanova 23

23

22
Our goal is to encode grammars
A typical regular grammar:
Tetter (letter | digit)* --identifier
(-le) digitt --integer
A typical context-free grammar:
expr ::= term + expr | term
term ::= factor * term | factor
factor ::= identifier | integer
We know how to sequence. We need to alternate as well!
Also, we need a way to encode Kleene star and Kleene plus
24
24

* Alternating

<|>runs parser p and if parse succeeds, <|> returns result
without evaluating q. If p fails, <|> runs q.

Programming in Haskell, A Milanova

25

Wmdty X ~ x*
Some X o T

Programming in Haskell, A Milanova 26

25

* Tokens

Programming in Haskell, A Milanova

27

26

We want to parse x1 + -123 * x2
Into token sequence identifier,+,integer,*,identifier
But space shouldn’t matter, x1 + -123 * x2

Is same token sequence identifier,+,integer,*,identifier

Programming in Haskell, A Milanova 28

27

28

* Lexer Primitives

Lexer primitives parse tokens

Programming in Haskell, A Milanova 29

Programming in Haskell, A Milanova 30

29

* Exercise

Programming in Haskell, A Milanova 31

30

* Outline

= Lexing and parsing
Parser type

Parser monad
Lexer primitives

Recursive-descent monadic parsing

31

Programming in Haskell, A Milanova 32

32

So far we built parsers (lexers) for regular grammars
How about context-free grammars?

An expression grammar:
expr ::= expr + expr | expr * expr | (expr) |
identifier | integer

What's the problem with this grammar?

Programming in Haskell, A Milanova

33

One way to disambiguate:

expr ::= term + expr | term
term ::= factor * term | factor
factor ::= (expr) | identifier | integer

And easily build a monadic parser! E.g., the expr Parser:

What are some issues with this grammar?

Programming in Haskell, A Milanova 34

33

34

Finish up coding the parsers, then add the start production with
end-of-input:

We have

Programming in Haskell, A Milanova

35

* Recursive-Descent Parsing

Monadic parsers are recursive-descent parsers

In recursive-descent there is a procedure for each nonterminal, in
our example itis expr, term, and factor

E.g., expr parser corresponds to expr nonterminal:

Programming in Haskell, A Milanova 36

35

36

* Recursive-Descent Parsing

To parse a nonterminal, call (descend) corresponding procedure.
Right-hand-side of nonterminal forms body of procedure: parser
tries one production, then next, and so on

E.g., expr ::= term + expr | term first tries

expr ::= term + expr;ifitfails, ittries expr ::= term
Parsing right-hands-side means calling procedures and consuming
terminals in turn

E.g., term + exprfirst calls term, then consumes + then
calls expr

Programming in Haskell, A Mila 37

37

i Backtracking Example

Consider grammar
S:i=c Ad
A:mi=ab | a

and input string cad

What happens with our grammar:

expr ::= term + expr | term
term ::= factor * term | factor
factor ::= (expr) | identifier | integer
Why can’t we use this “better” disambiguation:
expr ::= expr + term | term
term ::= term * factor | factor
factor ::= (expr) | identifier | integer 3

39

Recursive-Descent Parsing

Parsing an alternative may fail in which case recursive-descent
backtracks (i.e., puts consumed input back) and tries next
alternative
E.g., x1*x2*x3 Parser tries term + exprbut fails on +. It
backtracks to the beginning then tries term

Programming in Haskell, A Milanova 38

38

For some grammars recursive-descent does not backtrack

We can rewrite our grammar one more time:
expr ::= term term_tail

term_tail ::= + term term_tail | &

term ::= factor factor_tail

factor_tail ::= * factor factor_tail |
factor ::= (expr) | identifier | integer

A classic LL(1) grammar meaning parser can predict the
production by looking at just one token of lookahead

The monadic parser will consume and backtrack from at most one
token, thus, a lot more efficient

Programming in Haskell, A Milanova 40

40

10

We can rewrite our grammar one more time:

expr ::= term term_tail

term_tail ::= + term term_tail | &
becomes

expr ::= term term_tail

term_tail ::= + expr |

becomes

expr ::= term (+ expr | €)

Programming

41

41

11

