
1

Monadic Parsing

1

Schedule

Programming in Haskell, A Milanova 2

2

Quiz 4

Programming in Haskell, A Milanova 3

subst (App e1 e2) (v2,m) fresh =
let (e1',fresh') = subst e1 (v2,m) fresh

(e2',fresh'') = subst e2 (v2,m) fresh' in
(App e1' e2',fresh'')

subst (App e1 e2) (v2,m) = do
e1’ <- subst e1 (v2,m)
e2’ <- subst e2 (v2,m)
return (App e1' e2')

Passing state explicitly:

vs. a state transformer:

3

Quiz 4

Programming in Haskell, A Milanova 4

subst (Lambda v1 e) (v2,m) fresh =
if v1 == v2

then (Lambda v1 e, fresh)
else let newStr = "__t" ++ (show fresh)

(e',fresh') = subst e (v1, Atom newStr) (fresh + 1)
(e'',fresh'') = subst e' (v2,m) fresh' in

(Lambda newStr e'', fresh'')

subst (Lambda v1 e) (v2,m) =
if v1 == v2

then (Lambda v1 e)
else do fresh <- S.get

let newStr = "__t" ++ (show fresh)
S.put (fresh + 1)
e’ <- subst e (v1, Atom newStr)
e’’ <- subst e' (v2,m)
return (Lambda newStr e'')

4

2

Outline

n Lexing and parsing
n Parser type
n Parser monad
n Lexer primitives

n Recursive-descent monadic parsing

5Programming in Haskell, A Milanova

5

Lexing and Parsing

Programming in Haskell, A Milanova 6

! Syntax is the form or structure of expressions,
statements, and program units of a given language

Syntax of a Java while statement:
while (boolean_expr) statement

! Semantics is the meaning of expressions, statements
and program units of a given language

Semantics of while (boolean_expr) statement
Execute statement repeatedly (0 or more times) as long as
boolean_expr evaluates to true

6

Programming in Haskell, A Milanova 7

! A formal language is a set of strings (also called
sentences) over a finite alphabet

! A generator is a set of rules that generate the strings in
the language

! A recognizer reads input strings and determines
whether they belong to the language

7

Programming in Haskell, A Milanova 8

! Regular languages describe tokens (e.g., identifiers,
symbols and constants)
! Generated by a Regular Expression
! Recognized by DFA (lexer)

! Context-free languages describe constructs of more
complex constructs (e.g., expressions and statements)
! Generated by a Context-Free Grammar
! Recognized by a Pushdown Automaton (parser)

Lexer ParserCharacter
Stream

Token
Stream

Parse
Tree

8

3

Example

Programming in Haskell, A Milanova 9

Consider expression: x1 + -123 * x2

Token sequence: id:x1 + int:-123 * id:x2

An example grammar and parse tree:

Identifiers: letter (letter | digit)*

Symbols: +, *
Integers: (-|𝛆) digit+

9

Programming in Haskell, A Milanova 10

10

Programming in Haskell, A Milanova (based on notes by
Stephanie Weirich and Graham Hutton) 11

Parser Type

! Back to Haskell. Haskell allows us to compose lexers and parsers
conveniently and parse into complex structures

type Parser = String -> StructuredObject

! A parser consumes only part of the string input. Therefore, we
expand the type into a tuple of the structured object and the
remainder of the input string:

type Parser = String -> (StructuredObject,String)

! A parser takes an input string and produces (typically) some
structured object, e.g., a parse tree:

11

Programming in Haskell, A Milanova 12

type Parser a = String -> (a, String)

! Also, it must account for parse errors and ambiguous grammars

type Parser a = String -> [(a,String)]

! The Parser type is polymorphic

! An empty list means the input string is ill-formed according to the
grammar

! A non-singleton list result means there is more than one way to
parse the string (into a parse tree) according to grammar

12

4

Programming in Haskell, A Milanova 13

newtype Parser a = P (String -> [(a,String)])

runParser (P f) = …

! And as a last step, we’ll wrap the type in a newtype declaration:

! Why do we need to wrap in a newtype?

! Does the type look familiar?

newtype State s a = S (s -> (a,s))

runState (S f) = f

! Very similar to the state transformer:

13

Building a Small Parser

Programming in Haskell, A Milanova 14

! A parser that parses a single character

newtype Parser a = P (String -> [(a,String)])

runParser (P f) = f – extract function to run on input

item :: Parser Char
item = P (\s -> case s of

[] -> []
(x:xs) -> [(x,xs)])

> runParser item “abc”

> runParser item “”

14

Programming in Haskell, A Milanova 15

! Let us now modify item to parse a single digit:

newtype Parser a = P (String -> [(a,String)])

runParser (P f) = f

import Data.Char -- isDigit

oneDigit :: Parser Int
oneDigit =

> runParser oneDigit “abc”

> runParser oneDigit “12”

> runParser oneDigit “1”

15

Programming in Haskell, A Milanova (based on notes by
Stephanie Weirich) 16

! Write a parser that reads one character and returns the negate
function if character is -, id if it is + and fails otherwise

import Data.Char -- isDigit

oneOp :: Parser (Int -> Int)
oneOp = P (\s -> case s of

…

> fst (head (runParser oneOp “-abc”)) 10

> fst (head (runParser oneOp “+10”)) 10

Exercise

16

5

Programming in Haskell, A Milanova 17

! Now generalize: satisfy parser returns character if it matches
input predicate, fails otherwise

import Data.Char –- isDigit, isAlpha, isUpper, etc.

satisfy :: (Char -> Bool) -> Parser Char
satisfy p = P (\s -> do –- monadic bind of []

(x,xs) <- runParser item s
guard (p x)
return (x,xs))

> runParser (satisfy isAlpha) "a"

> runParser (satisfy isUpper) "a"

! We’ll get back to satisfy in just a little bit.

17

Parser is a Functor

Programming in Haskell, A Milanova 18

! How do we combine (i.e., compose) smaller parsers into larger
ones that parse into more complex structures?

instance Functor Parser where
-- fmap :: …
fmap f p = P …

! We’ll instantiate Parser as a Monad and make use of bind to
combine parsers. In Haskell, we need to first instantiate Parser into
a Functor and an Applicative Functor, and then Monad

18

Parser is an Applicative
Functor

Programming in Haskell, A Milanova 19

instance Applicative Parser where
-- pure :: a -> Parser a
pure x = P (\s -> [(x,s)])

-- <*> :: Parser (a->b) -> Parser a -> Parser b
pab <*> pa =

P (\s -> …

! Note: We do not need Monads to parse context free grammars, we
can parse with applicative functors

19

Parser is a Monad

Programming in Haskell, A Milanova 20

instance Monad Parser where
-- return :: a -> Parser a
return x =

-- >>= :: Parser a -> (a -> Parser b) -> Parser b
p >>= f =

P (\s -> …

! We’ll use monads because
! (1) the do notation is a super convenient way to encode

grammars
! (2) we’ve done so much with monads already!

20

6

Programming in Haskell, A Milanova 21

! Download Parser.hs and Lecture12.hs and code as we move on

import Data.Char –- isDigit, isAlpha, isUpper, etc.

sat :: (Char -> Bool) -> Parser Char
sat p = do c <- item –- parse character with item

if p c then P (\s -> [(c,s)] else P (\s -> [])

> runParser (sat isAlpha) "a"

> runParser (sat isUpper) "a"

! satisfy becomes a bit easier now that we can use the do
notation

21

Basic Primitives

Programming in Haskell, A Milanova 22

digit :: Parser Char
digit = sat isDigit

lower :: Parser Char
lower = sat isLower

upper :: Parser Char
upper = sat isUpper

alphanum :: Parser Char
alphanum = sat isAlphaNum

char :: Char -> Parser Char
char x = …

22

Programming in Haskell, A Milanova 23

-- parses there characters, skipping the middle
-- e.g., runParser three “abcde” yields [(('a','c'),"de")]

three :: Parser (Char,Char)
three =

-- matches a string
-- runParser (string “ana”) “ana123” yields [(“ana”,”123”)]
-- runParser (string “ana”) “a123” yields []

string :: String -> Parser String
string = …

23

24

! A typical regular grammar:
! letter (letter | digit)* -- identifier

! (-|𝛆) digit+ -- integer

! A typical context-free grammar:
! expr ::= term + expr | term
term ::= factor * term | factor
factor ::= identifier | integer

! We know how to sequence. We need to alternate as well!

! Our goal is to encode grammars

! Also, we need a way to encode Kleene star and Kleene plus

24

7

Alternating

Programming in Haskell, A Milanova 25

instance Alternative Parser where
-- empty :: Parser a
empty = P (\s -> [])

-- <|> :: Parser a -> Parser a -> Parser a
p <|> q =

P (\s -> …

! <|> runs parser p and if parse succeeds, <|> returns result
without evaluating q. If p fails, <|> runs q.

25

Programming in Haskell, A Milanova 26

> runParser empty “abc”

> runParser (item <|> return ‘d’) “abc”

> runParser (empty <|> return ‘d’) “abc”

> runParser (many digit) "123abc” -- Kleene star

> runParser (many digit) "abc” -- Kleene star

> runParser (some digit) ”123abc” -- Kleene plus

> runParser (some digit) ”abc” -- Kleene plus

26

Tokens

Programming in Haskell, A Milanova 27

ident :: Parser String -- indentifier, almost
ident = do x <-lower

xs <- many alphanum
return (x:xs)

nat :: Parser Int –- natural num constant, almost
nat = do xs <- some digit -- digit+

return (read xs)

int :: Parser Int
int = do sign <- char ‘-’

n <- nat
return (-n)

<|> nat

27

Programming in Haskell, A Milanova 28

! We want to parse x1 + -123 * x2

! But space shouldn’t matter, x1 + -123 * x2

Into token sequence identifier,+,integer,*,identifier

Is same token sequence identifier,+,integer,*,identifier

space :: Parser () -- returns nothing
space = do many (sat isSpace)

return ()

token :: Parser a -> Parser a
token p = do space

res <- p
return res

28

8

Lexer Primitives

Programming in Haskell, A Milanova 29

identifier :: Parser String –- identifier
identifier = token ident –- filters out space

natural :: Parser Int –- natural number
natural = token nat

integer :: Parser Int
integer = token int

symbol :: String -> Parser String
symbol s = token (string s)

! Lexer primitives parse tokens

29

Programming in Haskell, A Milanova 30

> runParser identifier “1234”

> runParser identifier “a1234”

> runParser natural “1234”

> runParser natural “-1234”

> runParser integer “1234abc”

> runParser integer “-1234abc”

> runParser (symbol “+”) “+abc”

30

Exercise

Programming in Haskell, A Milanova 31

-- parses a list of integers
-- runParser nats “ [1, 2, 3] “ yields [(“[1,2,3]”,“ “)]
-- runParser nats “ [1,] “ yields []
nats :: Parser String
nats = …

31

Outline

n Lexing and parsing
n Parser type
n Parser monad
n Lexer primitives

n Recursive-descent monadic parsing

32Programming in Haskell, A Milanova

32

9

Programming in Haskell, A Milanova 33

! So far we built parsers (lexers) for regular grammars

! How about context-free grammars?

! An expression grammar:
expr ::= expr + expr | expr * expr | (expr) |

identifier | integer

! What’s the problem with this grammar?

33

Programming in Haskell, A Milanova 34

! One way to disambiguate:
expr ::= term + expr | term
term ::= factor * term | factor
factor ::= (expr) | identifier | integer

expr :: Parser String
expr = do t <- term

symbol "+"
e <- expr
return (t ++ " + " ++ e)

<|> term

! And easily build a monadic parser! E.g., the expr Parser:

! What are some issues with this grammar?

34

Programming in Haskell, A Milanova 35

! Finish up coding the parsers, then add the start production with
end-of-input:

start :: Parser a -> Parser a
start p = do res <- p

symbol "$"
return res

! We have

> runParser (start expr) "x1 + -123 * x2$"
[("x1 + -123 + x2","")]

35

Recursive-Descent Parsing

Programming in Haskell, A Milanova 36

! Monadic parsers are recursive-descent parsers

! In recursive-descent there is a procedure for each nonterminal, in
our example it is expr, term, and factor

! E.g., expr parser corresponds to expr nonterminal:

expr :: Parser String
expr = do t <- term

symbol "+"
e <- expr
return (t ++ " + " ++ e)

<|> term

36

10

Recursive-Descent Parsing

Programming in Haskell, A Milanova 37

! To parse a nonterminal, call (descend) corresponding procedure.

! Right-hand-side of nonterminal forms body of procedure: parser
tries one production, then next, and so on
! E.g., expr ::= term + expr | term first tries

expr ::= term + expr; if it fails, it tries expr ::= term
! Parsing right-hands-side means calling procedures and consuming

terminals in turn
! E.g., term + expr first calls term, then consumes + then

calls expr
expr :: Parser String
expr = do t <- term

symbol "+"
e <- expr
return (t ++ " + " ++ e)

<|> term

37

Recursive-Descent Parsing

Programming in Haskell, A Milanova 38

! Parsing an alternative may fail in which case recursive-descent
backtracks (i.e., puts consumed input back) and tries next
alternative
! E.g., x1*x2*x3 Parser tries term + expr but fails on +. It

backtracks to the beginning then tries term

expr :: Parser String
expr = do t <- term

symbol "+"
e <- expr
return (t ++ " + " ++ e)

<|> term

38

Backtracking Example

39

! Consider grammar
S ::= c A d
A ::= a b | a

and input string cad

! Why can’t we use this “better” disambiguation:
expr ::= expr + term | term
term ::= term * factor | factor
factor ::= (expr) | identifier | integer

! What happens with our grammar:
expr ::= term + expr | term
term ::= factor * term | factor
factor ::= (expr) | identifier | integer

39

Programming in Haskell, A Milanova 40

! For some grammars recursive-descent does not backtrack

! We can rewrite our grammar one more time:
expr ::= term term_tail
term_tail ::= + term term_tail | 𝛆
term ::= factor factor_tail
factor_tail ::= * factor factor_tail | 𝛆
factor ::= (expr) | identifier | integer

! A classic LL(1) grammar meaning parser can predict the
production by looking at just one token of lookahead

! The monadic parser will consume and backtrack from at most one
token, thus, a lot more efficient

40

11

Programming in Haskell, A Milanova 41

expr :: Parser String
expr = do t <- term

do symbol "+"
e <- expr
return (t ++ " + " ++ e)

<|> return t

! We can rewrite our grammar one more time:
expr ::= term term_tail
term_tail ::= + term term_tail | 𝛆
becomes
expr ::= term term_tail
term_tail ::= + expr | 𝛆

becomes
expr ::= term (+ expr | 𝛆)

41

