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subst (App e1 e2) (v2,m) fresh = 
let (e1',fresh') = subst e1 (v2,m) fresh

(e2',fresh'') = subst e2 (v2,m) fresh' in
(App e1' e2',fresh'')

subst (App e1 e2) (v2,m) = do
e1’ <- subst e1 (v2,m)
e2’ <- subst e2 (v2,m)
return (App e1' e2')

Passing state explicitly:

vs. a state transformer:
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Quiz 4
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subst (Lambda v1 e) (v2,m) fresh = 
if v1 == v2

then (Lambda v1 e, fresh)
else let newStr = "__t" ++ (show fresh)

(e',fresh') = subst e (v1, Atom newStr) (fresh + 1)
(e'',fresh'') = subst e' (v2,m) fresh' in

(Lambda newStr e'', fresh'')

subst (Lambda v1 e) (v2,m) = 
if v1 == v2

then (Lambda v1 e)
else do fresh <- S.get

let newStr = "__t" ++ (show fresh)
S.put (fresh + 1)
e’ <- subst e (v1, Atom newStr)
e’’ <- subst e' (v2,m)
return (Lambda newStr e'')
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Lexing and Parsing
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! Syntax is the form or structure of expressions, 
statements, and program units of a given language

Syntax of a Java while statement:
while ( boolean_expr ) statement

! Semantics is the meaning of expressions, statements 
and program units of a given language

Semantics of while ( boolean_expr ) statement
Execute statement repeatedly (0 or more times) as long as
boolean_expr evaluates to true
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! A formal language is a set of strings (also called 
sentences) over a finite alphabet

! A generator is a set of rules that generate the strings in 
the language

! A recognizer reads input strings and determines 
whether they belong to the language
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! Regular languages describe tokens (e.g., identifiers, 
symbols and constants)
! Generated by a Regular Expression 
! Recognized by DFA (lexer)

! Context-free languages describe constructs of more 
complex constructs (e.g., expressions and statements)
! Generated by a Context-Free Grammar
! Recognized by a Pushdown Automaton (parser)

Lexer ParserCharacter 
Stream

Token 
Stream

Parse
Tree
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Example

Programming in Haskell, A Milanova 9

Consider expression:    x1 + -123 * x2

Token sequence:    id:x1  + int:-123   * id:x2

An example grammar and parse tree:

Identifiers:  letter (letter | digit)*

Symbols:  +, *
Integers:  (-|𝛆 ) digit+
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Parser Type

! Back to Haskell. Haskell allows us to compose lexers and parsers 
conveniently and parse into complex structures 

type Parser = String -> StructuredObject

! A parser consumes only part of the string input. Therefore, we 
expand the type into a tuple of the structured object and the 
remainder of the input string:  

type Parser = String -> (StructuredObject,String)

! A parser takes an input string and produces (typically) some 
structured object, e.g., a parse tree:
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type Parser a = String -> (a, String) 

! Also, it must account for parse errors and ambiguous grammars

type Parser a = String -> [(a,String)]

! The Parser type is polymorphic 

! An empty list means the input string is ill-formed according to the 
grammar

! A non-singleton list result means there is more than one way to 
parse the string (into a parse tree) according to grammar 

12
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newtype Parser a = P (String -> [(a,String)])

runParser (P f) = … 

! And as a last step, we’ll wrap the type in a newtype declaration:

! Why do we need to wrap in a newtype?

! Does the type look familiar?

newtype State s a = S (s -> (a,s))

runState (S f) = f

! Very similar to the state transformer:

13

Building a Small Parser
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! A parser that parses a single character 

newtype Parser a = P (String -> [(a,String)])

runParser (P f) = f – extract function to run on input

item :: Parser Char 
item = P ( \s -> case s of 

[] -> []
(x:xs) -> [(x,xs)] )

> runParser item “abc” 

> runParser item “”
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! Let us now modify item to parse a single digit:

newtype Parser a = P (String -> [(a,String)])

runParser (P f) = f  

import Data.Char -- isDigit

oneDigit :: Parser Int 
oneDigit = 

> runParser oneDigit “abc” 

> runParser oneDigit “12”

> runParser oneDigit “1”
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! Write a parser that reads one character and returns the negate
function if character is -, id if it is + and fails otherwise  

import Data.Char -- isDigit

oneOp :: Parser (Int -> Int) 
oneOp = P (\s -> case s of 

…

> fst (head (runParser oneOp “-abc”)) 10 

> fst (head (runParser oneOp “+10”)) 10

Exercise

16
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! Now generalize: satisfy parser returns character if it matches 
input predicate, fails otherwise 

import Data.Char –- isDigit, isAlpha, isUpper, etc.

satisfy :: (Char -> Bool) -> Parser Char 
satisfy p = P (\s -> do –- monadic bind of []

(x,xs) <- runParser item s 
guard (p x)
return (x,xs))

> runParser (satisfy isAlpha) "a"

> runParser (satisfy isUpper) "a"

! We’ll get back to satisfy in just a little bit.
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Parser is a Functor
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! How do we combine (i.e., compose) smaller parsers into larger 
ones that parse into more complex structures? 

instance Functor Parser where
-- fmap :: …
fmap f p = P … 

! We’ll instantiate Parser as a Monad and make use of bind to 
combine parsers. In Haskell, we need to first instantiate Parser into 
a Functor and an Applicative Functor, and then Monad 
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Parser is an Applicative 
Functor
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instance Applicative Parser where
-- pure :: a -> Parser a
pure x = P (\s -> [(x,s)])

-- <*> :: Parser (a->b) -> Parser a -> Parser b
pab <*> pa = 

P (\s -> …

! Note: We do not need Monads to parse context free grammars, we 
can parse with applicative functors

19

Parser is a Monad
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instance Monad Parser where
-- return :: a -> Parser a
return x = 

-- >>= :: Parser a -> (a -> Parser b) -> Parser b
p >>= f = 

P (\s -> …

! We’ll use monads because 
! (1) the do notation is a super convenient way to encode 

grammars  
! (2) we’ve done so much with monads already!

20
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! Download Parser.hs and Lecture12.hs and code as we move on

import Data.Char –- isDigit, isAlpha, isUpper, etc.

sat :: (Char -> Bool) -> Parser Char 
sat p = do c <- item –- parse character with item

if p c then P (\s -> [(c,s)] else P (\s -> [])

> runParser (sat isAlpha) "a"

> runParser (sat isUpper) "a"

! satisfy becomes a bit easier now that we can use the do 
notation

21

Basic Primitives
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digit :: Parser Char
digit = sat isDigit

lower :: Parser Char
lower = sat isLower

upper :: Parser Char
upper = sat isUpper

alphanum :: Parser Char
alphanum = sat isAlphaNum

char :: Char -> Parser Char
char x = …
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-- parses there characters, skipping the middle
-- e.g., runParser three “abcde” yields [(('a','c'),"de")]

three :: Parser (Char,Char)
three = 

-- matches a string
-- runParser (string “ana”) “ana123” yields [(“ana”,”123”)]
-- runParser (string “ana”) “a123” yields []

string :: String -> Parser String
string = …

23
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! A typical regular grammar:
! letter (letter | digit)* -- identifier

! (-|𝛆 ) digit+ -- integer

! A typical context-free grammar:
! expr ::= term + expr | term
term ::= factor * term | factor
factor ::= identifier | integer

! We know how to sequence. We need to alternate as well!  

! Our goal is to encode grammars

! Also, we need a way to encode Kleene star and Kleene plus 

24
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Alternating
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instance Alternative Parser where
-- empty :: Parser a
empty = P (\s -> [])

-- <|> :: Parser a -> Parser a -> Parser a
p <|> q = 

P (\s -> …

! <|> runs parser p and if parse succeeds, <|> returns result 
without evaluating q. If p fails, <|> runs q.

25
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> runParser empty “abc”

> runParser (item <|> return ‘d’) “abc”

> runParser (empty <|> return ‘d’) “abc”

> runParser (many digit) "123abc” -- Kleene star

> runParser (many digit) "abc” -- Kleene star

> runParser (some digit) ”123abc” -- Kleene plus

> runParser (some digit) ”abc” -- Kleene plus
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Tokens
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ident :: Parser String -- indentifier, almost
ident = do x <-lower

xs <- many alphanum
return (x:xs)

nat :: Parser Int –- natural num constant, almost
nat = do xs <- some digit -- digit+

return (read xs)

int :: Parser Int
int = do sign <- char ‘-’

n <- nat
return (-n)

<|> nat
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! We want to parse  x1 + -123 * x2

! But space shouldn’t matter, x1   +  -123   *   x2

Into token sequence identifier,+,integer,*,identifier

Is same token sequence identifier,+,integer,*,identifier

space :: Parser () -- returns nothing
space = do many (sat isSpace) 

return ()

token :: Parser a -> Parser a
token p = do space

res <- p
return res

28
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Lexer Primitives
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identifier :: Parser String –- identifier
identifier = token ident –- filters out space

natural :: Parser Int –- natural number 
natural = token nat

integer :: Parser Int
integer = token int

symbol :: String -> Parser String
symbol s = token (string s) 

! Lexer primitives parse tokens 

29
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> runParser identifier “1234”

> runParser identifier “a1234”

> runParser natural “1234”

> runParser natural “-1234”

> runParser integer “1234abc”

> runParser integer “-1234abc”

> runParser (symbol “+”) “+abc”

30

Exercise
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-- parses a list of integers
-- runParser nats “ [1, 2, 3 ] “ yields [(“[1,2,3]”,“ “)]
-- runParser nats “ [1,] “ yields [] 
nats :: Parser String
nats = …
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! So far we built parsers (lexers) for regular grammars

! How about context-free grammars?

! An expression grammar:
expr ::= expr + expr | expr * expr | ( expr ) |

identifier | integer

! What’s the problem with this grammar?

33
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! One way to disambiguate:
expr ::= term + expr | term
term ::= factor * term | factor
factor ::= ( expr ) | identifier | integer

expr :: Parser String
expr = do t <- term

symbol "+"
e <- expr
return (t ++ " + " ++ e)

<|> term

! And easily build a monadic parser! E.g., the expr Parser:

! What are some issues with this grammar?
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! Finish up coding the parsers, then add  the start production with 
end-of-input:

start :: Parser a -> Parser a
start p = do res <- p

symbol "$"
return res 

! We have

> runParser (start expr) "x1 + -123 * x2$"
[("x1 + -123 + x2","")]
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Recursive-Descent Parsing
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! Monadic parsers are recursive-descent parsers

! In recursive-descent there is a procedure for each nonterminal, in 
our example it is expr, term, and factor

! E.g., expr parser corresponds to expr nonterminal:

expr :: Parser String
expr = do t <- term

symbol "+"
e <- expr
return (t ++ " + " ++ e)

<|> term

36
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Recursive-Descent Parsing

Programming in Haskell, A Milanova 37

! To parse a nonterminal, call (descend) corresponding procedure. 

! Right-hand-side of nonterminal forms body of procedure: parser 
tries one production, then next, and so on
! E.g., expr ::= term + expr | term first tries 

expr ::= term + expr; if it fails, it tries expr ::= term
! Parsing right-hands-side means calling procedures and consuming 

terminals in turn
! E.g., term + expr first calls term, then consumes + then 

calls expr
expr :: Parser String
expr = do t <- term

symbol "+"
e <- expr
return (t ++ " + " ++ e)

<|> term

37

Recursive-Descent Parsing
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! Parsing an alternative may fail in which case recursive-descent 
backtracks (i.e., puts consumed input back) and tries next 
alternative 
! E.g., x1*x2*x3 Parser tries term + expr but fails on +. It 

backtracks to the beginning then tries term

expr :: Parser String
expr = do t <- term

symbol "+"
e <- expr
return (t ++ " + " ++ e)

<|> term

38

Backtracking Example
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! Consider grammar
S ::= c A d
A ::= a b | a

and input string cad

! Why can’t we use this “better” disambiguation:
expr ::= expr + term | term
term ::= term * factor | factor
factor ::= ( expr ) | identifier | integer

! What happens with our grammar:
expr ::= term + expr | term
term ::= factor * term | factor
factor ::= ( expr ) | identifier | integer
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! For some grammars recursive-descent does not backtrack

! We can rewrite our grammar one more time:
expr ::= term term_tail
term_tail ::= + term term_tail | 𝛆
term ::= factor factor_tail
factor_tail ::= * factor factor_tail | 𝛆
factor ::= ( expr ) | identifier | integer

! A classic LL(1) grammar meaning parser can predict the 
production by looking at just one token of lookahead

! The monadic parser will consume and backtrack from at most one 
token, thus, a lot more efficient

40
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expr :: Parser String
expr = do t <- term

do symbol "+"
e <- expr
return (t ++ " + " ++ e)

<|> return t

! We can rewrite our grammar one more time:
expr ::= term term_tail
term_tail ::= + term term_tail | 𝛆
becomes
expr ::= term term_tail
term_tail ::= + expr | 𝛆

becomes
expr ::= term (+ expr | 𝛆)

41


