* Schedule

raskel

Tue Nov 5/ The State Monad | Ch. 12 Quiz 4 on Fri PS7 due Tuesday
- - Fri Nov 8 Lecture Week11 Lecture11.hs, Lecture11hs
d State.hs
Monadic Parsing ue i 12| parsig oy s O 19 :
FrNov 15 bit); Monadic ( Checkpoint #1: gend office
1 Parsing or

Tue Nov19/ | Parsec Quiz 5 on Fri
Fri Nov 22 5-8 min presentation in cl
on Friday

Tue Nov 26 Property Testing;

QuickCheck
Tue Dec 3 TBD Quiz 6 on Fri Checkpoint #2: attend office
Fri Dec 6 hours this week (or earlier)
TueDec10 | Project Project due
p i 5-8 min presentation in class
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* Quiz 4 * Quiz 4

Passing state explicitly:
bt 32 LBxp — ((Stimg, LExg ) — Tut — (L ,I‘ul)

vs. a state transformer:

bt ss Lo (Sing, Loxp) — S Stade Tut Lixp
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Outline

Lexing and parsing
Parser type

Parser monad
Lexer primitives

Recursive-descent monadic parsing
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Lexing and Parsing

Syntax is the form or structure of expressions,
statements, and program units of a given language

Syntax of a Java while statement:
while ( boolean_expr) statement

Semantics is the meaning of expressions, statements
and program units of a given language

Semantics of while ( boolean_expr ) statement

Execute statement repeatedly (O or more times) as long as
boolean_expr evaluates to true
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A formal language is a set of strings (also called
sentences) over a finite alphabet

A generator is a set of rules that generate the strings in
the language

A recognizer reads input strings and determines
whether they belong to the language
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Regular languages describe tokens (e.g., identifiers,
symbols and constants)

Generated by a Regular Expression

Recognized by DFA (lexer)

Context-free languages describe constructs of more
complex constructs (e.g., expressions and statements)
Generated by a Context-Free Grammar
Recognized by a Pushdown Automaton (parser)
Character Token Parse

Stream | Lexer | Stream | Parser | Tree
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& Example

Consider expression: x1 + -123 * x2

Token sequence: ‘1’d:xﬂ ‘1’nt:—123‘

Identifiers: Tetter (letter | digit)*

s

Symbols: +, *
Integers: (-l ) digit*

An example grammar and parse tree: .
expr 12= oy 4 exepr | expr Hexpr | (expr) | i | Vuf
expr is 0 wou {eci ual

#, 0 ,d oud i ane terwiveds . Tlat o focews luf/,(im' by loxer.
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* Parser Type

Back to Haskell. Haskell allows us to compose lexers and parsers
conveniently and parse into complex structures

A parser takes an input string and produces (typically) some
structured object, e.g., a parse tree:

A parser consumes only part of the string input. Therefore, we
expand the type into a tuple of the structured object and the
remainder of the input string:

Programming in Haskell, A Milanova (based on notes by
Stephanie Weirich and Graham Hutton)

wd 4+ et % id
Qipr 5= expr +expr [ Qp(‘jy‘ﬂ.e,z/n‘ / (exfr) | d | b
A<
Cpe + expr opr ¥ d
( / I\
Wb ST e e
!
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The Parser type is polymorphic

Also, it must account for parse errors and ambiguous grammars

An empty list means the input string is ill-formed according to the
grammar

A non-singleton list result means there is more than one way to
parse the string (into a parse tree) according to grammar
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ruu Porser P Yomal

And as a last step, we’ll wrap the type in a newtype declaration:

Why do we need to wrap in a newtype?

Does the type look familiar?

Very similar to the state transformer:
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* Building a Small Parser

A parser that parses a single character
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Let us now modify item to parse a single digit:
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* Exercise

Write a parser that reads one character and returns the negate
function if character is -, id if it is + and fails otherwise

Programming in Haskell, A Milanova (based on notes by
Stephanie Weirich) 16
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Now generalize: satisfy parser returns character if it matches
input predicate, fails otherwise

We'll get back to satisfy in just a little bit.
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* Parser is a Functor

How do we combine (i.e., compose) smaller parsers into larger
ones that parse into more complex structures?

We'll instantiate Parser as a Monad and make use of bind to
combine parsers. In Haskell, we need to first instantiate Parser into
a Functor and an Applicative Functor, and then Monad

s7)
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Parser is an Applicative

* Functor

Note: We do not need Monads to parse context free grammars, we
can parse with applicative functors
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* Parser is a Monad

We’'ll use monads because

(1) the do notation is a super convenient way to encode
grammars

(2) we've done so much with monads already!
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Download Parser.hs and Lecture12.hs and code as we move on

satisfy becomes a bit easier now that we can use the do
notation
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‘ Basic Primitives
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Our goal is to encode grammars
A typical regular grammar:
Tetter (letter | digit)* --identifier
(-le ) digitt --integer
A typical context-free grammar:
expr ::= term + expr | term
term ::= factor * term | factor
factor ::= identifier | integer
We know how to sequence. We need to alternate as well!
Also, we need a way to encode Kleene star and Kleene plus
24
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* Alternating

<|>runs parser p and if parse succeeds, <|> returns result
without evaluating q. If p fails, <|> runs q.
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Wmdty X ~ x*
Some X o T
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* Tokens
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We want to parse x1 + -123 * x2
Into token sequence identifier,+,integer,*,identifier
But space shouldn’t matter, x1  + -123 * x2

Is same token sequence identifier,+,integer,*,identifier
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* Lexer Primitives

Lexer primitives parse tokens
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* Exercise
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* Outline

= Lexing and parsing
Parser type

Parser monad
Lexer primitives

Recursive-descent monadic parsing
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So far we built parsers (lexers) for regular grammars
How about context-free grammars?

An expression grammar:
expr ::= expr + expr | expr * expr | ( expr ) |
identifier | integer

What's the problem with this grammar?
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One way to disambiguate:

expr ::= term + expr | term
term ::= factor * term | factor
factor ::= ( expr ) | identifier | integer

And easily build a monadic parser! E.g., the expr Parser:

What are some issues with this grammar?
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Finish up coding the parsers, then add the start production with
end-of-input:

We have
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* Recursive-Descent Parsing

Monadic parsers are recursive-descent parsers

In recursive-descent there is a procedure for each nonterminal, in
our example itis expr, term, and factor

E.g., expr parser corresponds to expr nonterminal:

Programming in Haskell, A Milanova 36

35

36



* Recursive-Descent Parsing

To parse a nonterminal, call (descend) corresponding procedure.
Right-hand-side of nonterminal forms body of procedure: parser
tries one production, then next, and so on

E.g., expr ::= term + expr | term first tries

expr ::= term + expr;ifitfails, ittries expr ::= term
Parsing right-hands-side means calling procedures and consuming
terminals in turn

E.g., term + exprfirst calls term, then consumes + then
calls expr
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i Backtracking Example

Consider grammar
S:i=c Ad
A:mi=ab | a

and input string cad

What happens with our grammar:

expr ::= term + expr | term
term ::= factor * term | factor
factor ::= ( expr ) | identifier | integer
Why can’t we use this “better” disambiguation:
expr ::= expr + term | term
term ::= term * factor | factor
factor ::= ( expr ) | identifier | integer 3
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Recursive-Descent Parsing

Parsing an alternative may fail in which case recursive-descent
backtracks (i.e., puts consumed input back) and tries next
alternative
E.g., x1*x2*x3 Parser tries term + exprbut fails on +. It
backtracks to the beginning then tries term
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For some grammars recursive-descent does not backtrack

We can rewrite our grammar one more time:
expr ::= term term_tail

term_tail ::= + term term_tail | &

term ::= factor factor_tail

factor_tail ::= * factor factor_tail |
factor ::= ( expr ) | identifier | integer

A classic LL(1) grammar meaning parser can predict the
production by looking at just one token of lookahead

The monadic parser will consume and backtrack from at most one
token, thus, a lot more efficient

Programming in Haskell, A Milanova 40

40

10



We can rewrite our grammar one more time:

expr ::= term term_tail

term_tail ::= + term term_tail | &
becomes

expr ::= term term_tail

term_tail ::= + expr |

becomes

expr ::= term (+ expr | €)
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