
1

State Monad
(modified from lectures by
Graham Hutton and Stephanie
Weirich)

1

Schedule

Programming in Haskell, A Milanova 2

2

Outline

n Back to monads
n Maybe and List monads, brief review
n Either monad

n State transformations
n State and pure functional programming
n Imperative state in Haskell
n The state transformer

n A generic state transformer
n Exercises

3Programming in Haskell, A Milanova

3

Monad

Programming in Haskell, A Milanova 4

class Monad m where
-- | Sequentially compose two actions, passing any

value produced by the first action to the second
(>>=) :: m a -> (a -> m b) -> m b

-- | Inject a value into a monad type
return :: a -> m a

! Monad is a higher-kinded type class:

4

2

Programming in Haskell, A Milanova 5

! What are some instances of Monad?

5

The List Monad

Programming in Haskell, A Milanova 6

! List type constructor is an instance of the Monad type
class:

instance Monad [] where
-- return :: a -> [a]
return x = ?

-- (>>=) :: [a] -> (a -> [b]) -> [b]
li >>= f = concatMap f li

concatMap :: Foldable t => (a -> [b]) -> t a -> [b]

> concatMap (return . product) [[1,2],[3,4],[5,6]]

6

[e1, e2, e3, … en]

[[r1,r2], [r3],[], … [r4,r5,r6]]

7

f fff

> concatMap f xs

[r1, r2, r3, … r4, r5, r6]

concat part

Map part

List is Monadic

7

Programming in Haskell, A Milanova 8

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving (Eq, Show)

t1 = Node (Leaf 1) (Node (Leaf 2)(Leaf 3))
t2 = Node (Leaf 'a') (Node (Node (Leaf 'b') (Leaf 'c')) (Leaf 'd’))

t3 = Node (Leaf 'a') (Node (Leaf 'b')(Leaf 'c'))

zipTree :: (Tree a) -> (Tree b) -> Maybe (Tree (a,b))
zipTree (Leaf x) (Leaf y) = return (Leaf (a,b))
zipTree …

! zipTree to zips two trees. If trees not isomorphic, return Nothing

8

3

Either Datatype

Programming in Haskell, A Milanova 9

import Prelude hiding (Either(..))

data Either a b = Left a | Right b

! Either datatype is similar to Maybe:

! How are they different?

! Maybe helps define compositions cleanly. >>=
”swallows” up Nothing when one of the computations
produces an error

! Either allows an Error message in case of an error

9

Programming in Haskell, A Milanova 10

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving (Eq, Show)

zipTree2 :: (Show a, Show b) =>
(Tree a) -> (Tree b) -> Either String (Tree (a,b))

zipTree2 (Leaf x) (Leaf y) = return (Leaf (a,b))
zipTree2 (Node l1 r1) (Node l2 r2) = do

l’ <- zipTree2 l1 l2
r’ <- zipTree2 r1 r2
return (Node l’ r’)

zipTree2 t1 t2 = Left (“Mismatch “ ++ show t1 ++ show t2)

! Change zipTree to produce an error message instead of
Nothing. If Either were a (specific) Monad, then the following
code should work:

10

Review of Types and Kinds

11

! As we discussed last week, all well-formed expressions in Haskell
have types

! Types have types as well, but they are called kinds

> :kind Int

> :kind [Int] > :kind []

> :kind Either > :kind (Either String)

> :kind (->). > :kind ((->) Int)

! Functors and Monads take a type of kind * -> * as argument.
Think of Functor/Monad structure as a container enclosing values
of certain type

11

The Either Monad

Programming in Haskell, A Milanova 12

instance Monad (Either a) where
-- return :: b -> Either a b
return y = …

-- (>>=) ::
(Left x) >>= f = …
(Right y) >>= f = …

instance Functor (Either a) where
-- fmap ::
fmap f (Left x) = Left x
fmap f (Right y) = Right (f y)

12

4

Programming in Haskell, A Milanova 13

Note:

! To make above code work, you’ll need to define an instance of the
Applicative functor for (Either a), Use the implementation from
Control.Monad

13

Exercise

Programming in Haskell, A Milanova 14

! What about the partially applied function type ((->) a)? Let’s define
Functor and Monad instances for it

instance Monad ((->) a) where
-- return ::
return b = …

-- (>>=) :: (a -> b) -> …
fun >>= f = …

instance Functor ((->) a) where
-- fmap ::
fmap …

14

State Transformations

Programming in Haskell, A Milanova 15

! Now, even more Monads! Going back to Tree, how can we count
number of leaves in a tree?

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving (Eq, Show)

t1 = Node (Leaf 1) (Node (Leaf 2) (Leaf 3))

countF :: Tree a -> Integer
countF (Leaf _) = 1
countF (Node l r) = countF l + countF r

! Or we can just call length assuming Tree is Foldable (as they all
should be)

15

Programming in Haskell, A Milanova 16

! The count is mutable “state”. In C or Java we might create a local
variable and simply increment this variable as we walk over tree

countIO :: Tree a -> IO Int
countIO t = do

count <- IO.newIORef 0 –- create a mutable var

let aux t = case t of
(Leaf _) -> IO.modifyIORef count (+1)
(Node l r) -> do

aux l

aux r
aux t
IO.readIORef count

! Interestingly, you can do this in Haskell (but you shouldn’t). The
Data.IORef module allows mutable variables

! newIORef creates a new mutable variable, readIORef reads
variable and writeIORef writes it, and modifyIORef updates it

16

5

Programming in Haskell, A Milanova 17

! In pure code we cannot modify variables

type Store = Int
countI :: Tree a -> Int
countI t = aux t 0 where

aux :: Tree a -> (Store -> Store) -- aux returns a func
aux t = case t of

(Leaf _) -> (+1) –- at a leaf
(Node l r) -> (aux r) . (aux l) – compose

-- (aux l) is the (+ size_l) function and
-- (aux r) is the (+ size_r) one

! State transformers are Haskell’s way of emulating mutable
variables. A state transformer encapsulates a function that takes
an initial state and returns the new state at every step

17

Programming in Haskell, A Milanova 18

type Store = Int
countI :: Tree a -> Int
countI t = aux t 0 where
aux :: Tree a -> (Store -> Store)
aux t = case t of

(Leaf _) -> (+1)
(Node l r) -> \s -> let s1 = aux l s

s2 = aux r s1
in s2

-- thread state through each recursive call

! Or here is another way to write it, making the state we thread
explicit:

18

Programming in Haskell, A Milanova 19

! What if we wanted to label the leaf nodes with their count? First,
using IO

labelIO :: Tree a -> IO (Tree (a,Int))
labelIO t = do

count <- IO.newIORef 0 –- create a mutable var
let aux t = case t of

(Leaf x) -> do
c <- IO.readIORef count
IO.writeIORef count (c + 1)

return (Leaf (x,c))
(Node l r) -> do

l’ <- aux l
r’ <- aux r
return (Node l’ r’)

aux t

19

Programming in Haskell, A Milanova 20

Exercise
! Now, emulate this code using the state transformer pattern we

used for counting

labelI :: Tree a -> (Tree (a,Int), Store)
labelI t = aux t 0 where

aux :: Tree a -> Store -> (Tree (a,Int),Store)
aux (Leaf x) =

> labelI t1
Node (Node (Leaf ('a',0)) (Leaf ('b',1))) (Leaf ('c',2))

20

6

State Transformer ST

21

! A state transformer is a function that takes the current store and
returns a tuple of a value and a store (the effects of the function)

type ST a = Store -> (a, Store)

! This looks like a monad!

! bind operation, denoted by bindST st f, does the following:
1. Applies state transformer st on the incoming store s producing
value and a new store (x,s’)
2. Applies f on the result value, giving a new state transformer (f x)
3. Applies (f x) on intermediate state s’ producing a new value and
a new store (y,s’’)

! At the end, result of bindST is a new state transformer which is
the composition of st and the transformation of f

21

Programming in Haskell, A Milanova 22

! ST is a monad. So let us define return and bind

type ST a = Store -> (a, Store)

returnST :: a -> ST a
-- takes “a” and returns a function Store -> (a, Store)
returnST x =

! Now download Lecture11.hs from course website and make sure
you code as we move on through lecture

22

Programming in Haskell, A Milanova 23

! ST is a monad. So let us define return and bind

type ST a = Store -> (a, Store)

bindST :: ST a -> (a -> ST b) -> ST b
-- (Store -> (a, Store)) -> (a -> (Store -> (b, Store)) -> (Store -> (b, Store))
-- takes “Store -> (a, Store)” function (i.e., the ST a monad),

-- takes “(a -> (Store -> (b, Store)))” function (i.e., the f)
-- returns ”Store -> (b, Store)” function (i.e., the new ST b monad)
-- Importantly, second transformer takes into account result of first one

bindST st f =

23

Exercise

Programming in Haskell, A Milanova 24

label2 :: Tree a -> Tree (a, Int)
label2 t = fst (aux t 0) where
aux :: Tree a -> ST (Tree (a,Int))

aux (Leaf x) = \s -> (Leaf (x,s), s+1)
aux (Node t1 t2) = \s -> let (t1', s') = aux t1 s

(t2', s'') = aux t2 s’
in (Node t1' t2', s'')

! Rewrite labeling function using returnST and bindST

! Rewrite only the Node clause, leave the Leaf clause as is

24

7

Programming in Haskell, A Milanova 25

! Towards defining a Monad instance

type ST a = Store -> (a, Store)

! Can we define the monad instance like this?

instance Monad ST where
-- return :: a -> ST a
return = returnST

-- >>= :: ST a -> (a -> ST b) -> ST b
st >>= f = bindST st f

! No. Types defined using type cannot be made into instances of
classes. We need to redefine ST using data or newtype and a
dummy constructor

25

Monad ST2

Programming in Haskell, A Milanova 26

newtype ST2 a = S (Store -> (a, Store))

runState :: ST2 a -> (Store -> (a, Store))
runState (S f) = …

instance Monad ST2 where
-- return :: a -> ST2 a
return x = S (\s -> (x, s))

-- >>= :: ST2 a -> (a -> ST2 b) -> ST2 b
st >>= f = …

26

Programming in Haskell, A Milanova 27

instance Functor ST2 where
-- fmap :: (a -> b) -> ST2 a -> ST2 b
fmap = liftM –- from Control.Monad

instance Applicative ST2 where
-- pure :: a -> ST2 a
pure = return

-- (<*>) :: ST2 (a -> b) -> ST2 a -> ST2 b
(<*>) = ap -- from Control.Monad

! In Haskell, an instance of Monad must also be an instance of
Functor and Applicative (we’ll cover Applicatives later)

! Since we don’t need Applicatives, simply use definitions from
Control.Monad:

27

Programming in Haskell, A Milanova 28

! Two useful functions, analogous to readIORef and writeIORef

getST2 :: ST2 Store
getST2 = S (\s -> (s, s))

putST2 :: Store -> ST2 ()
putST2 s = S (_ -> ((), s))

28

8

Programming in Haskell, A Milanova 29

! Now implement mlabel using the monad operations, and getST2
and putST2 at base case mlabel (Leaf x) = …

! Using bind notation:

mlabel :: Tree a -> ST2 (Tree (a, Int))
mlabel (Leaf x) =
mlabel (Node l r) =

… -- look at this one:
(Leaf x) -> (IO.readIORef count) >>= (\c ->

IO.writeIORef count (c + 1) >>

return (Leaf (x,c))
…

label :: Tree a -> (Tree (a, Int))
label t =

29

Programming in Haskell, A Milanova 30

! Using do notation:

mlabel :: Tree a -> ST2 (Tree (a, Int))
mlabel (Leaf x) =

mlabel (Node l r) =

label :: Tree a -> (Tree (a, Int))
label t =

! Now implement mlabel using the monad operations, and getST2
and putST2 at base case mlabel (Leaf x) = …

30

Programming in Haskell, A Milanova 31

! A closer look at what’s happening with getST2 and putST2

31

Outline

n Back to monads
n Maybe and List monads, brief review
n Either monad

n State transformations
n State and pure functional programming
n Imperative state in Haskell
n The state transformer

n A generic state transformer
n Exercises

32Programming in Haskell, A Milanova

32

9

Programming in Haskell, A Milanova 33

! In our examples we worked with an Int store

! In reality of course, the store is more complex, e.g., we may have
more than one “mutable variables” whose values we need to
update

! E.g., we may have

type Store = (Int, Int)

! Therefore, we’ll introduce a generic store and a (more) generic
state transformer

33

Generic State Transformer

Programming in Haskell, A Milanova 34

! Now download State.hs, the generic state transformer and
Lecture11’.hs and again make sure you code as we move on

newtype State s a = S (s -> (a, s))

runState :: (State s a) -> s -> (a, s)
runState (S f) = f

! And we’ll define the Monad with return and bind operations and the
helper functions

34

Programming in Haskell, A Milanova 35

instance Monad (State s) where
-- return ::

return x = …

-- >>= ::

st >>= f = …

35

Programming in Haskell, A Milanova 36

get :: State s s
get = S (\s -> (s, s))

put :: s -> State s ()
put s = S (_ -> ((), s))

modify :: (s -> s) -> State s ()
modify f = do
s <- get
put (f s)

-- or get >>= (\s -> put (f s))

! get (modeled after readIORef, to retrieve value of state),
put (modeled after writeIORef, to “write” value of state), and
modify

36

10

Programming in Haskell, A Milanova 37

mlabelS :: Tree a -> S.State Int (Tree (a, Int))
mlabelS (Leaf x) =

mlabelS (Node l r) =

> S.runState (mlabelS t1) 0
…
> S.runState (mlabelS t2) 100
…

! Let’s rewrite labeling function in terms of the generic transformer

37

Exercise

Programming in Haskell, A Milanova 38

! Simple state

data Exp = Lit Int | Add Exp Exp | Mul Exp Exp deriving (Show,Eq)

exp1 = Add (Mul (Lit 1) (Lit 2)) (Lit 3)
exp2 = Mul exp1 exp1

evalExp :: Exp -> S.State Int Exp
-- store is Int and value is Exp
evalExp = undefined

> S.runState (evalExp exp1) 0
(Add (Mul (Lit 1) (Lit 2)) (Lit 3),5)
> S.runState (evalExp exp2) 0
(Mul …, 25)

38

Exercise

Programming in Haskell, A Milanova 39

! Simple state

lenS :: [a] -> S.State Int Int
-- store is Int and value is Exp
lenS [] = …

> S.runState (len [1,2,3]) 0
(3,3)

39

Exercise

Programming in Haskell, A Milanova 40

data MyState a = M { index :: Int
, freq :: Map a Int } -- from Data.Map

deriving (Show,Eq)

updIndexM :: S.State (MyState a) Int
updIndexM = do
m <- S.get
let i = index m
S.put (m{index = i + 1})
-- create a new record like m, but index as given
return i

! Extend labeling with richer state. State has
! Label at each leaf, just as before
! A map of frequency with which each leaf (index) appears in

tree

40

11

Programming in Haskell, A Milanova 41

data MyState a = M { index :: Int
, freq :: Map a Int } -- from Data.Map

deriving (Show,Eq)

updFreqM :: Ord a => a -> S.State (MyState a) ()
updFreqM = undefined

mlabelM :: Ord a => Tree a -> S.State (MySt a) (Tree (a, Int))
mlabelM = undefined

! Extend labeling with richer state. State has
! Label at each leaf, just as before
! A map of frequency with which each leaf (index) appears in

tree

41

Exercise

Programming in Haskell, A Milanova 42

! Modify inferTypes in your Ps7 so that inferTypes threads
state (index of fresh variable) through the State monad rather than
arguments and returns

inferTypes :: TEnv -> Exp -> S.State Integer (Subst, Type)

! Signature changes from

inferTypes :: TEnv -> Integer -> Exp -> (Subst, Type, Integer)

to

! You will need to adjust callers of inferTypes as well

42

Quiz 4

Programming in Haskell, A Milanova 43

! Download file https://www.cs.rpi.edu/~milanova/csci4966/Subst.hs. It
is the substitution function with aggressive substitution of bound
variables in target expressions

subst :: LExp -> (String, LExp) -> S.State Int LExp

! Spend some time studying the code and how “state” fresh is
passed

subst :: LExp -> (String, LExp) -> Int -> (LExp, Int)

to

! Your task is to redo subst to use the generic State monad. Make
sure the tests at the end pass and submit Subst’.hs in Submitty.

! Now download file subst’.hs. It changes subst from

43

