State Monad
(modified from lectures by
Graham Hutton and Stephanie

M Weirich)

* Schedule

raskel

Tue Nov 5/ The State Monad | Ch. 12 Quiz 4 on Fri
Fri Nov 8 Lecture Week11

PS7 due Tuesday
Lecture11.hs, Lecture11’.hs

State.hs

Tue Nov 12/ | Parsing Theory (a | Ch. 13

Ps8

FrNov 15 bit); Monadic Checkpoint #1: attend office
Parsing hours this week (or earlier)

Tue Nov19/ | Parsec Quiz 5 on Fri

Fri Nov 22 5-8 min presentation in class

on Friday

Tue Nov 26 Property Testing; PS8 due on Tuesday
QuickCheck

Tue Dec 3 TBD Quiz 6 on Fri Checkpoint #2: attend office

Fri Dec 6 hours this week (or earlier)

Tue Dec 10 Project

Project due
5-8 min presentation in class

Programming in Haskell, A Milanova

* Outline

= Back to monads

= Maybe and List monads, brief review

= Either monad

State transformations

= State and pure functional programming
= Imperative state in Haskell

= The state transformer

= A generic state transformer
= Exercises
Programming in Haskell, A Milanova 3

* Monad

Monad is a higher-kinded type class:

Programming in Haskell, A Milanova

+

What are some instances of Monad?

Dtovee Moxad JM‘%& where

- rehopyg 83

Uey a
rM‘u,ru. = Yt Peturu x = Yk X

-~ (>>=) 3 J/ag& a —o [aaaﬂ%yée b)—aﬁ(o(yéeé

Nm‘&m pOSS
Juat x >>,JE7€ fxv

Uotpallans “ ermts

Crﬁum EW) S):u«oa‘har>>=faﬂw b F-R

Programming in Haskell, A Milanova

* The List Monad

List type constructor is an instance of the Monad type
class:

Programming in Haskell, A Milanova

o

* List is Monadic

[el, e2, e3,

L Lrl,r2], [r3],01,

L rl, r2, r3, .. r4,

en]

|f Map part

[r4,r5,r6] 1]

l concat part

r5, re6]

ﬁ‘iJM t;fﬂbc(e
Lef? tde oLofr Nk
e a
7/ N\ 4

\
2 Ol B cof
zipTree to zips two trees. If trees not isomorphic, return Nothing

* Either Datatype

Either datatype is similar to Maybe:

ve J b = Motk
How are they different?

Maybe helps define compositions cleanly. >>=

"swallows” up Noth1ing when one of the computations
produces an error

Either allows an Error message in case of an error

Programming in Haskell, A Milanova

Review of Types and Kinds

As we discussed last week, all well-formed expressions in Haskell

have types 8 :read “Type©
ok read “TYPE
Types have types as well, but they are called kinds’ Goes 1> Type

ou'J rend f
Functors and Monads take a type of kinqﬁ&as argument.

Think of Functor/Monad structure as a container enclosing values

of certain type 1

11

Change zipTree to produce an error message instead of

Nothing. If Either were a (specific) Monad, then the following
code should work:

Programming in Haskell, A Milanova

10

10

The Either Monad
a is ?ﬁk&!",
& oy b ic e “/raarqém over,

Programming in Haskell, A Milanova

12

12

Note:

To make above code work, you'll need to define an instance of the
Applicative functor for (Either a), Use the implementation from
Control.Monad

Programming in Haskell, A Milanova 13

Exercise o bape o “fied"
Mau- b is oue u: hmfom Ubo a bl

What about the partially applied function type ((->) a)? Let's define
b7

Functor and Monad instances for it .

Programming in Haskell,AMiMﬁr@_ f#fll ,}m# b,[,a/ we uacl

13

14

* State Transformations

Now, even more Monads! Going back to Tree, how can we count
number of leaves in a tree?

Or we can just call length assuming Tree is Foldable (as they all
should be)

Programming in Haskell, A Milanova 15

The count is mutable “state”. In C or Java we might create a local
variable and simply increment this variable as we walk over tree

Interestingly, you can do this in Haskell (but you shouldn’t). The

Dat I ef mojule allows mutable variables
a — &ngé a -0 a
newIORef créatés a new mutable variable, readIORef reads

variable and wr1iteIORef writes it, and modi fyIORef updates it

Progral

15

16

In pure code we cannot modify variables

State transformers are Haskell's way of emulating mutable
variables. A state transformer encapsulates a function that takes
an initial state and returns the new state at every step

Programming in Haskell, A Milanova

17

What if we wanted to label the leaf nodes with their count? First,
using 10

Programming in Haskell, A Milanova

Or here is another way to write it, making the state we thread
explicit:

Programming in Haskell, A Milanova 18

18

* Exercise

Now, emulate this code using the state transformer pattern we
used for counting

Programming in Haskell, A Milanova 20

19

20

* State Transformer ST

A state transformer is a function that takes the current store and
returns a tuple of a value and a store (the effects of the function)

This looks like a monad!

bind operation, denoted by bindST! do ofto
1. Applies state transformer st on the incoming stofe s producing
value and a new store (x,s’) [
2. Applies f on the result value, giving a new state, transformer (f x)
3. Applies (f x) on intermediate state s’ producing a new value and
a new store (y,s’’)

At the end, result of bindST is a new state transformer which is
the composition of st and the transformation of f

Now download Lecture11.hs from course website and make sure
you code as we move on through lecture

ST is a monad. So let us define return and bind

Tu bomewove e kowe tL/z:Z/u; tp nedex nedex ,dwuuj

(swhst, \'a’/u, Tudex &ﬁﬂdc{ be

Programming in Haskell, A Milanova haud(od w,/& a clofe frau:/armer. 22

21

ST is a monad. So let u:% define return and bind
o

Programming in Haskell, A Milanova

23

22

* Exercise

Rewrite labeling function using returnST and bindST

Rewrite only the Node clause, leave the Leaf clause as is

e Qux -
bid ST (aug $2) (\rM'—
MU‘u.)T(,UaéL e’ ’))) 24

Programming in Haskell, A Milanova

24

Towards defining a Monad instance

Can we define the monad instance like this?

No. Types defined using type cannot be made into instances of
classes. We need to redefine ST using data or newtype and a
dummy constructor

Programming in Haskell, A Milanova 25

Programming in Haskell, A Milanova 26

25

In Haskell, an instance of Monad must also be an instance of
Functor and Applicative (we’ll cover Applicatives later)

Since we don’t need Applicatives, simply use definitions from
Control.Monad:

Programming in Haskell, A Milanova 27

26

Two useful functions, analogous to readIORef and writeIORef

Programming in Haskell, A Milanova 28

27

28

Now implement m1abeT using the monad operations, and getST2
and putST2 at base case mlabel (Leaf x) =

>
Using bind notation:

(mlabel r) S>=

Fefuen (Node €7r')))

Programming in Haskell, A Milanova 29

Now implement m1abe using the monad operations, and getST2
and putST2 at base case mlabel (Leaf x) =

Using do notation:

£) 0)

Programming in Haskell, A Milanova

29

(lobeleddren, §ize-frec)

A closer look at what's happening with getST2 and putST2

Programming in Haskell, A Milanova 31

30

* Outline

= Back to monads

= Maybe and List monads, brief review

= Either monad

State transformations

= State and pure functional programming
= Imperative state in Haskell

= The state transformer

A generic state transformer

Exercises

31

Programming in Haskell, A Milanova 32

32

In our examples we worked with an Int store

In reality of course, the store is more complex, e.g., we may have
more than one “mutable variables” whose values we need to
update

E.g., we may have

Therefore, we'll introduce a generic store and a (more) generic
state transformer

Programming in Haskell, A Milanova 33

33

o ¥ ox—ok
Stete s a. o Jtate

Programming in Haskell, A Milanova 35

* Generic State Transformer

Now download State.hs, the generic state transformer and
Lecture11’.hs and again make sure you code as we move on

And we'll define the Monad with return and bind operations and the
helper functions

Programming in Haskell, A Milanova 34

34

get (modeled after readIORef, to retrieve value of state),
put (modeled after writeIORef, to “write” value of state), and
modi fy

35

Programming in Haskell, A Milanova 36

36

Let's rewrite labeling function in terms of the generic transformer

Programming in Haskell, A Milanova

37

* Exercise

Simple state

Programming in Haskell, A Milanova

39

H R
* Exercise AN
A8

Simple state 1 2

Programming in Haskell, A Milanova

38

* Exercise

Extend labeling with richer state. State has
Label at each leaf, just as before

A map of frequency with which each leaf (index) appears in
tree

40

10

Extend labeling with richer state. State has
Label at each leaf, just as before

A map of frequency with which each leaf (index) appears in
tree

Programming in Haskell, A Milanova 41

‘ Exercise

Modify inferTypes in your Ps7 so that inferTypes threads
state (index of fresh variable) through the State monad rather than
arguments and returns

Signature changes from

You will need to adjust callers of inferTypes as well

Programming in Haskell, A Milanova 42

41

* Quiz 4

Download file https://www.cs.rpi.edu/~milanova/csci4966/Subst.hs. It
is the substitution funcfion with aggressive substitution of bound
variables in target expressions

Spend some time studying the code and how “state” fresh is
passed

Now download file Subst’ . hs. It changes subst from
to
Your task is to redo subst to use the generic State monad. Make

sure the tests at the end pass and submit Substd . hs in Submitty.

Programming in Haskell, A Milanova 43

43

42

11

