* Type Inference in Haskell
I

i Schedule

Inference
Tue Oct 29/ Classical Hindley Lecture_Week9' PS7, Data.hs, Ps7.hs
Fri Nov 1 Milner and Type Lecture_SPJ_Week10 | Start work on project this
inference in week (or earlier)
Haskell
Tue Nov 5/ The State Monad | Ch. 12 Quiz 4 on Fri PS7 due Tuesday
Fri Nov 8
Tue Nov 12/ | Parsing Theory (a | Ch. 13 PS8
FrNov 15 bit); Monadic Checkpoint #1: attend office
Parsing hours this week (or earlier)
Tue Nov 19/  Parsec Quiz 5 on Fri
Fri Nov 22 5-8 min presentation in class
on Friday
Tue Nov 26 Property Testing; PS8 due on Tuesday
QuickCheck
Tue Dec 3 TBD Quiz 6 on Fri Checkpoint #2: attend office
Fri Dec 6 hours this week (or earlier)
Tue Dec 10 Project Project due
presentations 5-8 min presentation in class

Programming in Haskell, A Milanova

| Outline

= Simple type inference
= Expressions, types and type environment
= Goal and intuition

= Equality constraints 4
= Substitution
= Robinson’s unification L/

= Type inference strategies
= Algorithm V (Strategy One) and
= Algorithm V (Strategy Two)
——————

Programming in Haskell, A Milanova

‘ Outline

= Hindley Milner (also known as Milner Damas)
= Monotypes (types) and polytypes (type schemes)
= Instantiation and generalization
= Algorithm W
= Observations

= Now that we’ve seen classical Hindley Milner... Haskell!
How to extend classical system to account for
= Type signatures
= Pattern matching
= Type classes
«Strategy One vs Hindley Milner’s Strategy Two




Slides by Simon Peyton Jones. Lecture on Haskell’s type inference available at:
https://simon.peytonjones.org/type-inference/

All modification I've made to the original slides as well as my own slides are noted.

Mistakes are my own!
Type inference
q as constraint solving
I

Simon Peyton Jones
Microsoft Research
Lambdale Sept 2019

Simon Peyton Jones

Engineering Fellow, Epic Games

The task of type inference

= Reject bad programs
= Accept good programs

The task of type inference

= Reject bad programs,

s—Accepi good programs

‘L Elaboration

$fOordInt ::

foo ::

sort 88 Va.’o%é? [a] -> [a]
reverse :: Va. [a] -> [a]
foo :: [Int] -> [Int]
foo = \xs. sort (reverse xs)
foo

+ Decorate every binder with its type

+ Add type applications
* Add dictionary applications

$£ordInt comes from
instance Ord Int where

Ord Int

[Int] -> [Int]
\(xs:[Int]). sort @Int $£fOrdInt

(reverse @Int xs)




[oA47

M

et (2T ot @ Lok BP0 T (revecse @Tp xs)

(Ofc[ a=>[a]> [aj>[lw,é/qj

T Td 7Tt 1—=0ur] [nd]

Ord Dot =5 (Lt T [2uf ] $LOrd2es

sort :: Va. Ord a => [a] -> [a]

reverse :: Va. [a] -> [a] Elaboration
foo :: Va. Ord a => [a] -> [a]
foo = \xs. sort (reverse xs)
foo :: Va. Ord a => [a] -> [a]
foo = a. \(d:0rd a). \(xs:[a]).

sort @a d (reverse (@a xs)

+ Decorate every binder with its type
*+ Add type applications

* Add dictionary applications

Programming in Haskell, A Milanova (modified original slide: xs:a -> xs:[a];

mistakes are my own!) 10

with its type
+ Add type applications
and abstractions
*+ Add dictionary applications

[2utT =Tt | L34
[@w}j
Jos L2u]—= (0]
Programming in Haskell, A Milanova 9
9
.| Elaboration
sort :: Va. Ord a => [a] -> [a]
concat :: Va. [[a]l] -> [a]
foo :: Va. Ord a => [[a]] -> [a]
foo = \xs. concat (sort xs)
$fordList :: Va. Ord a -> Orxd [a]
+ Decorate every binder foo :: Va. Ord a => [[a]] -> [a]

foo = /\a. \(d:0rd a). \(xs:[[a]]).
let d2:0rd [a]
= $fOrdList @a d
in concat (@a (sort @[a] d2 xs)

and abstractions,

Programming in Haskell, A Milanova (modified original slide:

$fordList comes from
instance Ord a => Ord [a] where ..

xs:a -> xs:[[a]]; mistakes are my own!)

11

10
H reverse :: Va. [a] -> [a]
CIaSS|C . and :: [Bool] -> Bool
Damas-Milner
—_=foo = \xs. (reverse xs, and xs
T=00] o [fool [ote]
" with (xs:a), where a is a 5]? 1 ! [’@Y
. 3 ves r;gﬁd &(od
standing for an as-yet-unknown type
= Typecheck (reverse xs) Mg(‘ if éy/"q D%M// k j
. ‘reverse’ with a unification variable B, Jﬁé ]E
standing for another as-yet-unknown type.
So this occurrence of reverse has type [B] > [B]. ~
. expected arg type [B] equal to St ; _E [/37/02 B@J / /%j
actual arg type a, thus o ~ [B]. 7/& (CBOO ] Boo/ )
\/%DDJ, Dﬁmé?~> ([@oo/j/ 6&,)
N 12
12



Classic

reverse :: Va. [a] -> [a]
. and :: [Bool] -> Bool
Damas-Milner
foo = \xs. (reverse xs, and xs)
" with (xs:a), where o is a

standing for an as-yet-unknown type
= Typecheck (reverse xs)
. ‘reverse’ with a unification variable B, standing for another
as-yet-unknown type. So this occurrence of reverse has type [B] -> [B].
expected arg type [B] equal to actual arg type a, thus a ~ [B].
= Typecheck (and xs)

. expected arg type [Bool] equal to actual arg type a,
thus a ~ [Bool].

So, we need (a ~ [B], o ~ [Bool])

Solve by , yielding a
= [Bool], B := Bool

%&ZV :[[/37/9(/ @9»///8’]

13

13

| Unification variables

stands for a type; it's a type that we

don t yet know
= GHC sometimes calls it a * "

= By the time type inference is finished, we should know what
every meta-tyvar stands for.

= The “ ” maps each meta-tyvar to the type it
stands for.
= A meta-tyvar stands only for a ; a type with no
foralls in it.
15
15

| variables
l Constraints

o~ [B], o ~ [Bool]
Solve, by unification
to produce a substitution

reverse :: Va. [a] -> [a]
and :: [Bool] -> Bool
foo = \xs. (reverse xs, and xs)

Elaboration and unification

- foo = \(xs:a) .

(reverse @ xs, and xs)
Elaborate

Apply the substitution
(zonking)

foo = \ (xs:[Bool]).
(reverse (@Bool xs, and xs)

14

14

sort :: Va. Ord a => [a] -> [a]
reverse :: Va. [a] -> [a]
foo :: [Int] -> [Int]

foo = \xs. sort (reverse xs)

l Constraints

[B]~[8], [8]~ [Int], d:Ord B

1 Solve, by unification

‘L Same thing, but for type classes

- foo = \(xs:[Int]).

sort @B d (reverse @3 xs)
_—

Elaborate
l Apply the substitution

foo = \(xs:[Int]).
sort @Int $fOrdInt
(reverse @Int xs)

16

16




Deferring solving

= Old school: “on the fly solving”
= Encounter a unification problem
= Solve it
= If fails, report error
= Otherwise, proceed

= This will not work any more

We have to solve  := Int,
before we can solve d:Ord B

17

| An aside

= let twice £ x = £ (f x)
in twice twice (+1) y

= How do we generalize and instantiate with Strategy One?

Programming in Haskell, A Milanova (my slide, mistakes are my own!)

Deferring solving .
g :: Va,b. Fa=b ->a -> Int .
instance F Bool 3 gm/-é$P&>:l x:p 1 r

= |nstantiate g: y -> o -> Int
f x = (g True x, ....,

not x)

Order of
encounter

Programming in Haskell, A Milanova (modified original slide; mistakes are my

ownl) 18

18

19

* My guess

= let twice £ x = £ (f x)
in twice twice (+1) y

= How do we generalize and instantiate with Strategy One?

Programming in Haskell, A Milanova (my slide, mistakes are my own!) 20

20




Need language extensions:
{-# LANGUAGE FlexibleInstances #-}

| Defe rri ng SOIVi ng {—# LANGUAGE MultiParamTypeClasses #-}
op :

:Cax=>a->x ->Int
instance Eq a => C a Bool

fx=1let g :: Va Eq a =>a -> Int

Tueshanfio hion #@7]_‘; gg (:O: -:I))# :

127/@: Ya, Lga=> Q=T
Coustranid 2 Ya . Eqa=

“later” discover that (f ~ Bool)

= Again, need to constraint solving, 4
rather than doing it all “on the fly”

Programming in Haskell, A Milanova (added note about language extensions
and changed type of g: a -> Int, not a -> a; mistakes are my own!)

(wod x )2
gwﬁauﬁ oud o Bool

Thus | £ Beol => C Boof feol holek.
Thw, ko' redcluc] covatraieits. A

21

| The language of constraints
Haskell —
source Constraints What
program .
e symes, | Goneration  Small syntax, sl
with many with few 1S ThIS?
many constructors
constructors
@ How does
s solving work?
Residual
constraint Report errors
23

23

i The French approach to type inference

Haskell Elaborated Apply Elaborated
source program substitution source
program Congirain with “holes” program
eneration
Large . Constraints
gEaa swstitn
many many Small syntax, Solve
constructors CO:’;};:;";"S Residual constraint

Report
errors

The essence of ML type inference, Pottier & Remy,

In ATAPL, Pierce, 2005.

22

* The language of constraints

24

24




| The language of constraints

Evidence

25

How solving

works o [B]~[8], [8]~[Int], d:Ord B
Decompose [8]~ []
1. Take the constraints s Bp~38, [6]~[Int], d:Ordp

2. Do one rewrite
3. Repeat from 1

Substitute g ==&

[6]~[Int], d:Ords [B=8

Decompose [§]~ [Int]

8 ~Int, d:Ord §

Substitute & := Int

d:Ord Int

Solve d: Ord Int from instance declaration

= Each step takes a set of
constraints and returns a
logically-equivalent set
of constraints.

= When you can’t do any
more, that’s the “residual

25

Things to notice

= Constraint solving takes place by
of the constraint

= Each rewrite generates a , for
= a type variable (fixing a unification variable)
= a dictionary (class constraints)
= a coercion (equality constraint)
as we go
= Bindings record the proof steps
= Bindings get injected back into the term

27

constraint” e
26
26
A data [a] = (:) a [a] | 11
‘ wl"aﬁern match ) :: Va. 3> [a] > Ta]
E——
len = len =

\xs. case xs of

\(xs:0) . case xs of
(:) x xs’” -> len xs’ + 1

(:) ad (x:d) (xs’:[d])

[1 ->0 -> len xs’ + 1
» At pattern match, instantiate a with fresh o’
Constraints s lenza->p
* XSl
a~[d] From case,
and from call len xs' :‘;’;’f:"‘f‘* len::va, p. Num B => [@']-> B
Num B From len xs' + 1 dbstitute

What if there are class constraints on component types? Then we type rhs of -> under assumptions.

27

Programming in Haskell, A Milanova (my slide; mistakes are my own!) 28

28




+

IMPLICATION CONSTRAINTS

:L Existentials

data T where ts
MKT :: Va. Show a => a -> T

ts :: [T]
ts = [MKT 3, MKT True]

Programming in Haskell, A Milanova (added note about GADT extension;
mistakes are my own!)

Need language extensions:
{-# LANGUAGE GADT #-}

= [ MKT @Int $fShowInt 3

’

1

MKT @Bool $fShowBool True

30

29

| Existentials

ts :: [T]
ts = [MKT 3, MkT True]

£ :: T -> String
f = \t. case t of
MkT x -> show x

MKT :: Va. Show a => a -> T
show :: Va. Show a => a -> String

ts = [ MKT QInt $fShowInt 3
, MKT @Bool $fShowBool True

1

f = \(t:T). case t of
MkT a (gd:Show a) (x:a)
-> show @a gd x

31

31

30

Generate MKT :: Va. Show a => a -> T
‘ constraints show :: Va. Show a => a -> String
cf.a
f = \t. case t of { MKT x -> show x } 'tZ,B
Generate exra
constraints  Instantiate show
with &
a~ B>y From the lambda
B~T From the case
d: Show s From call of show
§~a From (show x)
y ~String  From result of f
32
32




Generate

* constraints
Generate
constraints

f = \t. case t of { MKT x -> show x }

* The Right Way: implication constraints

f = \t. case t of { MKT x -> show x }

Generate
constraints

33

* Reminder

Implication
constraint

Gi
ven Wanted

35

35

Substitute § == a

Solve (d:Show a), substitute d:=gd & := a

Solving
Substitute y := String
-
Elaborated program with holes Elaborated program after filling holes
£ = \(t:B). case t of f = \(t:T). case t of
MKT a (gd:Show a) (x:a) MkT a (gd:Show a) (x:a)
-> show @8 d x -> show @a gd x

8

36



i What is ‘a’?
£f = \(t:T). case t of

f = \t. case t of MkT a (gd:Show a) (x:a)
MkT x -> show x -> show @a gd x

Generate * aisaunification variable, standing for an as-yet-unknown

constraints Type.
+ Constraint solving produces a substitution for the
unification variables

* When typechecking is done,
all unification variables are gone (substituted away)

* aisackolem constant, the type variable a bound by the
MKT pattern match in the elaborated program.

+ Each pattern match on MkT binds a fresh, distinct 'a’.

+ Every skolem in the constraints should be bound by a v .

37

¢ Existential escape

f2 = \t. case t of { MKT x -> x } -- Ill-typed

Generate MKT :: Va. Show a =>a ->T
constraints

39

39

LEVEL NUMBERS AND
CONSTRAINT FLOATING

38

38

{ Existential escape

f2 = \t. case t of { MKT x -> x } -- Ill-typed

Generate MKT :: Va. Showa =>a ->T
constraints

No! No! Noooo! y comes
from an “outer scope” ©

40

10



¢ Level numbers

£f2 = \t. case t of { MKT x -> x } -- Ill-typed

Generate
constraints

+ Every unification variable has a
level humber

« Every implication has a
level humber

» We say yl is untouchable
under the v?

* The untouchability rule:

you cannot solve y™~ty under a

vk, if n<k
a4

ﬂ Back to our earlier example

f = \t. case t of
MKT x -> show x

Generate
constraints

Now what?7???

S =

—»yl

y is untouchablel!

& ™ ]
i i
QNN

42

41

Floating constraints

= Float (y! ~ String) outside the v
= Now y! is not untouchable any more
= So we can substitute y' := String

43

43

42

{ Our ill-typed example again

f2 = \t. case t of { MKT x -> x } -- Ill-typed

Generate
constraints

+ Cannot float (y! ~ a) outside the
Va, obviously, because it
mentions al

44

11



| Promotion

"v2a.{a'~ (B2 Int), W}

Can we float this to?

al~ (B?- Int)
Via. {W}

45

| Promotion

"vZa. {al~ (B2 Int), W}

When floating an

equality, promote all
n we float this to? [ its free unification

can w I NO! variables

al~ (B?- Int)

v2a. {W}

Instead “promote” f? = y!, so we get

al~ (y! > Int)

45

| Levels and floating: story so far

= Every unification variable and implication
constraint has an ambient level
= Higher-ambient-level vars cannot occur in
lower-ambient-level environment
= Unification variable a™ is untouchable under
a v¥ if n < k (meaning, we cannot unify)
= Float an equality (s~t) out of an implication
Va.blah, if a does not appear free in s or t.
= When floating out, promote the free
unification variables of the floated constraint
= What “promoting” is, is substitute higher-ambient-
level type variabels with lower-level ones, we can’t
float otherwise

Programming in Haskell, A Milanova (modified original slide; mistakes are my
ownl) 47

47

via. {W}
46
CONSTRAINT GENERATION
AND LEVEL NUMBERS

48

12



The “ambient” level

= When generating constraints for a term, the generator has an
“ambient” level

= Fresh unification variables are born at this level

= At a pattern match e.g. case x of { Kxy ->rhs }
= Increment the ambient level
= Generate constraints for the rhs

= Wrap them in an implication constraint binding the existentials and
constraints of K

= No need for this wrapping if no existentials or constraints
e.g. case xof {Justy->rhs; ...}

49

49

Works equally well for nested
] signatures

op :: Cax=>a->x ->1Int
instance Eq a => C a Bool

fx=1let g :: Va Eq a =>a -> Int
ga=o0pax

in g (not x)

o e

V2a.Eqa=Cap?!

pl~Bool

Type Va.

reverse ::

:h signatures sort

f :: Va. Ord a => [a] -> [a]
f = \xs -> reverse (sort xs)

[a] -> [a]
: Va. Ord a => [a] -> [a]

e xs: [a] » Type signature gives rise to
+ Instantiate reverse with « an implication constraint
+ Instantiate sort with g . Constraints of the

sighature become “givens”

via.(gd: Orda) = re becor
of the implication

{d:O0rd gt From call of sort
, [~ [@'] Result of sort

, [a1]~ [a] } From result of f « Increment the ambient

level before generating
constraints for the RHS

50

50

+

CONSTRAINT SOLVING:
HITHER AND YON

51

52

13



Story so far

= Perform repeated rewrites on the constraints
= Each rewrite preserves logical meaning

= Each rewrite is recorded by adding an
evidence binding, in the elaborated program

= The constraint language is very small

= But solving is quite subtle

Solving hither and yon

Touchable

A tree of constraints to solve
Untouchable

53

Solving hither and yon

55

55

54

Solving hither and yon _

56

14



‘ Solving hither and yon _

 mysibettosap

‘ Solving hither and yon _
<o 2

57

58

Solving hither and yon

59

‘ Solving hither and yon _

59

" sty

15



‘ Solving hither and yon -

-

61

61

‘ Solving hither and yon -

3
L

‘ Solving hither and yon -

‘\—

62

‘ Solving hither and yon -

Main message -

= Constraint solving may
involve going to and fro
over the tree

= No problem!

63

64

16



op :: Cax=>a ->x ->1Int

Back to
instance Eq a => C a Bool

| example =
f x=1let g :: Va Eq a => a -> Int

ga=opazx
in g (not x)

Programming in Haskell, A Milanova 65

65

| The French approach to type inference

Haskell Elaborated Apply Elaborated
source program Sl il source
priogram Corstraint with “holes” program
generation
Large Constraints
Synbax, with Substitution.
many many Small syntax, Solve
constructors iy e Residual constraint

constructors

Report
errors

The essence of ML type inference, Pottier & Remy,
In ATAPL, Pierce, 2005.

67

+

BACK TO THE BIG PICTURE

66

‘ The advantages of being French

has a lot of cases (Haskell has a big
syntax) but is rather easy.
= is tricky! But it only has to deal with a
very small constraint language.
= Generating an is easy: constraint
solving “fills the holes” of the elaborated program

67

68

17



| Robustness

= Constraint solver can work in (incl
iteratively), of the order in which you traverse
the source program.

= A much more common approach: solve typechecking
problems in the order you encounter them

= Result: small (even syntactic) changes to the program can
affect whether it is accepted ®

TL;DR: generate-then-solve is much more robust

69

69

‘ Error messages
= All are generated from the final,

residual unsolved constraint.

= Hence type errors incorporate results of all solved
constraints. Eg “Can’t match [Int] with Bool”, rather than
“Can’t match [a] with Bool”

= Much more modular: error message generation is in one
place (TcErrors) instead of scattered all over the type
checker.

= Constraints carry “provenance” information to say whence
they came 2

| Practical benefits

-
= constraint generation (7 modules, 3000 loc)
= constraint solving (5 modules, 3000 loc)
= error message generation (1 module, 800 loc)

" : constraint generator does a bit of “on the fly” unification to
solve simple cases, but generates a constraint whenever anything
looks tricky

= Provides a great “sanity check” for the type system: is it easy to
generate constraints, or do we need a new form of constraint?

71

70

71

Things | have sadly not talked about

= Coercions: the evidence for equality

= Type families, and “flattening”

= Functional dependencies, injectivity, and “Derived” constraints

= Deferred type errors and typed holes

= Unboxed vs boxed equalities

= Nominal vs representational equality (Coercible etc)

= Kind polymorphism, levity polymorphism, matchabilty
polymorphism

= ... and quite a bit more

72

72

18



Things | have sadlv not talked about

= Coercions: the eviden~ W5

= Type families. 2~ 44 e ce

o
= Functior <ved ’(‘f\‘“gsd\ed ' “Derived”
const' O WAL o

50 @ oW o0
= Defer \ of e o) ed exo’(?f\k
« Unboxe A \06050'“0,‘\(\@ 9?’2“\@«“
= Nominal \N-\x‘(\\‘;o\\,@'(v _quality (Coercible etc)
= ... and qu. 7

73

73

‘ Conclusion

= Generate constraints then solve, is THE way to do type

inference. Vive la France
= Background reading
= Outsideln(X): modular type inference with local assumptions (JFP

2011). Covers implication constraints but not floating or level
numbers.

= Practical type inference for arbitrary-rank types (JFP 2007). Full
executable code; but does not use the Glorious French Approach

74

74

19



