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Type Inference in Haskell
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Schedule
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Outline

n Simple type inference
n Expressions, types and type environment 
n Goal and intuition
n Equality constraints
n Substitution
n Robinson’s unification
n Type inference strategies

n Algorithm V (Strategy One) and 
n Algorithm V (Strategy Two)
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Outline

n Hindley Milner (also known as Milner Damas)
n Monotypes (types) and polytypes (type schemes)
n Instantiation and generalization
n Algorithm W
n Observations

n Now that we’ve seen classical Hindley Milner… Haskell!
How to extend classical system to account for
n Type signatures 
n Pattern matching
n Type classes
n Strategy One vs Hindley Milner’s Strategy Two  
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Type inference 
as constraint solving

Simon Peyton Jones
Microsoft Research

Lambdale Sept 2019

Slides by Simon Peyton Jones. Lecture on Haskell’s type inference available at:
https://simon.peytonjones.org/type-inference/

All modification I’ve made to the original slides as well as my own slides are noted. 
Mistakes are my own!
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The task of type inference
n Reject bad programs
n Accept good programs
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The task of type inference
n Reject bad programs, 

with a decent error message
n Accept Elaborate good programs
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Elaboration
sort    :: "a. Ord a => [a] -> [a]
reverse :: "a. [a] -> [a]

foo :: [Int] -> [Int]
foo = \xs. sort (reverse xs)

$fOrdInt :: Ord Int

foo :: [Int] -> [Int]
foo = \(xs:[Int]). sort @Int $fOrdInt

(reverse @Int xs)Elaboration
• Decorate every binder with its type
• Add type applications
• Add dictionary applications

$fOrdInt comes from
instance Ord Int where 

…

8

8



3

Programming in Haskell, A Milanova 9

9

Elaboration
sort    :: "a. Ord a => [a] -> [a]
reverse :: "a. [a] -> [a]

foo :: "a. Ord a => [a] -> [a]
foo = \xs. sort (reverse xs)

foo :: "a. Ord a => [a] -> [a]
foo = /\a. \(d:Ord a). \(xs:[a]).

sort @a d (reverse @a xs)
Elaboration
• Decorate every binder with its type
• Add type applications

and abstractions
• Add dictionary applications

and abstractions

10
Programming in Haskell, A Milanova (modified original slide: xs:a -> xs:[a]; 
mistakes are my own!)
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Elaboration

Elaboration
• Decorate every binder

with its type
• Add type applications

and abstractions
• Add dictionary applications

and abstractions,
and local bindings

sort   :: "a. Ord a => [a] -> [a]
concat :: "a. [[a]] -> [a]

foo :: "a. Ord a => [[a]] -> [a]
foo = \xs. concat (sort xs)

$fOrdList :: "a. Ord a -> Ord [a]

foo :: "a. Ord a => [[a]] -> [a]
foo = /\a. \(d:Ord a). \(xs:[[a]]).

let d2:Ord [a]
d2 = $fOrdList @a d

in concat @a (sort @[a] d2 xs)

$fOrdList comes from
instance Ord a => Ord [a] where …Programming in Haskell, A Milanova (modified original slide: 

xs:a -> xs:[[a]]; mistakes are my own!)
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Classic 
Damas-Milner

n Start with (xs:a), where a is a unification variable,
standing for an as-yet-unknown type

n Typecheck (reverse xs)
n Instantiate ‘reverse’ with a unification variable b, 

standing for another as-yet-unknown type.  
So this occurrence of reverse has type [b] -> [b].

n Constrain expected arg type [b] equal to 
actual arg type a, thus a ~ [b]. 

reverse :: "a. [a] -> [a]
and     :: [Bool] -> Bool

foo = \xs. (reverse xs, and xs)
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n Start with (xs:a), where a is a unification variable,
standing for an as-yet-unknown type

n Typecheck (reverse xs)
n Instantiate ‘reverse’ with a unification variable b, standing for another 

as-yet-unknown type.  So this occurrence of reverse has type [b] -> [b].
n Constrain expected arg type [b] equal to actual arg type a, thus a ~ [b]. 

n Typecheck (and xs)
n Constrain expected arg type [Bool] equal to actual arg type a, 

thus a ~ [Bool]. 
n So, we need (a ~ [b], a ~ [Bool]) 
n Solve by unification, yielding a substitution: 

a := [Bool], b := Bool

Classic 
Damas-Milner

reverse :: "a. [a] -> [a]
and     :: [Bool] -> Bool

foo = \xs. (reverse xs, and xs)

13
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Elaboration and unification 
variables

foo = \(xs:a). 
(reverse @b xs, and xs)

reverse :: "a. [a] -> [a]
and     :: [Bool] -> Bool

foo = \xs. (reverse xs, and xs)

a ~ [b], a ~ [Bool]

Constraints

a := [Bool], b := Bool

Solve, by unification
to produce a substitution

foo = \(xs:[Bool]). 
(reverse @Bool xs, and xs)

Elaborate
Apply the substitution
(zonking)

Main point: solving the 
constraints “fills in” the 

elaborated program
14
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Unification variables

n A unification variable stands for a type; it’s a type that we 
don’t yet know

n GHC sometimes calls it a “meta type variable”
n By the time type inference is finished, we should know what 

every meta-tyvar stands for.
n The “global substitution” maps each meta-tyvar to the type it 

stands for.
n A meta-tyvar stands only for a monotype; a type with no 

foralls in it.
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Same thing, but for type classes
foo = \(xs:[Int]).

sort @b d (reverse @d xs)

sort    :: "a. Ord a => [a] -> [a]
reverse :: "a. [a] -> [a]

foo :: [Int] -> [Int]
foo = \xs. sort (reverse xs)

[b] ~ [d],  [d] ~ [Int],  d:Ord b

Constraints

b := Int, d := Int,
d := $fOrdInt

Solve, by unification

foo = \(xs:[Int]).
sort @Int $fOrdInt

(reverse @Int xs)

Elaborate

Apply the substitution

Main point: solving the constraints 
“fills in” the elaborated program

16
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Deferring solving

n Old school: “on the fly solving”
n Encounter a unification problem
n Solve it
n If fails, report error
n Otherwise, proceed

n This will not work any more

We have to solve b := Int, 
before we can solve d:Ord b

[b] ~ [d],  [d] ~ [Int],  d:Ord b

Main point

The order in which 
we encounter 
constraints

≠
The order in which 

we solve them

17

17

Deferring solving
n x::b
n Instantiate g: 𝛄 -> a -> Int

𝛄 ~ Bool,
F a, -- class constraint

a ~ b,
b ~ Bool

g True

g True x

not x

g :: "a,b. F a => b -> a -> Int
instance F Bool

f x = (g True x, ....,  not x)

We have to 
solve this first

Order of 
encounter

Programming in Haskell, A Milanova (modified original slide; mistakes are my 
own!) 18
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An aside

n How do we generalize and instantiate with Strategy One?

Programming in Haskell, A Milanova (my slide, mistakes are my own!) 19

f y = let twice f x = f (f x)
in twice twice (+1) y

f: α , x : b
Constraints: 
a ~ b → γ From (f x)
a ~ γ → δ From f (f x)
Type: 
a -> b -> δ

Generalize	both	constraints	and	type?

" a, b, γ,δ. => 
{ a ~ b → γ

a ~ γ → δ }

Type: " a, b, δ . a -> b -> δ

Then	instantiate	constraints	and	type?
a'~ b’ → γ′ Type: a’ -> b’ -> δ′
a’ ~ γ′ → δ′

a’’~ b’’ → γ′′ Type: a’’ -> b’’ -> δ′′
a’’ ~ γ′′ → δ′′

19

My guess

n How do we generalize and instantiate with Strategy One?

Programming in Haskell, A Milanova (my slide, mistakes are my own!) 20

f y = let twice f x = f (f x)
in twice twice (+1) y

f: α , x : b
Constraints: 
a ~ b → γ From (f x)
a ~ γ → δ From f (f x)
Type: 
a -> b -> δ

Solve	as	much	as	possible	before	
generalization	(or	otherwise	will	be	
solving	same	constraints	twice):

" a, b, γ,δ. => { }

Type: " b. (b -> b) -> b -> b

Then	instantiate	constraints	and	type:

Type: (b’ -> b’) -> b’ -> b’

Type: (b’’ -> b’’) -> b’’ -> b’’

20
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Deferring solving

n Cannot solve constraint (C a b) until we 
“later” discover that (b ~ Bool)

n Again, need to defer constraint solving, 
rather than doing it all “on the fly”

op :: C a x => a -> x -> Int
instance Eq a => C a Bool

f x = let g :: "a Eq a => a -> Int
g a = op a x

in g (not x)

x : b
Constraint: C a b

Programming in Haskell, A Milanova (added note about language extensions 
and changed type of g: a -> Int, not a -> a; mistakes are my own!)

Need language extensions:
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

21

b

21

The French approach to type inference

Solve

Haskell 
source 

program

Large 
syntax, with 
many many 

constructors

Constraints

Small syntax, 
with few 

constructors

Constraint 
generation

Residual constraint

Elaborated 
program 

with “holes”

Report
errors

Elaborated 
source 

program

Substitution

Apply
substitution

The essence of ML type inference, Pottier & Remy,
In ATAPL, Pierce, 2005.

22
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The language of constraints
Haskell 
source 

program

Large syntax, 
with many 

many 
constructors

Constraints

Small syntax, 
with few 

constructors

Constraint 
generation

Residual 
constraint

Solve

Report errors

What 
exactly
is this?

How does 
solving work?

23

23

The language of constraints

W ::= 𝝐 Empty constraint
| W1 , W2 Conjunction
| C t1.. tn Class constraint 
| t1 ~ t2 Equality constraint
| "a1..an. W1ÞW2 Implication

24

24
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The language of constraints

W ::= 𝝐 Empty constraint
| W1 , W2 Conjunction
| d : C t1.. tn Class constraint 
| g : t1 ~ t2 Equality constraint
| "a1..an. W1ÞW2 Implication

Evidence

25

25

How solving 
works

1. Take the constraints
2. Do one rewrite
3. Repeat from 1

n Each step takes a set of 
constraints and returns a 
logically-equivalent set 
of constraints.

n When you can’t do any 
more, that’s the “residual 
constraint”

[b] ~ [d],  [d] ~ [Int],  d:Ord b

b ~ d,  [d] ~ [Int],  d:Ord b
Decompose 𝛽 ~ [𝛿]

Substitute 𝛽 ≔ 𝛿

[d] ~ [Int],  d:Ord 𝛿

d ~ Int,  d:Ord 𝛿
Decompose 𝛿 ~ [𝐼𝑛𝑡]

d:Ord 𝐼𝑛𝑡
Substitute 𝛿 ≔ 𝐼𝑛𝑡

𝜖
Solve 𝑑:𝑂𝑟𝑑 𝐼𝑛𝑡 from instance declaration

𝛽 ≔ 𝛿

𝛽 ≔ δ
𝛿 ≔ 𝐼𝑛𝑡

26
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Things to notice

n Constraint solving takes place by successive rewrites
of the constraint

n Each rewrite generates a binding, for
n a type variable (fixing a unification variable)
n a dictionary (class constraints)
n a coercion (equality constraint)
as we go

n Bindings record the proof steps
n Bindings get injected back into the term

27

27

Pattern match

len = 
\xs. case xs of
(:) x xs’ -> len xs’ + 1

[] -> 0

len = 
\(xs:α). case xs of

(:) a’ (x:a’) (xs’:[a’]) 
-> len xs’ + 1

data [a] = (:) a [a] | []
(:) :: "a. a -> [a] -> [a]

28

α ~ [a’] From case,
and from call len xs’

Num b From len xs’ + 1

Constraints
• At pattern match, instantiate a with fresh a’
• len :: α -> b
• xs :: α

Solve and
substitute

len :: "a’, b. Num b => [a’] -> b

What if there are class constraints on component types? Then we type rhs of -> under assumptions.

Programming in Haskell, A Milanova (my slide; mistakes are my own!)

28
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IMPLICATION CONSTRAINTS

29

Existentials
data T where
MkT :: "a. Show a => a -> T

ts :: [T]
ts = [MkT 3, MkT True]

ts = [ MkT @Int $fShowInt 3
, MkT @Bool $fShowBool True
]

30

Need language extensions:
{-# LANGUAGE GADT #-}

Programming in Haskell, A Milanova (added note about GADT extension; 
mistakes are my own!)

30

Existentials
ts :: [T]
ts = [MkT 3, MkT True]

ts = [ MkT @Int $fShowInt 3
, MkT @Bool $fShowBool True
]

f :: T -> String
f = \t. case t of

MkT x -> show x

f = \(t:T). case t of
MkT a (gd:Show a) (x:a)
-> show @a gd x

MkT :: "a. Show a => a -> T
show :: "a. Show a => a -> String

31

31

Generate 
constraints

f = \t. case t of { MkT x -> show x }
• f : 𝛼
• t : 𝛽
• x : a
• Instantiate show 

with 𝛿
𝛼 ~ 𝛽 → 𝛾 From the lambda
𝛽 ~ 𝑇 From the case
d : Show 𝛿 From call of show
𝛿 ~ 𝑎 From (show x)
𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 From result of f

Generate 
constraints

MkT :: "a. Show a => a -> T
show :: "a. Show a => a -> String

32

32
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Generate 
constraints

f = \t. case t of { MkT x -> show x }

𝛼 ~ 𝛽 → 𝛾 From the lambda
𝛽 ~ 𝑇 From the case
d : Show 𝛿 From call of show
𝛿 ~ 𝑎 From (show x)
𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 From result of f

Generate 
constraints

MkT :: "a. Show a => a -> T
show :: "a. Show a => a -> String

• But what is this ‘a’?

• And how can we solve 
Show 𝛿?

33

33

The Right Way: implication constraints

f = \t. case t of { MkT x -> show x }

𝛼 ~ 𝛽 → 𝛾 From the lambda
𝛽 ~ 𝑇 From the case
∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂) ⇒

{ 𝑑 ∶ 𝑆ℎ𝑜𝑤 𝛿 From call of show
, 𝛿 ~ 𝑎 From (show x)
, 𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 } From result of f

Generate 
constraints

MkT :: "a. Show a => a -> T
show :: "a. Show a => a -> String

• But what is this ‘a’?
Answer: Bound by ∀𝑎

• And how can we solve 
d : Show 𝛿
Answer: from gd.

34

34

Reminder

W ::= 𝝐 Empty constraint
| W1 , W2 Conjunction
| d : C t1.. tn Class constraint 
| g : t1 ~ t2 Equality constraint
| "a1..an. W1ÞW2 Implication

Implication 
constraint Given

Wanted

35

35

𝛼 ~ 𝛽 → 𝛾 From the lambda
𝛽 ~ 𝑇 From the case

∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂) ⇒
{ 𝑑 ∶ 𝑆ℎ𝑜𝑤 𝛿 From call of show
, 𝛿 ~ 𝑎 From (show x)
, 𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 } From result of f

∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂) ⇒
{ 𝑑 ∶ 𝑆ℎ𝑜𝑤 𝛿, 𝛿 ~ 𝑎, 𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 }

∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂) ⇒
{ 𝑑 ∶ 𝑆ℎ𝑜𝑤 𝑎, 𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 }

Substitute 𝛿 ≔ 𝑎

∀𝒂. 𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂 ⇒ 𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔
Solve (d:Show a), substitute d:=gd 𝛿 ≔ 𝑎

Substitute 𝛾 ≔ 𝑆𝑡𝑟𝑖𝑛𝑔

𝜖

f = \(t:T). case t of
MkT a (gd:Show a) (x:a)
-> show @a gd x

Elaborated program with holes

f = \(t:b). case t of
MkT a (gd:Show a) (x:a)

-> show @d d x

Elaborated program after filling holes

Solving

36

36
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What is ‘a’?
f = \t. case t of

MkT x -> show x

Generate 
constraints

f = \(t:T). case t of
MkT a (gd:Show a) (x:a)
-> show @a gd x

• 𝛼 is a unification variable, standing for an as-yet-unknown 
type. 

• Constraint solving produces a substitution for the 
unification variables

• When typechecking is done,
all unification variables are gone (substituted away)

• 𝑎 is a skolem constant, the type variable 𝑎 bound by the 
MkT pattern match in the elaborated program.

• Each pattern match on MkT binds a fresh, distinct ‘a’.

• Every skolem in the constraints should be bound by a ∀

𝛼 ~ 𝛽 → 𝛾
𝛽 ~ 𝑇

∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂) ⇒
{ 𝑑 ∶ 𝑆ℎ𝑜𝑤 𝛿
, 𝛿 ~ 𝑎
, 𝛾 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 }

37

37

LEVEL NUMBERS AND
CONSTRAINT FLOATING

38

38

Existential escape
f2 = \t. case t of { MkT x -> x }  -- Ill-typed

𝛼 ~ 𝛽 → 𝛾 From the lambda
𝛽 ~ 𝑇 From the case
∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂) ⇒

{ 𝛾 ~ 𝑎 } From result of f2

Generate 
constraints MkT :: "a. Show a => a -> T

• Can we solve by 
substituting 𝛾 ≔ 𝑎?

39

39

Existential escape

𝛼 ~ 𝛽 → 𝛾 From the lambda
𝛽 ~ 𝑇 From the case
∀𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂) ⇒

{ 𝛾 ~ 𝑎 } From result of f2

Generate 
constraints MkT :: "a. Show a => a -> T

Can we solve by 
substituting 𝛾 ≔ 𝑎?

No! No! Noooo!  𝛾 comes 
from an “outer scope”

f2 = \t. case t of { MkT x -> x }  -- Ill-typed

40

40
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Level numbers

𝛼5 ~ 𝛽5 → 𝛾5 From the lambda
𝛽5 ~𝑇 From the case
∀𝟐𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂) ⇒

{ 𝛾5 ~ 𝑎 } From result of f2

Generate 
constraints

• Every unification variable has a 
level number

• Every implication has a 
level number

• We say 𝛾5 is untouchable
under the ∀7

• The untouchability rule: 
you cannot solve 𝛾8~𝑡𝑦 under a 
∀9, if  n<k

f2 = \t. case t of { MkT x -> x }  -- Ill-typed

41

41

Back to our earlier example
f = \t. case t of

MkT x -> show x

Generate 
constraints

𝛼5 ~ 𝛽5 → 𝛾5
𝛽5 ~𝑇

∀𝟐𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂) ⇒
{ 𝑑 ∶ 𝑆ℎ𝑜𝑤 𝛿7
, 𝛿7 ~ 𝑎
, 𝛾5 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 }

∀𝟐𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂) ⇒
{ 𝛾5 ~ 𝑆𝑡𝑟𝑖𝑛𝑔 }

𝛼 ≔ 𝑇 → 𝛾!

𝛽 ≔ 𝑇
𝛿 ≔ 𝑎

Now what????

𝛾 is untouchable!

42

42

Floating constraints

∀𝟐𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂) ⇒
{ 𝛾5 ~ 𝑆𝑡𝑟𝑖𝑛𝑔, 𝑊 }

𝛾5 ~ 𝑆𝑡𝑟𝑖𝑛𝑔

∀𝟐𝒂. 𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂 ⇒ {𝐖 }

n Float (𝛾! ~ 𝑆𝑡𝑟𝑖𝑛𝑔) outside the ∀
n Now 𝛾! is not untouchable any more
n So we can substitute 𝛾! ≔ 𝑆𝑡𝑟𝑖𝑛𝑔

43

43

Our ill-typed example again

𝛼5 ~ 𝛽5 → 𝛾5 From the lambda
𝛽5 ~𝑇 From the case
∀𝟐𝒂. (𝒈𝒅 ∶ 𝑺𝒉𝒐𝒘𝒂) ⇒

{ 𝛾5 ~ 𝑎 } From result of f2

Generate 
constraints

• Cannot float 𝛾5 ~ 𝑎 outside the 
∀𝑎, obviously, because it 
mentions 𝑎! 

f2 = \t. case t of { MkT x -> x }  -- Ill-typed

44

44
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Promotion

Can we float this to?

∀"𝑎. 𝛼!~ (𝛽"→ Int),𝑊

𝛼!~ (𝛽"→ Int)
∀"𝑎. 𝑊

45

45

Promotion

Can we float this to?

Instead “promote” 𝛽" ≔ 𝛾!, so we get

∀"𝑎. 𝛼!~ (𝛽"→ Int),𝑊

𝛼!~ (𝛽"→ Int)
∀"𝑎. 𝑊

NO!

𝛼!~ (𝛾! → Int)
∀"𝑎. 𝑊

¡ When floating an 
equality, promote all 
its free unification 
variables 

46

46

Levels and floating: story so far

n Every unification variable and implication 
constraint has an ambient level

n Higher-ambient-level vars cannot occur in 
lower-ambient-level environment

n Unification variable 𝛼8 is untouchable under 
a ∀9 if 𝑛 < 𝑘 (meaning, we cannot unify)

n Float an equality (𝑠~𝑡) out of an implication 
∀𝑎. 𝑏𝑙𝑎ℎ, if 𝑎 does not appear free in 𝑠 or 𝑡.

n When floating out, promote the free 
unification variables of the floated constraint
n What “promoting” is, is substitute higher-ambient-

level type variabels with lower-level ones, we can’t 
float otherwise

F ::= d : C t1.. tn
|  g : t1 ~ t2
|  F1 , F2
|  True

W ::= F
| W1 , W2
| "k a1..an. F Þ W

Programming in Haskell, A Milanova (modified original slide; mistakes are my 
own!) 47

47

CONSTRAINT GENERATION
AND LEVEL NUMBERS

48

48



13

The “ambient” level

n When generating constraints for a term, the generator has an 
“ambient” level

n Fresh unification variables are born at this level
n At a pattern match e.g. case x of { K x y -> rhs }

n Increment the ambient level
n Generate constraints for the rhs
n Wrap them in an implication constraint binding the existentials and 

constraints of K
n No need for this wrapping if no existentials or constraints

e.g.   case x of { Just y -> rhs;  … }

49

49

Type 
signatures

f :: "a. Ord a => [a] -> [a]
f = \xs -> reverse (sort xs)

∀𝟏𝒂. (𝒈𝒅 ∶ 𝑶𝒓𝒅 𝒂) ⇒
{ 𝑑 ∶ 𝑂𝑟𝑑 𝛽5 From call of sort
, 𝛽5 ~ [𝛼5] Result of sort
, 𝛼5 ~ 𝑎 } From result of f

• xs : [𝑎]
• Instantiate reverse with 𝛼
• Instantiate sort with 𝛽

reverse :: "a. [a] -> [a] 
sort    :: "a. Ord a => [a] -> [a]

• Type signature gives rise to 
an implication constraint

• Constraints of the 
signature become “givens” 
of the implication

• Increment the ambient 
level before generating 
constraints for the RHS

50

50

Works equally well for nested 
signatures

op :: C a x => a -> x -> Int
instance Eq a => C a Bool

f x = let g :: "a Eq a => a -> Int
g a = op a x

in g (not x)

x : b
Constraint: C a b

∀'𝑎. 𝐸𝑞 𝑎 ⇒ 𝐶 𝑎 𝛽(
𝛽(~𝐵𝑜𝑜𝑙

Solve this first

And then this

51

51

CONSTRAINT SOLVING:
HITHER AND YON

52
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Story so far

n Perform repeated rewrites on the constraints

n Each rewrite preserves logical meaning

n Each rewrite is recorded by adding an 
evidence binding, in the elaborated program

n The constraint language is very small

n But solving is quite subtle

F ::= d : C t1.. tn
|  g : t1 ~ t2
|  F1 , F2
|  True

W ::= F
| W1 , W2
| "k a1..an. F Þ W

53

53

Solving hither and yon

𝑹𝒐𝒐𝒕𝟏

∀𝟐𝒂

𝑬𝒒 (𝜶𝟏 , 𝜷𝟏)

∀𝟐𝒃

𝜶𝟏~ 𝑰𝒏𝒕

𝜷𝟏~𝑩𝒐𝒐𝒍

Untouchable

Touchable

∀"𝑎. 𝜖 ⇒ 𝐸𝑞 𝛼! , 𝛽!
𝛽!~ 𝐵𝑜𝑜𝑙
∀"𝑏. 𝜖 ⇒ 𝛼!~ 𝐼𝑛𝑡

A tree of constraints to solve

54

54

Solving hither and yon

𝑹𝒐𝒐𝒕𝟏

∀𝟐𝒂 ∀𝟐𝒃

𝜶𝟏~ 𝑰𝒏𝒕

𝜷𝟏~𝑩𝒐𝒐𝒍

∀"𝑎. 𝜖 ⇒ { 𝐸𝑞 𝛼! , 𝐸𝑞 𝛽!}
𝛽!~ 𝐵𝑜𝑜𝑙
∀"𝑏. 𝜖 ⇒ 𝛼!~ 𝐼𝑛𝑡

Use 
instance (Eq a, Eq b) => Eq (a,b)

𝑬𝒒 𝜶𝟏 𝑬𝒒 𝜷𝟏

55

55

Solving hither and yon

𝑹𝒐𝒐𝒕𝟏

∀𝟐𝒂 ∀𝟐𝒃

𝜶𝟏~ 𝑰𝒏𝒕

∀"𝑎. 𝜖 ⇒ { 𝐸𝑞 𝛼! , 𝐸𝑞 𝛽!}
∀"𝑏. 𝜖 ⇒ 𝛼!~ 𝐼𝑛𝑡

𝑬𝒒 𝜶𝟏 𝑬𝒒 𝜷𝟏

𝛽 ≔ 𝐵𝑜𝑜𝑙

Solve 𝛽!~𝐵𝑜𝑜𝑙

56

56
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Solving hither and yon

𝑹𝒐𝒐𝒕𝟏

∀𝟐𝒂 ∀𝟐𝒃

𝜶𝟏~ 𝑰𝒏𝒕

∀"𝑎. 𝜖 ⇒ { 𝐸𝑞 𝛼! , 𝐸𝑞 𝐵𝑜𝑜𝑙}
∀"𝑏. 𝜖 ⇒ 𝛼!~ 𝐼𝑛𝑡

𝑬𝒒 𝜶𝟏 𝑬𝒒 𝑩𝒐𝒐𝒍

𝛽 ≔ 𝐵𝑜𝑜𝑙

Apply subst to 𝐸𝑞 𝛽

57

57

Solving hither and yon

𝑹𝒐𝒐𝒕𝟏

∀𝟐𝒂 ∀𝟐𝒃

𝜶𝟏~ 𝑰𝒏𝒕

∀"𝑎. 𝜖 ⇒ { 𝐸𝑞 𝛼!}
∀"𝑏. 𝜖 ⇒ 𝛼!~ 𝐼𝑛𝑡

𝑬𝒒 𝜶𝟏

𝛽 ≔ 𝐵𝑜𝑜𝑙

Use instance Eq Bool

58

58

Solving hither and yon

𝑹𝒐𝒐𝒕𝟏

∀𝟐𝒂 ∀𝟐𝒃

𝜶𝟏~ 𝑰𝒏𝒕

∀"𝑎. 𝜖 ⇒ { 𝐸𝑞 𝛼!}
𝛼!~ 𝐼𝑛𝑡
∀"𝑏. 𝜖 ⇒ 𝜖

𝑬𝒒 𝜶𝟏

𝛽 ≔ 𝐵𝑜𝑜𝑙

Float (𝛼!~ 𝐼𝑛𝑡) out of ∀𝑏

59

59

Solving hither and yon

𝑹𝒐𝒐𝒕𝟏

∀𝟐𝒂

𝜶𝟏~ 𝑰𝒏𝒕

∀"𝑎. 𝜖 ⇒ { 𝐸𝑞 𝛼!}
𝛼!~ 𝐼𝑛𝑡

𝑬𝒒 𝜶𝟏

𝛽 ≔ 𝐵𝑜𝑜𝑙

Discard empty ∀𝑏

60

60
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Solving hither and yon

𝑹𝒐𝒐𝒕𝟏

∀𝟐𝒂

∀"𝑎. 𝜖 ⇒ { 𝐸𝑞 𝛼!}

𝑬𝒒 𝜶𝟏

𝛽 ≔ 𝐵𝑜𝑜𝑙
𝛼 ≔ 𝐼𝑛𝑡

Solve (𝛼!~ 𝐼𝑛𝑡)

61

61

Solving hither and yon

𝑹𝒐𝒐𝒕𝟏

∀𝟐𝒂

∀"𝑎. 𝜖 ⇒ { 𝐸𝑞 𝐼𝑛𝑡}

𝑬𝒒 𝑰𝒏𝒕

𝛽 ≔ 𝐵𝑜𝑜𝑙
𝛼 ≔ 𝐼𝑛𝑡

Apply subst to (𝐸𝑞 𝛼)

62

62

Solving hither and yon

𝑹𝒐𝒐𝒕𝟏

∀𝟐𝒂

∀"𝑎. 𝜖 ⇒ 𝜖

𝛽 ≔ 𝐵𝑜𝑜𝑙
𝛼 ≔ 𝐼𝑛𝑡

Use instance Eq Int

63

63

Solving hither and yon

𝑹𝒐𝒐𝒕𝟏

𝜖

𝛽 ≔ 𝐵𝑜𝑜𝑙
𝛼 ≔ 𝐼𝑛𝑡

Discard empty ∀𝑎

Main message
n Constraint solving may 

involve going to and fro
over the tree

n No problem!

64

64
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Back to 
example

Programming in Haskell, A Milanova 65

op :: C a x => a -> x -> Int
instance Eq a => C a Bool

f x = let g :: "a Eq a => a -> Int
g a = op a x

in g (not x)

65

BACK TO THE BIG PICTURE

66

The French approach to type inference

Solve

Haskell 
source 

program

Large 
syntax, with 
many many 

constructors

Constraints

Small syntax, 
with few 

constructors

Constraint 
generation

Residual constraint

Elaborated 
program 

with “holes”

Report
errors

Elaborated 
source 

program

Substitution

Apply
substitution

The essence of ML type inference, Pottier & Remy,
In ATAPL, Pierce, 2005.

67

67

The advantages of being French

n Constraint generation has a lot of cases (Haskell has a big 
syntax) but is rather easy.

n Constraint solving is tricky!  But it only has to deal with a 
very small constraint language.

n Generating an elaborated program is easy: constraint 
solving “fills the holes” of the elaborated program

68

68
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Robustness

n Constraint solver can work in whatever order it likes (incl
iteratively), unaffected by of the order in which you traverse 
the source program.  

n A much more common approach: solve typechecking
problems in the order you encounter them

n Result: small (even syntactic) changes to the program can 
affect whether it is accepted L

TL;DR: generate-then-solve is much more robust

69

69

Error messages
n All type error messages are generated from the final, 

residual unsolved constraint. 
n Hence type errors  incorporate results of all solved 

constraints.  Eg “Can’t match [Int] with Bool”, rather than 
“Can’t match [a] with Bool”

n Much more modular: error message generation is in one 
place (TcErrors) instead of scattered all over the type 
checker.

n Constraints carry “provenance” information to say whence 
they came 70

70

Practical benefits

n Highly modular
n constraint generation (7 modules, 3000 loc)
n constraint solving (5 modules, 3000 loc)
n error message generation (1 module, 800 loc)

n Efficient: constraint generator does a bit of “on the fly” unification to 
solve simple cases, but generates a constraint whenever anything 
looks tricky

n Provides a great “sanity check” for the type system: is it easy to 
generate constraints, or do we need a new form of constraint?

71

71

Things I have sadly not talked about

n Coercions: the evidence for equality
n Type families, and “flattening”
n Functional dependencies, injectivity, and “Derived” constraints
n Deferred type errors and typed holes
n Unboxed vs boxed equalities
n Nominal vs representational equality (Coercible etc)
n Kind polymorphism, levity polymorphism, matchabilty

polymorphism
n … and quite a bit more

72

72
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Things I have sadly not talked about

n Coercions: the evidence for equality
n Type families, and “flattening”
n Functional dependencies, injectivity, and “Derived” 

constraints
n Deferred type errors and typed holes
n Unboxed vs boxed equalities
n Nominal vs representational equality (Coercible etc)
n … and quite a bit more

The good news

All of these crazy things are 

(reasonably) easily handled 

within the generate-and-

solve framework

73

73

Conclusion

n Generate constraints then solve, is THE way to do type 
inference.

n Background reading
n OutsideIn(X): modular type inference with local assumptions (JFP 

2011).   Covers implication constraints but not floating or level 
numbers.

n Practical type inference for arbitrary-rank types (JFP 2007).  Full 
executable code; but does not use the Glorious French Approach

Vive la France

74
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