Dataflow Analysis in Practice:
Program Analysis Frameworks,
* Analysis Scope and Approximation

‘ Announcements

= HW1 due today

= HW2 posted
= Your task is to set the infrastructure locally
= Start as soon as you can

= Ask questions on Submitty, in class, in office
hours

= Run Soot on toy programs and study Jimple IR

CSCI 4450/6450, A Milanova

i So Far and Moving On...

= Dataflow analysis
= Four classical dataflow problems

= Dataflow frameworks

« CFGs, lattices, transfer functions and properties,
worklist algorithm, MFP vs. MOP solutions

= Non-distributive analysis
—s= Constant propagation
= Points-to analysis (will cover in catchup week!)

m Program analysis in practice

CSCI 4450/6450, A Milanova

i Outline of Today’s Class

= Constant propagation (recap)

= Program analysis in practice

= Program analysis frameworks
= Soot program analysis framework
= Ghidra framework

= Analysis scope and approximation

= Class analysis d@, Joe

CSCI 4450/6450, A Milanova

Constant Propagation fits into

Monotone Dataflow Framework
T

Ly: —
.2 -1 01 2 ..
= Property space n
= Product lattice L=L, xL, x ... xL, 0517 Mo
= L satisfies the ACC 127 7=
and
= Function space F: L-> L is monotone

= Thus, analysis fits into the monotone
dataflow framework and can be solved using
the worklist algorithm

CSCI 4450/6450, A Milanova 5

Exapmpleof . @/ @/ in(1)is T=<x>T, y>T, z>T>
T 1.
¥ Lle | T if (b>0)
14| L \ T @)= <TT25 S2)=<TT,7>
< 2.)
o ‘LTWQI | x=1 i=2
T § ‘T\l(r 1 T } y=2 y=1

e —out(2): <x>1, y>2, z>T> out(3): <x¥2, y>1, z>T>
) < (L VW\L(S)

fk‘-s(ayy (fi) V 2‘-)(0"7 (/LJ |n(4) <X9T,y—)T’ZeT> 4
Z out(4): <x>T ,y>T,z>T> z=x+y

’fz__“%\\/ (@1V £ 1i/n 5): <x>T, y>T, z>T>

CSCI 4450/6450, A Milanova w=10*z 6

Constant Propagation is
Monotone but Not Distributive!

1. in(1)is T
m _fi(fz(f1(T))) computes z > 3 !if (b>0)
n f4(f3(f1(T))) computes z > 3

= Thus, MOP at 5 - 3
fa(f(f1(T))) V fufs(f(T))) [y=2 y=1

Computes z—>3 out(2): XN %ﬁxez, y>1

in4):x>T,y>T 4

out(4): z> T | Z=X+y

MFP at5 computesz > T inGerz>1 | [

(i.e., zis NOT a const) 5.
w=10%z 7

i More Product Lattices

= Problem statement: Is integer variable x odd
or even at program point n? x>Ty>T

“ly=0 07,«{7(1J~_<7:Mu}
x> T, y> even l

m L

Jif (x210)
T F
x=2> T, y=> even
odd even A x=x+1
y=y+2
2> T,y> eve
1 x o

CSCI 4450/6450, A Milanova (Example program from MIT OCW Program Analysis) 8

i More Product Lattices

= Problem statement: What sign does a
variable hold at a given program point, i.e., is
it positive, negative, or 0

T
m Ly

- (0 &+
E.g., <x>+y>T,z>0 >

1

CSCI 4450/6450, A Milanova 9

i So far and moving on

= Intraprocedural dataflow analysis

= CFGs, lattices, transfer functions, worklist
algorithm, etc.

= Classical analyses

= Interprocedural analysis
= Analysis scope and approximation

CSCI 4450/6450, A Milanova 10

10

i Program Analysis in Practice

= Program analysis frameworks

« LLVM
= Ghidra
iupl
s Soot 5’@‘6
AL

= WALA, other

CSCI 4450/6450, A Milanova 11

11

5'p?mization of Java/Dalvik bytecode

i Soot: a framework for analysis and

m https://soot-0ss.qgithub.io/soot/
= History

s Overview of Soot

= From Java bytecode/Dalvik bytecode to typed
3-address code (Jimple)

= 3-address code analysis and optimization
= From Jimple to Java/Dalvik

= Jimple
= Analysis

12

12

https://soot-oss.github.io/soot/

i History

m https://soot-0ss.qgithub.io/soot/

= Started by Prof. Laurie Hendren at McGill
= First paper on Soot came in 1999
= Patrick Lam
= Ondfej Lhotak
= Eric Bodden
= and other...

= Now developed by Eric Bodden and his
group: https://github.com/soot-oss/soot

CSCI 4450/6450, A Milanova

13

13

i Overview of Soot

Class files/APK

|

JIMPLIFY

l

ANALYSIS/
OPTIMIZATION

|

Optimized jimple

Some IR

l

Class files/APK

CSCI 4450/6450, A Milanova

14

14

https://soot-oss.github.io/soot/

i Advantages of Jimple and Soot

= Jimple
= Typed local variables
= 16 simple 3-address statements (1 operator per
statement). Bridges gap from analysis
abstraction to analysis implementation
= Soot provides
= Itraprocedural dataflow analysis framework
= Points-to analysis for Java
= IR from Dalvik and taint analysis

= Other analyses and optimizations 15

15

a— eja«m io;t
i Jimple v el /ﬁgwk

= Run soot: java soot.Main —jimple A
(need paths) VW/@i

public class A exten_dijava.lang.og'ect

va ;

public class A { public void <init>() {

main(String[] args) { Ar0: < rejé. vewtayle

Aa =new A(); r0 := @this: A;
a.m(); specialinvoke r0.

} <java.lang.Object: void <init>()>();

public void m() { return;

} }
}

. (continues on next slide...)

CSCI 4450/6450, A Milanova 16

16

‘ Jimple
Java: Jimple:
public class A { usaues weleod
main(String[] args) { publlc void m() { ,%/,
Aa=newA(); AT0; & refereuce vorichle
a.m(); r0 := @this: A;
} return;
public void m() { }
}
}
CSCI 4450/6450, A Milanova 17

17

Java: Jimple:

in(java.lang.Stri
public class A { main(java.lang.Stringl]) {

: : java.lang.String[] r0O;
main(String[] args) { L$r1 rzq ol
A = n wA C
a © 0; r0 := @parameter0: java.lang.String[];
} [$r1 =newA; MLotATION STkT

public void m() { specialinvoke $r1.<A: void <init>()>();

} r2 =%ri; cue Sur
¥ virtualinvoke r2.<A: void m()>();
return; W
}
CSCI 4450/6450, A Milanova } 18

18

i Soot Abstractions. Look up API!

= Abstracts program constructs

= Some basic Soot classes and interfaces
= SootClass
= SootMethod
=« SootMethod sm; sm.isMain(), sm.isStatic(), etc.
= Local
« Local l; ... l.getType()

= InstancelnvokeExpr

= Represents an instance (as opposed to static) invoke
expression

= InstancelnvokeEXxpr iie; ... receiver = iie.getBase();
CSCI 4450/6450, A Milanova 19

19

‘ Resources

= Github project:
https://github.com/soot-oss/soot

= Javadoc:

https://soot-build.cs.uni-paderborn.de/public/origin/develop/soot/soot-
develop/jdoc/ (old)

https://javadoc.io/doc/ca.mcgill.sable/soot/latest/index.html

CSCI 4450/6450, A Milanova 20

20

10

https://github.com/soot-oss/soot
https://soot-build.cs.uni-paderborn.de/public/origin/develop/soot/soot-develop/jdoc/

Ar A necy

L] - \
4 Kinds of Calls' -
R wmey (C wo
= Constructor/Super Call:
f Shake fn?z/
- : $r1 =new A;
ha .new A0 :>| specialinvoke $r1 .EA: void <init>()§{();
a Virtual Call: dohe ,/o,a_u. :Q@uw«.'c.
SOuue)
a.m(); |:> virtualinvoke r2.<A: void m()>();
] tohe forgef A~ ¢ forpef
= Static Call: T e
sm(); mm) staticinvoke <A: void sm()>();
= Interface Call:
x.m(); |:> interfaceinvoke r0.<pack2.X: void m()>();

1. We should not need to worry about dynamiclnvoke. (Soot
does support it.)

21

21

i Outline of Today’s Class

= Program analysis in practice

= Program analysis frameworks
= Soot program analysis framework
« Ghidra framework

= Analysis scope and approximation

= Overview of class analysis framework (HW2)
= Class analysis

CSCI 4450/6450, A Milanova 22

22

11

i Analysis Scope

= Intraprocedural analysis
= Scope is the CFG of a single subroutine

= Assumes no call and returns in routine, or
models calls and returns

= What we did so far

= Interprocedural analysis

= Scope of analysis is the ICFEG (Interprocedural
CFG), which models flow of control between
routines

CSCI 4450/6450, A Milanova

23

23

. &y
i Analysis Scope

= Whole-program analysis
= Usually, assumes entry point “main
= Application code + libraries
= Intricate interdependences, e.g., Android apps
= Modular analysis
= Scope either a library without entry point
= or application code with missing libraries

= ... or a library that depends on other missing
libraries

CSCI 4450/6450, A Milanova

24

24

12

i Approximations

= Once we tackle the “whole program”
maintaining a solution per program point (i.e.,
in(j) and out(j) sets) becomes too expensive

= Approximations
= Transfer function space
= Lattice
= Context sensitivity
= Flow sensitivity

CSCI 4450/6450, A Milanova 25

25

‘ Context Sensitivity

= So far, we studied intraprocedural analysis

= Once we extend to interprocedural analysis
the issue of “context sensitivity” comes up

» Interprocedural analysis can be context-
insensitive or context-sensitive

= In our Java homework, we’ll work with context-
insensitive analyses

= We’'ll talk more about context-sensitive analysis

CSCI 4450/6450, A Milanova 26

26

13

i Context Insensitivity

= Context-insensitive analysis makes one big
CFG; reduces the problem to standard
dataflow, which we know how to solve

= Treats implicit assignment of actual-to-
parameter and return-to-left_hand_side as
explicit assignment
= E.g., x =id(y) where id: int id(int p) { return p; }
adds p =y // flow of values from arg to param
and x =ret// flow of return to left_hand_side

= Can be flow-sensitive or flow-insensitive 27

27

wain !

wext Insensitivity
\ —_
XX oHt: 22, ;z,g,f)[g/fé

el 1.a=5] 4
int id{int p) { , o2 4,57, 89,345% 89 34
2.p=a ‘-lsl

C=6; bis T 5.p=c \ IQ.exitid'

call id -
5:d= 'd(c);olf:G 6. return id

CSCl 4450/6450, A Milanova d=ret 28

return p; |_catlid) ' ul:
} 3. return id !\ 3
azs; b=ret | [7_entryid]
2: b = id(a); ‘™ ™4 T4 x= b
b *(.)sbj_g// c=6 \ 8.ret=p
X=b b; Coufex |- Pusensi hve: l

28

14

i Flow Sensitivity

= Flow-sensitive vs. flow-insensitive analysis

= Flow-sensitive analysis maintains the CFG
and computes a solution per each node in
CFG (i.e. each program point)
» Standard dataflow analysis is flow-sensitive

= For large programs, maintaining CFG and
solution per program point does not scale

CSCI 4450/6450, A Milanova

29

29

‘ Flow Insensitivity

= Flow-insensitive analysis discards CFG
edges and computes a single solution S

= A “declarative” definition, i.e., specification:
= Least solution S of equations S =f,(S) V S

= Points-to analysis is an example where such a
solution makes sense!

CSCI 4450/6450, A Milanova

30

30

15

i Flow Insensitivity

= An “operational” definition. A worklist

algorithm:
S=0,W={1,2,...n}/*all nodes */
while W # & do {
remove j from W
S=f(S)VS
if S changed then
W=WU {k|kis "successor” of j }

}
m “successor’ is not CFG successor nodes, but
more generally, nodes k whose transfer
function f, may be affected as a result of the
change in S by j 3

31

‘ Your Homework

= A bunch of flow-insensitive, context-
insensitive analyses for Java
= RTA, 0-CFA, PTA, other
= Simple property space
= Simple transfer functions

« E.g., in fact, RTA gets rid of most CFG nodes,
processes just 2 kinds of nodes!

= Millions of lines of code in seconds

CSCI 4450/6450, A Milanova 2

32

16

i Homework

» Install and run starter code

= Please let me as soon as possible if you have
issues

= Frameworks are very fragile. They anger a lot
= Look into your git_repo/sootOutput directory
and study Jimple
= Study framework code and API
= Soot API
= Class analysis framework API

CSCI 4450/6450, A Milanova 33

33

‘ Homework

= Overview of class analysis framework

= We’'ll discuss more on Thursday
= Come prepared with questions

CSCI 4450/6450, A Milanova 34

34

17

