
1

Dataflow Analysis: Dataflow
Frameworks

1

Outline of Today’s Class

n Catch up, four classical dataflow problems
n Dataflow frameworks

n Lattices
n Transfer functions
n Worklist algorithm (next time)

n Quiz1 next time (Thursday) on four classical
dataflow problems

n Reading:
n Dragon Book, Chapter 9.2 and 9.3

2CSCI 4450/6450, A Milanova

2

2

Dataflow Analysis

1
2

3

4

5 6

7

8

9 10

1. Control-flow graph (CFG):

• G = (N, E, 1)

• Nodes are basic blocks

2. Data

3. Dataflow equations

out(j) = (in(j) – kill(j)) U gen(j)

(gen and kill are parameters)

4. Merge operator V

in(j) = V out(i)

i is predecessor of j

Entry node:

Exit node:

3

3

Problem 1. Reaching Definitions
(Reach)

n Problem statement: for each CFG node n,
compute the set of definitions (x,k) that
reach n

n First, define data (i.e., the dataflow facts) to
propagate
n Primitive dataflow facts are definitions (x,k)
n Reach propagates sets of definitions, e.g.,
{(i,1),(p,4)}

CSCI 4450/6450, A Milanova
4

4

3

Reaching Definitions (Reach)

n Next, define the dataflow equations (i.e.,
effect of code at node j on incoming
dataflow facts)

j: x = y+z

out(j) = (in(j) – kill(j)) U gen(j)

kill(j): all definitions of x:(x,_)
gen(j): this definition of x:(x,j)

CSCI 4450/6450, A Milanova

j E.g., if in(4) = {(x,1),(y,2),(x,3)}
Node 4 is: x = y+z
Then out(4) = {(y,2),(x,4)}

5

5

Reaching Definitions (Reach)

n Next, define the merge operator V (i.e., how
to combine data from incoming paths)

n For Reach, V is the set union U

CSCI 4450/6450, A Milanova

j

in(j) = { U out(i) | i is predecessor of j }

E.g., if out(2) = {(x,1),(y,2)} and
out(3) = {(x,3)} and
2 and 3 are predecessors of 4
in(4) = {(x,1),(x,3),(y,2)}

6

6

4

Reaching Definitions

i1 i2 i3

j

in(i1) in(i2) in(i3)

in(j)
Forward, may
dataflow problem

CSCI 4450/6450, A Milanova 7

7

Problem 2. Live Uses of
Variables (Live)

n We say that a variable x is “live on exit from
node j” if there is a live use of x on exit from
j (recall the definition of “live use of x on exit
from j”)

n Problem statement: for each node n,
compute the set of variables that are live on
exit from n

1. x=2; 2. y=4; 3. x=1; if (y>x) then 5. z=y; else 6. z=y*y; 7. x=z;

What variables are live on exit from statement 3? Statement 1?

8

5

Live Example
1.x=2

2.y=4

3.x=1

4.(y>x)

5.z=y 6.z=y*y

7.x=z

T F

9

9

Live Uses of Variables (Live)

n Problem statement: for each node n,
compute the set of variables that are live on
exit from n

j:

outLV(j) = { U inLV(i) | i is a successor of j }

inLV(j)= (outLV(j) – killLV(j)) U genLV(j)
x = y+z

Q: What are the primitive dataflow facts?
Q: What is genLV(j)?
Q: What is killLV(j)?

10CSCI 4450/6450, A Milanova

10

6

Live Uses of Variables (Live)

n Data
n Primitive facts: variables x
n Propagates sets: {x,y,z}

n Dataflow equations. At j: x = y+z
n killLV(j): {x}
n genLV(j): {y,z}

n Merge operator: set union U
11CSCI 4450/6450, A Milanova

11

Live Uses of Variables

i1 i2 i3

j

out(i1) out(i2) out(i3)

out(j)
Backward, may
dataflow problem

CSCI 4450/6450, A Milanova 12

12

7

Available Expressions

n An expression x op y is available at
program point n if every path from entry to n
evaluates x op y, and there are NO
subsequent assignments to x or y after
evaluation and prior to reaching n.

x op y
x = …
y = …

x op x
x = …
y = …

x op y
x = …
y = …

n

1

CSCI 4450/6450, A Milanova 13

13

Problem 3. Available
Expressions (Avail)

n Problem statement: For every node n,
compute the set of expressions that are
available at n

x op y
x = …
y = …

x op x
x = …
y = …

x op y
x = …
y = …

n

1

CSCI 4450/6450, A Milanova 14

14

8

Avail Enables Global Common
Subexpression Elimination

z=a*b
r=2*z

q=a*b

u=a*b
z=u/2

w=a*b

CSCI 4450/6450, A Milanova 15

15

Avail Enables Global Common
Subexpression Elimination

t1=a*b
z=t1
r=2*z

t1=a*b
q=t1

u=t1
z=u/2

w=a*b

Can we eliminate w=a*b?

CSCI 4450/6450, A Milanova 16

16

9

Available Expressions (Avail)

n Data?
n Primitive dataflow facts are expressions, e.g.,
x+y, a*b, a+2

n Analysis propagates sets of expressions, e.g.,
{x+y,a*b}

n Dataflow equations at j: x = y op z?
n outAE(j) = (inAE(j) – killAE(j)) U genAE(j)
n killAE(j): all expressions with operand x:
(x op _),(_ op x)

n genAE(j): new expression: {(y op z)}
17

17

Available Expressions (Avail)

n Merge operator?
n For Avail, it is set intersection

CSCI 4450/6450, A Milanova 18

j



inAE(j) = { outAE(i) | i is predecessor of j }

18

10

Available Expressions (Avail)

i1 i2 i3

j

Forward, must
dataflow problem

x=y+z

CSCI 4450/6450, A Milanova

in(i1) in(i2) in(i3)

in(j)

19

19

Example
1.y=a+b

2.x=a*b

3.if y<=a*b

4.a=a+1

5.x=a*b

6.goto 3

7. … 20

20

11

Note on Homework

21

1. x = x + b
2. y = x + 1
3. x = x + y

B1

21

Very Busy Expressions

n An expression x op y is very busy at node
n, if along EVERY path from n to the end of
the program, we come to a computation of
x op y BEFORE any redefinition of x or y.

x = …
y = …
t1=x op y

x = …
y = …
t1=x op y

x = …
y = …
t1=x op y

n

CSCI 4450/6450, A Milanova 22

22

12

Problem 4. Very Busy
Expressions (VeryB)

n Problem Statement: For each node n,
compute the set of expressions that are very
busy on exit from n

j:x = y+z

Q: What is the data?

Q: What are the equations?

Q: What is genVB(i)?
Q: What is killVB(i)?

Q: What is the merge operator?

23

23

Very Busy Expressions (VeryB)

n Data?
n Primitive dataflow facts are expressions, e.g.,
x+y, a*b

n Analysis propagates sets of expressions, e.g.,
{x+y,a*b}

n Dataflow equations at j: x = y op z?
n in(j) = gen(j) U (out(j) – kill(j))
n kill(j): all expressions with operand x:
(x op _),(_ op x)

n gen(j): new expression: { (y op z) }
24

24

13

Very Busy Expressions (VeryB)

n Merge operator?
n For VeryB, it is set intersection

CSCI 4450/6450, A Milanova 25

j



outVB(j) = { inVB(i) | i is successor of j }

25

Very Busy Expressions

i1 i2 i3

j
outVB(j)

outVB(i1) outVB(i2) outVB(i3)

Backward, must
dataflow problem

CSCI 4450/6450, A Milanova 26

26

14

Another Example: Taint Analysis

n A definition i: x = … (x,i) is tainted if
n i: x = tainted_source() is designated as

a taint source
n e.g., deviceId=telephony_mgr.getDeviceId();

n or i: x = y op z and a tainted (y,j) or a
tainted (z,k) reaches program point i

n Problem statement: for each node n,
compute the set of tainted definitions that
reach n

CSCI 4450/6450, A Milanova 27

27

1.x=read()

2.y=1

3.x>=2

4.y=x*y

5.x=x-1

6.goto 3

7.z=y-1

Example: Taint Analysis
(explicit flow)

28

28

15

Outline of Today’s Class

n Catch up
n Dataflow frameworks

n Lattices
n Transfer functions
n Worklist algorithm

n Reading:
n Dragon Book, Chapter 9.2 and 9.3

29CSCI 4450/6450, A Milanova

29

Dataflow Problems

May Problems Must Problems

Forward
Problems

Reaching
Definitions

Available
Expressions

Backward
Problems

Live Uses of
Variables

Very Busy
Expressions

CSCI 4450/6450, A Milanova 30

30

16

Similarities

n Analyses operate over similar property spaces
n In all cases, analysis operates over a finite set D of

primitive dataflow facts
n Reach: D is the set of all definitions in the program:

e.g., {(x,1),(y,2),(x,4),(y,5)}
n Avail and VeryB: D is the set of all arithmetic expressions:

e.g., { a+b,a*b,a+1}
n Live: D is the set of all variables

e.g., { x,y,z }

n Solution at node n is a subset of D (e.g., a definition
either reaches n or it does not reach n)

CSCI 4450/6450, A Milanova 31

31

Similarities

n Dataflow equations have same form (from now on,
we’ll focus on forward problems):
out(j) = (in(j) – kill(j)) U gen(j) =

(in(j) pres(j)) U gen(j)
in(j) = { V out(i) | i is predecessor of j }

pres(j) is the complement of kill(j) in D
n A note: what makes the 4 classical problems special is

that sets kill(j)/pres(j) and gen(j) do not depend on in(j)
n Set union and set intersection can be implemented as

logical OR and AND respectively
CSCI 4450/6450, A Milanova 32



32

17

Similarities

n Dataflow equation at node j is a transfer function.
It takes in(j) as argument and produces out(j) as
result:

n out(j) = fj(in(j))

CSCI 4450/6450, A Milanova 33

33

Dataflow Frameworks

n We generalize and study properties of the
property space
n Property space is a lattice
n Choice of lattice settles merge operator

n We generalize and study properties of the
transfer function space
n Functions are monotone or distributive

n We generalize and study properties of the
worklist algorithm that computes a solution

CSCI 4450/6450, A Milanova 34

34

18

Lattices

n Partial ordering (denoted by ≤ or)
n Relation between pairs of elements
n Reflexive a ≤ a
n Anti-symmetric a ≤ b and b ≤ a ==> a = b
n Transitive a ≤ b and b ≤ c ==> a ≤ c

n Partially ordered set (poset) (set S, ≤)
n 0 element 0 ≤ a, for every a in S
n 1 element a ≤ 1, for every a in S

We don’t necessarily need 0 or 1 element
CSCI 4450/6450, A Milanova 35

35

Poset Example

{}

{a} {b} {c}

{a,b} {b,c} {a,c}

{a,b,c}
D = {a,b,c}
The poset is 2D, ≤ is
set inclusion

CSCI 4450/6450, A Milanova 36

36

19

Lattice Theory

n Greatest lower bound (glb)
l1, l2 in poset S, a in poset S is the glb(l1,l2) iff
1) a ≤ l1 and a ≤ l2
2) for any b in S, b ≤ l1, b ≤ l2 implies b ≤ a

If glb exists, it is unique. Why? Called meet (denoted by Λ or┌┐) of l1 and l2.

n Least upper bound (lub)
l1, l2 in poset S, c in poset S is the lub(l1,l2) iff
1) c ≥ l1 and c ≥ l2
2) for any d in S, d ≥ l1, d ≥ l2 implies d ≥ c

If lub exists, it is unique. Called join (denoted by V or└┘) of l1 and l2.
37

37

CSCI 4450/6450, A Milanova 38

38

20

Definition of a Lattice (L, Λ, V)

n A lattice L is a poset under ≤, such that every pair
of elements has a glb (meet) and lub (join)

n A lattice need not contain a 0 or 1 element
n A finite lattice must contain 0 and 1 elements
n Not every poset is a lattice
n If there is element a such that a ≤ x for every x in

L, then a is the 0 element of L
n If there is a such that x ≤ a for every x in L, then a

is the 1 element of L
CSCI 4450/6450, A Milanova 39

39

A Poset but Not a Lattice

e0

e1 e2

e3 e4

There is no lub(e3,e4) in this poset so it is not a lattice.

Suppose we add the lub(e3,e4), is it a lattice?

e5

CSCI 4450/6450, A Milanova 40

40

21

Is This Poset a Lattice

{}

{a} {b} {c}

{a,b} {b,c} {a,c}

{a,b,c}
D = {a,b,c}
The poset is 2D, ≤ is
set inclusion

CSCI 4450/6450, A Milanova 41

41

Examples of Lattices

n H = (2D, ∩, U) where D is a finite set
n glb(s1,s2) denoted s1Λs2, is set intersection

s1∩s2
n lub(s1,s2) denoted s1Vs2, is set union s1Us2

n J = (N1, gcd, lcm)
n Partial order is integer divide on N1

n lub(n1,n2) denoted n1Vn2 is lcm(n1,n2)
n glb(n1,n2) denoted n1Λn2 is gcd(n1,n2)
(N1 denotes natural numbers starting at 1)

CSCI 4450/6450, A Milanova 42

42

22

Chain

n A poset C where for every pair of elements
c1, c2 in C, either c1 ≤ c2 or c2 ≤ c1.
n E.g., {} ≤ {a} ≤ {a,b} ≤ {a,b,c}
n E.g., from the lattice J as shown here,

1 ≤ 2 ≤ 6 ≤ 30
1 ≤ 3 ≤ 15 ≤ 30

n A lattice s.t. every ascending
chain is finite, is said to satisfy
the Ascending Chain Condition 1

2 3 5

6
10

15

30

CSCI 4450/6450, A Milanova 43

43

n Does lattice H satisfy the Ascending Chain
Condition (ACC)?

n Does lattice J satisfy the ACC?

CSCI 4450/6450, A Milanova 44

44

23

Lattices in Dataflow Analysis

n Lattices define property space

n Lattice properties lead to certain properties of
the worklist algorithm (standard way of
solving dataflow problems)

CSCI 4450/6450, A Milanova 45

45

Dataflow Lattices: Reach

{}

{(x,1)} {(x,4)} {(a,3)}

{(x,1),(x,4)} {(x,4),(a,3)} {(x,1),(a,3)}

{(x,1),(x,4),(a,3)}D = all definitions:{(x,1),(x,4),(a,3)}
Poset is 2D, ≤ is the subset relation

1. x=a*b

2. if y<=a*b

3. a=a+1

4. x=a*b

5. goto 3

0

1

CSCI 4450/6450, A Milanova 46

46

24

Dataflow Lattices: Avail

{a*b,a+1,y*z}

{a*b,y*z} {a*b,a+1} {a+1,y*z}

{a*b} {y*z}

{}D = all expressions: {a*b,a+1,y*z}
Poset is 2D, ≤ is the superset relation

1. x:=a*b

2. if y*z<=a*b

3. a:=a+1

4. x:=a*b

5. goto 2

{a+1}

Ê 1

0CSCI 4450/6450, A Milanova 47

47

Property Space

n Property space must be:
1. A lattice L, ≤
2. L satisfies the Ascending Chain Condition

Requires that all ascending chains are finite

48CSCI 4450/6450, A Milanova

48

25

Property Space

n Merge operator V must be the join of L
n In dataflow, L is often the lattice of the

subsets over a finite set of dataflow facts D
n Choose universal set D (e.g., all definitions)
n Choose ordering operation ≤. Since the merge
operator must be the join of L, a may problem sets
≤ to subset and a must problem sets ≤ to
superset

49CSCI 4450/6450, A Milanova

49

Example: Reach Lattice

n Property space is the lattice of the subsets

n D is the set of all definitions in program
n ≤ is the subset operation

n Thus, join is set union, as needed for Reach, which is
a may problem

n Lattice has a 0 being {}, and a 1 being D
n Lattice satisfies the Ascending Chain Condition

CSCI 4450/6450, A Milanova 50

50

26

Example: Avail Lattice

n Property space is the lattice of the subsets

n D is the set of all expressions in the program
n ≤ is superset

n Thus, join is set intersection, as needed for Avail,
which is a must problem

n Lattice has a 0 being D, and a 1 being {}
n Lattice satisfies Ascending Chain Condition

CSCI 4450/6450, A Milanova 51

51

(Monotone) Dataflow Framework

n A problem fits into the dataflow framework if
n its property space is a lattice L, ≤ that satisfies

the Ascending Chain Condition
n its merge operator V is the join of L
and
n its transfer function space F: Là L is monotone

n Thus, we can make use of a generic solution
procedure, known as the worklist algorithm
(also the maximal fixpoint algorithm or the
fixpoint iteration algorithm) 52

52

27

Outline of Today’s Class

n Catch up
n Dataflow frameworks

n Lattices
n Transfer functions
n Worklist algorithm

n Reading:
n Dragon Book, Chapter 9.2 and 9.3

53CSCI 4450/6450, A Milanova

53

Transfer Functions

n The transfer functions: f: Là L. Formally,
function space F is such that
1. F contains all fj
2. F contains the identity function id(x) = x
3. F is closed under composition
4. Each f must be monotone

CSCI 4450/6450, A Milanova 54

54

28

Monotonicity Property

n F: Là L is monotone if and only if:
(1) a,b in L, f in F then a ≤ b f(a) ≤ f(b)
or (equivalently):
(2) x,y in L, f in F then f(x) V f(y) ≤ f(x V y)

n Theorem: Definitions (1) and (2) are
equivalent.
n Show that (1) implies (2)
n Show that (2) implies (1)

55

55

Monotonicity Property

n Show that (1) implies (2)

CSCI 4450/6450, A Milanova 56

56

29

Distributivity Property

n F: L à L is distributive if and only if
x,y in L, f in F then f(x) V f(y) = f(x V y)

n A distributive function is also monotone but
not the other way around

n Distributivity is a very nice property!

CSCI 4450/6450, A Milanova 57

57

Monotonicity and Distributivity

n Is classical Reach distributive?
n Yes

n To show distributivity:
For each j: ((X1 U X2) ∩ pres(j)) U gen(j) =
((X1∩pres(j)) U gen(j)) U ((X2∩pres(j)) U gen(j))

((X1 U X2) ∩ pres(j)) U gen(j) =
((X1 ∩ pres(j)) U (X2 ∩ pres(j))) U gen(j) =
((X1 ∩ pres(j)) U gen(j)) U ((X2 ∩ pres(j)) U gen(j))

58

58

30

Monotone Dataflow Framework

n A problem fits into the dataflow framework if
n its property space is a lattice L, ≤ that satisfies

the Ascending Chain Condition
n its merge operator V is the join of L
and
n its transfer function space F: Là L is monotone

n Thus, we can make use of a generic solution
procedure, known as the worklist algorithm.

59

59

