Dataflow Analysis: Dataflow
* Frameworks

i Outline of Today’s Class

= Catch up, four classical dataflow problems
= Dataflow frameworks

= Lattices

= Transfer functions

= Worklist algorithm (next time)

= Quiz1 next time (Thursday) on four classical
dataflow problems

= Reading:
= Dragon Book, Chapter 9.2 and 9.3
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/E’?
Dataflow Analysis 2 /73]

1. Control-flow graph (m

G=(N,E, 1)

Entry node: j

* Nodes are basic blocks
2. Data

3. Dataflow equations
out(j) = (in(j) — kill(j)) U gen(j)
(gen and kill are parameters)
4. Merge operator V

in(j) = V out(i)

i is predecessor of j

Problem 1. Reaching Definitions
Reach)

= Problem statement: for each CFG node n,

compute the set of definitions (x, k) that
reach n

= First, define data (i.e., the dataflow facts) to
propagate
= Primitive dataflow facts are definitions (x, k)

= Reach propagates sets of definitions, e.g.,
{(1,1),(p,4)}
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iReaching Definitions (Reach)

= Next, define the dataflow equations (i.e.,
effect of code at node j on incoming
dataflow facts)

Kill(j): all definitions of x: (x, )

gen(j): this definition of x: (x, J)

L / out(j) = (in(j) - Kill()) U gen()

E.g.,ifin(4)={(x,1),(y,2), (x,3)}
Node 4 is: x = y+z
Thenout(4) = {(y,2), (x,4)}

CSCI 4450/6450, A Milanova

J:x = y+z

‘Reaching Definitions (Reach)

= Next, define the merge operator V (i.e., how
to combine data from incoming paths)

m For Reach, V is the set union U
/ in(j) = {Uout(i) | iis predecessor of j }

E.g.,ifout(2) = {(x,1), (y,2)} and
out(3) = {(x,3) } and
2 and 3 are predecessors of 4
in(4)= {(x,1),(x,3),(y,2)}
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i Reaching Definitions

in(i1) in(i2) in(i3)

in(j)
Forward, may 0

dataflow problem
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Problem 2. Live Uses of

i Variables (Live)

= We say that a variable x is “live on exit from
node j” if there is a live use of x on exit from
j (recall the definition of “live use of x on exit
from j7)

= Problem statement: for each node n,
compute the set of variables that are live on
exit from n

1. x=2; 2. y=4; 3. x=1; if (y>x) then 5. z=y; else 6. z=y*y; 7. x=z;

What variables are live on exit from statement 3?7 Statement 1?




Live Example (W
—» PeAD (3DE —

1.x=2

wt(Z)= 3}

2.31;=4 pd ) = 351
”{ ~T at@)= Pyl
ow(«)= 14}

i Live Uses of Variables (Live)

= Problem statement: for each node n,

compute the set of variables that are live on
exit from n

—2 iny(j)= (outy,(j) — killy(j)) U genpy(j)

out,(j) = { U iny(i) | i is a successor of j }

Q: What are the primitive dataflow facts?
Q: What is genyy(j)?
Q: What is Kkill(j)?
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i Live Uses of Variables (Live)

= Data
= Primitive facts: variables x

= Propagates sets: {x,y, z}

= Dataflow equations. At j: x = y+z
= genyy(j): {y,z}

= Merge operator: set union U
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i Live Uses of Variables

Backward, may
dataflow problem out(j)

4

out(i1) out(i2) out(i3)
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iAvailabIe Expressions

= An expression x op y is available at

program point n if every path from entry to n
evaluates x op y, and there are NO
subsequent assignments to x or y after

evaluation and prior to reaching n.
1

X op Yy X Op X X opy
Y/= O Y/= O

n
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Problem 3. Available

iExpressions (Avail)

= Problem statement: For every node n,

compute the set of expressions that are
available at n
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Avail Enables Global Common
i Subexpression Elimination

z=a*b
r=2%z

w=a*b
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Avail Enables Global Common
Subexpression Elimination

Can we eliminate w=a*b?

w=a*b
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i Available Expressions (Avail)

s Data?

= Primitive dataflow facts are expressions, e.g.,
x+y, a*b, a+2

= Analysis propagates sets of expressions, e.g.,
{x+y,a*b}
= Dataflow equationsat j: x = y op 2?7
= OUtsE(]) = (iNae()) — Killag()) U genxe())
= Kill,z(j): all expressions with operand x:
(x op _),(_ op x)

= genye(j): new expression: { (y op z)} .
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i Available Expressions (Avail)

= Merge operator?
= For Avail, it is set intersection [

inae(j) = {[Noutae(i) | i is predecessor of j }
f/:){ky
AN / JrooX = xRy gmt(
E//G)t ?(’(7‘)/ (—O/X)}
(1)~ 1
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i Available Expressions (Avail)

in(i1) in(i2) in(i3)
(i2)
N | 2

in(j)

One

Forward, must
dataflow problem
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——— Example
] —oMPE

!
2.x=a*b nb(2) = saxb otb{

ﬂA(3) 3 2”6‘; o
3.if y<=a*b

1 (k) 0%

4. a=a+l
= la ns)= 3¢

5.x=a*b

l 'm(ﬂ: ?‘L"b}
6.goto 3 B

M(7)= La#b}
7. .. 20

20

10



i Note on Homework

Bifi1. x =x +b
2. y=x+1
;.x=x+y J%WBNO}KMHWJV
REacA’ /7
all (82) = 3 (% ) (¥2-)7
30,« (24) = § (x,3 ((72”
/NarL
b (na) = 3 (eop=), (=) Oop=), (o))
go- (B4) = 7%
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i Very Busy Expressions

= An expression x op vy is very busy at node
n, if along EVERY path from n to the end of

the program, we come to a computation of
x op y BEFORE any redefinition of x or y.

/I\

tl—x op v tl—x op v tl—x op y
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Problem 4. Very Busy
i Expressions (VeryB)

s Problem Statement: For each node n,

compute the set of expressions that are very
busy on exit from n

Q: What is the data?

Gix = ytz_D Q: What are the equations?

Q: What is genyg(j)?
Q: What s killyg(j)?

@ Q: What is the merge operator?
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‘ Very Busy Expressions (VeryB)

s Data?
= Primitive dataflow facts are expressions, e.g.,
x+y, a*b
= Analysis propagates sets of expressions, e.g.,
{x+y,a*b}
= Dataflow equationsatj: x = y op z?
= in(j) = gen(j) U (out(j) — Kill(j))
= Kill(j): all expressions with operand x:
(x op _),(_ op x)
= gen(j): new expression: { (y op z) }
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i Very Busy Expressions (VeryB)

= Merge operator?
= For VeryB, it is set intersection ﬂ

outyg(j) = {[)inyg(i) | i is successor of j }

j ¢ Q4 =a0%b
gale ()= 3 (asp-) (- el
(7@4 (j)= 7 owb]
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i Very Busy Expressions

Backward, must outyg(j)

dataflow problem

ash awb awb

OUtVB(i1) OUtVB(iZ) OUtVB(i3)
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i Another Example: Taint Analysis

m Adefinitioni: x = ... (x,i) is tainted if
=i: x = tainted source() is designated as
a taint source

me.g., deviceld=telephony mgr.getDeviceId()

mO0ri: x = y op zand a tainted (y,3j) ora
tainted (z, k) reaches program point i

= Problem statement: for each node n,

compute the set of tainted definitions that
reach n
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Example: Taint Analysis
|

w—reaar] (explicit flow)
i i

2.y=1

4.y=x*y

l

5.x=x-1

l

6.goto 3

7.z=y-1
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= Catch up

m Dataflow frameworks
= Lattices
= Transfer functions
= Worklist algorithm

= Reading:

CSCI 4450/6450, A Milanova

i Outline of Today’s Class

= Dragon Book, Chapter 9.2 and 9.3
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iDataﬂow Problems

May Problems

B ———

Must Problems

Available
Expressions

Forward ‘Reaching
Problems Definitions
Backward Live Uses of
Problems Variables

Very Busy
Expressions
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i Similarities

= Analyses operate over similar property spaces

= In all cases, analysis operates over a finite set D of
primitive dataflow facts
= Reach: D is the set of all definitions in the program:
eg., {(x,1),(y,2),(x,4),(y,5)}
= Avail and VeryB: D is the set of all arithmetic expressions:
e.g., {a+tb,a*b,a+l}
= Live: D is the set of all variables
eg., {x,y,z}
= Solution at node n is a subset of D (e.g., a definition

either reaches n or it does not reach n)
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‘ Similarities

= Dataflow equations have same form (from now on,
we’ll focus on forward problems):
out(j) = (in(j) — kill(j)) U gen(j) =
(in(j) Mpres(j)) U gen(j)
in(j) ={V out(i) | i is predecessor of j }

pres(j) is the complement of kill(j) in D

= A note: what makes the 4 classical problems special is
that sets Kill(j)/pres(j) and gﬂ) do not depend on in(j)

= Set union and set intersection can be implemented as
logical OR and AND respectively
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i Similarities

= Dataflow equation at node j is a transfer function.
It takes in(j) as argument and produces out(j) as
result:

= out(j) = fi(in(j))
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‘ Dataflow Frameworks

= We generalize and study properties of the
property space
= Property space is a lattice
= Choice of lattice settles merge operator
= We generalize and study properties of the
transfer function space
= Functions are monotone or distributive

= We generalize and study properties of the
worklist algorithm that computes a solution
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i Lattices

= Partial ordering (denoted by < or E)
= Relation between pairs of elements
= Reflexive a< a

= Anti-symmetricas<bandb<a==>a=b
= Transitvea<bandbs<c==>a<sc
= Partially ordered set (poset) (set S, <)

= 0 element0<a, foreveryainS
= 1elementa<1,foreveryainS

We don’ t necessarily need 0 or 1 element
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‘ Poset Example

36

D=fape L) by
"The poset i3 <is
set inclusion /
{a,b} {b,c} {a,c}
> P
{a {ob} {c}
= /
}
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d
’\

. s € 3
i Lattice Theory f: N/, bb: /&
¥

by o

= Greatest lower bound (glb)
1,12 in poset S, a in poset S is the glb(11,12) iff
1Y)asMMandasl2
2)foranybinS,bsI1,b<12impliesb<a
If glb exists, it is unique. Why? Called meet (denoted by A or ) of I1 and 12.
= Least upper bound (lub)
1,12 in poset S, ¢ in poset S is the lub(11,12) iff
1)c2MMandc212
2)foranydinS,d211,d212 impliesd2c¢c

If lub exists, it is unique. Called join (denoted by V or 1) of 11 and 12. 3

37

o b

N/

a

i A
Hey il is uu7714€,

ﬂm‘: _?f (7(/5 °7L 24 oud 02 me’-l
V1 aud ¥2
Smkk:daéa&auoof :
(2) Thus: a<ly, aede Wb, bl blely=>bka
ok b be o plb %&1&452.
() Tlue ; bees, bsfz,Va,{,a'éé!lalé&;afgé

Ts 6<b oud b2
Tus 6= b by achyusety)
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i Definition of a Lattice (L, A, V)

= A lattice L is a poset under <, such that every pair
of elements has a glb (meet) and lub (join)

A lattice need not contain a O or 1 element
A finite lattice must contain 0 and 1 elements
Not every poset is a lattice

If there is element a such that a < x for every x in
L, then a is the 0 element of L

= If there is a such that x < a for every x in L, then a
is the 1 element of L
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‘ A Poset but Not a Lattice

e5

el e2

el
There is no lub(e3,e4) in this poset so it is not a lattice.

Suppose we add the lub(e3,e4), is it a lattice?
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i Is This Poset a Lattice
(?Uo (QJ 6) =~ 4
D ={a,b,c} b Uy (0,6) = b
The poset is 2°, <is
set inclusion
B {a,b} {b,c) {a.c)
s1< st iff
g1 < 32 >ﬂ
€ {b/}
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i Examples of Lattices

= H=(2P, N, U)where D is a finite set
= glb(s1,s2) denoted s1As2, is set intersection
s1Ns2

= lub(s1,s2) denoted s1Vs2, is set union s1Us2
= J = (N4, gcd, Ilcm)

= Partial order is integer divide on N,

= lub(n1,n2) denoted n1Vn2 is Ilcm(n1,n2)

= glb(n1,n2) denoted n1An2 is gcd(n1,n2)

(N, denotes natural numbers starting at 1)
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i Chain

= A poset C where for every pair of elements
c1,¢c2inC, eitherc1<c2orc2=<c1.

= E.g., {}={a}={a,b} ={a,b,c}
= E.g., from the lattice J as shown here, 3¢

1<2<6<30 /’\
6 15

1<3<15=<30
= A lattice s.t. every ascending
chain is finite, is said to satisfy =~ 2 3 5
the Ascending Chain Condition 7
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= Does lattice H satisfy the Ascending Chain
Condition (ACC)?

= Does lattice J satisfy the ACC?
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i Lattices in Dataflow Analysis

= Lattices define property space

= Lattice properties lead to certain properties of
the worklist algorithm (standard way of
solving dataflow problems)
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Dataflow Lattices: Reach
D = all definitions:{(x,1),(x,4),(a,3)} {(x,1).(x,4),(a,3)} 1
Poset is 2P, < is the subset relatlon C
1. x=a"b
|
2. if y<l=a*b {(x,1) (X 4)} {(x4).(a,3)} {(x,1),(a,3)}
3. a=a+1 ><>ﬂ
|
4. x=a*b {(x.2)} X,4)} {(a,3)}
|
5. goto 3 \ /
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Dataflow Lattices: Avail

D = all expressions: {a*b,a+1,y*z} 0 1
Poset is 2P, < is the superset relation D
1. x:=a"b
!
2. if y*z<=a*b {a*b} {a+1} {y*z}
|
3. a:=a+1
|
4. x:=a*b {a*b.y*z} {ab,a+1} {a+1y*z}
|
5. goto 2
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i Property Space

= Property space must be:
1. A lattice L, <
2. L satisfies the Ascending Chain Condition
Requires that all ascending chains are finite
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i Property Space

= Merge operator V must be the join of L

= |In dataflow, L is often the lattice of the
subsets over a finite set of dataflow facts D
= Choose universal set D (e.g., all definitions)

= Choose ordering operation <. Since the merge
operator must be the join of L, a may problem sets
< to subset and a must problem sets < to
superset
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iExample: Reach Lattice

= Property space is the lattice of the subsets

= D is the set of all definitions in program

= Sis the subset operation

« Thus, join is set union, as needed for Reach, which is
a may problem

= Lattice has a 0 being {}, and a 1 being D
= Lattice satisfies the Ascending Chain Condition
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i Example: Avail Lattice

= Property space is the lattice of the subsets

= D is the set of all expressions in the program
= Sis superset

= Thus, join is set intersection, as needed for Avalil,
which is a must problem

= Lattice has a 0 being D, and a 1 being {}
= Lattice satisfies Ascending Chain Condition
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‘ (Monotone) Dataflow Framework

= A problem fits into the dataflow framework if

= its property space is a lattice L, < that satisfies
the Ascending Chain Condition

= its merge operator V is the join of L
and
= its transfer function space F: L-> L is monotone

= Thus, we can make use of a generic solution
procedure, known as the worklist algorithm
(also the maximal fixpoint algorithm or the
fixpoint iteration algorithm) 52
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i Outline of Today’s Class

= Catch up

= Dataflow frameworks
= Lattices
= Transfer functions
= Worklist algorithm

= Reading:
= Dragon Book, Chapter 9.2 and 9.3
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iTransfer Functions

= The transfer functions: f: L> L. Formally,
function space F is such that
1. F contains all f;
2. F contains the identity function id(x) = x
3.  F is closed under composition
s, Each f must be monotone
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i Monotonicity Property

= F: L-> L is monotone if and only if:
(1)a,binL, fin Fthenas<sb => f(a) < f(b)

or (equivalently):
(2) x,yinL, fin F then f(x) V f(y) < f(x Vy)

= Theorem: Definitions (1) and (2) are
equivalent.
= Show that (1) implies (2)
= Show that (2) implies (1)
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i Monotonicity Property

= Show that (1) implies (2)
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i Distributivity Property

= F: L = L is distributive if and only if
x,y in L, fin F then f(x) V f(y) = f(xV y)

m A distributive function is also monotone but
not the other way around

= Distributivity is a very nice property!
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iMonotonicity and Distributivity

m |s classical Reach distributive?
= Yes

= To show distributivity:
For each j: (( X1 U Xz) N pres(j) ) U gen(j) =
( (X4Npres(j)) U gen(j) ) U ((XxNpres(j)) U gen(j))

((X1UXz) N pres(j) ) U gen(j) =
( (X4 N pres(j)) U ( Xz N pres(j) ) ) U gen(j) =
( (X4 N pres(j)) Ugen(j)) U ((Xz N pres(j)) U gen(j))
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i Monotone Dataflow Framework

= A problem fits into the dataflow framework if

= its property space is a lattice L, £ that satisfies
the Ascending Chain Condition

= its merge operator V is the join of L
and
= its transfer function space F: L-> L is monotone

= Thus, we can make use of a generic solution
procedure, known as the worklist algorithm.
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