
1

Hindley Milner, Conclusion

1

Announcements

n Paper list is up

1. Pick available paper and slot
2. Send me an email
3. If still available, I’ll pencil you in; otherwise, goto 1

Programming in Haskell, A Milanova 2

2

2

So Far

n Simple type inference
n Expressions, types and type environment
n Goal and intuition
n Equality constraints
n Substitution
n Robinson’s unification
n Type inference strategies

n Algorithm V (Strategy One) and
n Algorithm V (Strategy Two)

3Programming in Haskell, A Milanova

3

Type Inference Strategies

Strategy One aka constraint-based typing (Haskell)
Traverse expression’s parse tree and generate constraints.
Solve constraints offline producing substitution map S.
Finally, apply S on expression tyvar to infer the principal
type of expression

Strategy Two (Classical Hindley Milner)
Generate and solve constraints on-the-fly while traversing
parse tree. Build and apply substitution map incrementally

Programming in Haskell, A Milanova 4

4

3

Outline

n Hindley Milner (also known as Milner Damas)
n Monotypes (types) and polytypes (type schemes)
n Instantiation and generalization
n Algorithm W
n Observations

5Programming in Haskell, A Milanova

5

Expression Syntax
(to study Hindley Milner)

Expressions:

E ::= c | x | \x -> E1 | E1 E2 | let x = E1 in E2

There are no types in the syntax

The type of each sub-expression is derived by the Hindley
Milner type inference algorithm

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW) 6

6

4

Type Syntax
(to study Hindley Milner)

Types (aka monotypes):
τ ::= b | τ1®τ2 | t
E.g., Int, Bool, Int®Bool, t1®Int, t1®t1, etc.

Type schemes (aka polymorphic types):
σ ::= τ | t.σ
E.g., t1. t2.(Int®t1)®t2®t3

Note: all quantifiers appear in the beginning, τ cannot
contain schemes

Type environment now
Gamma ::= Identifiers à Type schemes

7

t is a type variable

∀
∀ ∀

t3 is a “free” type
variable as it isn’t
bound under ∀

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW)

7

Instantiations
Type scheme σ = t1…tn.τ can be instantiated into a type τ’ by
substituting types for the bound variables (BV) under the
universal quantifier

τ’ = S τ S is a substitution s.t. Domain(S) BV(σ)

τ’ is said to be an instance of σ (σ > τ’)

τ’ is said to be a generic instance when S maps type
variables to new (i.e., fresh) type variables

8

∀

∀

Programming in Haskell, A Milanova (modified from MIT’s 2015 Program Analysis OCW)

⊇

8

5

E.g., σ = t1t2.(Int®t1)®t2®t3

E.g., σ = t1.t1®t1

9

∀

Programming in Haskell, A Milanova (modified from MIT’s 2015 Program Analysis OCW)

∀

9

Generalization (aka
Closing)

We can generalize a type τ as follows

Gen(Γ,τ) = t1,…tn.τ
where {t1…tn} = FV(τ) – FV(Γ)

Generalization introduces polymorphism

10

∀

Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW)

10

6

Quantify type variables that are free in τ but are not
free in the type environment Γ

E.g., Gen([],t1®t2) yields

E.g., Gen([x:t2],t1®t2) yields

11Programming in Haskell, A Milanova (from MIT’s 2015 Program Analysis OCW)

11

let f = \x -> x in if (f True) then (f 1) else 1
1. Infer type for \x -> x : tx®tx (a monotype)

2. Generalize type using Gen([],tx®tx): tx.tx®tx (a type
scheme)

3. Pass type scheme to if (f True) then (f 1) else 1
4. Instantiate for each f in if (f True) then (f 1) else 1

(tx®tx) [u1/tx] where u1 is fresh tyvar at (f True)
(tx®tx) [u2/tx] where u2 is fresh tyvar at (f 1)

12

∀

Programming in Haskell, A Milanova

12

7

When can we generalize?

Consider expression \f -> \x-> let g = f in g x

Gen([f:tf,x:tx],tf) yields what?

DO NOT generalize variables that are mentioned in type
environment Γ!

13Programming in Haskell, A Milanova

13

Hindley Milner Typing
Rules

n Type of x as inferred for E1 is τ. Type of x in E2 is the
generalized type scheme σ = Gen(Γ,τ)

n x in E2 of let: x is of type τ if its type σ in the environment
can be instantiated to τ

Note: Rules for c, App, Abs, etc. are as in F1
Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 14

Γ,x:τ |- E1 : τ Γ,x:Gen(Γ,τ) |- E2 : τ’
Γ |- let x = E1 in E2 : τ’

Γ |- x : τ
x:σ Γ τ<σ∈

(Let)

(Var)

14

8

Hindley Milner Type
Inference, Rough Sketch

let x = E1 in E2
1. Run W to get type TE1 for E1 in Γ,x:tx ; TE1 is a monotype
2. Generalize free type variables in TE1 to get the type

scheme for TE1 (generalizing in Γ not in Γ,x:tx)

3. Extend environment with x:Gen(Γ,TE1) and type E2

4. Every time algorithm sees x in E2, it instantiates x’s type
scheme into a fresh generic instance

E.g., id’s type scheme is t1.t1®t1 so id is
instantiated to uk®uk at (id 1) // uk is fresh tyvar

15

∀

Programming in Haskell, A Milanova

15

Hindley Milner Type
Inference

Programming in Haskell, A Milanova 16

Just like with Simple types, there are two strategies

Strategy One
Simple types extended with generalization and instantiation
Generate all constraints, then solve

Strategy Two
Again, simple types with generalization and instantiation
Generate and solve constraints on-the-fly
This is classical Algorithm W

16

9

Example

\x -> let f = \y -> x in (f True, f 1)

Programming in Haskell, A Milanova 17

17

def W(Γ, E) = case E of
c -> ([], TypeOf(c))
x -> if (x NOT in Domain(Γ)) then fail

else let TE = Γ(x)
in case TE of

t1,...tn.τ -> ([],[u1/t1...un/tn] τ)
_ -> ([], TE)

\x -> E1 -> let (SE1,TE1) = W(Γ+{x:tx},E1)
in (SE1, SE1(tx)®TE1)

// ...
// continues on next slide!

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 18

Strategy Two: Algorithm W

∀

u1 to un are fresh type vars generated
at instantiation of polymorphic type

18

10

def W(Γ, E) = case E of
// continues from previous slide
// ...

E1 E2 -> let (SE1,TE1) = W(Γ,E1)
(SE2,TE2) = W(SE1(Γ),E2)
S = Unify(SE2(TE1),TE2®t)

in (S SE2 SE1, S(t))
let x = E1 in E2 -> let (SE1,TE1) = W(Γ+{x:tx},E1)

S = Unify(SE1(tx),TE1)
σ = Gen(S SE1(Γ), S(TE1))
(SE2,TE2) = W(S SE1(Γ)+{x:σ},E2)

in (SE2 S SE1, TE2)

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 19

19

Strategy Two Example

let f = \x->x in if (f True) then (f 1) else 1

20

1. let

f 2. Abs

x lx: tx

Γ = []

Γ = [f:tf]

Γ = [x:tx f:tf]

T2 = tx®tx
S2 = []

3. if-then-else

Γ = [f: tx.tx®tx]∀

No subst, types 2. Abs
immediately: T2 = tx®tx
σ = Gen([],tx®tx) = tx. tx®tx∀

4. App 5. App

f true

1
T4 = bool
S4 = [bool/t4][bool/u1]

f 1

T3 = int
S3 = ...

T = u1®u1
S = [] From Unify(u1®u1, bool®t4)

T5 = int
S5 = [int/t5][int/u2]

T1 = int
S1 = ...

20

11

Example

\x -> let f = \y -> x in (f True, f 1)

Programming in Haskell, A Milanova 21

21

Hindley Milner
Observations

Notes

n Do not generalize over type variables mentioned in type
environment (they are used elsewhere)

n let is the only way of defining polymorphic constructs

n Generalize the types of let-bound identifiers only after
processing their definitions

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 22

22

12

Hindley Milner
Observations

n Generates the most general type (principal type) for each
term/subterm

n Type system is sound

n Complexity of Algorithm W
It is PSPACE-Hard because of nested let blocks

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 23

23

Hindley Milner Limitations

n Only let-bound constructs can be polymorphic and
instantiated differently

let twice f x = f (f x)
in twice twice succ 4 // let-bound polymorphism

let twice f x = f (f x)
foo g = g g succ 4 // lambda-bound

in foo twice

Programming in Haskell, A Milanova 24

24

13

Programming in Haskell, A Milanova 25

(\x -> x (\y -> y) (x 1)) (\z -> z)

let x = (\z -> z)
in

x (\y -> y) (x 1)

25

