

- Simple type inference
 - Expressions, types and type environment
 - Goal and intuition
 - Equality constraints
 - Substitution
 - Robinson's unification
 - Type inference strategies
 - Algorithm V (Strategy One) and
 - Algorithm V (Strategy Two)

Algorithm W

Programming in Haskell, A Milanova

2

Type Inference Strategies

Strategy One aka constraint-based typing (Haskell)

Traverse expression's parse tree and generate constraints. Solve constraints offline producing substitution map S. Finally, apply S on expression tyvar to infer the <u>principal</u> <u>type</u> of expression

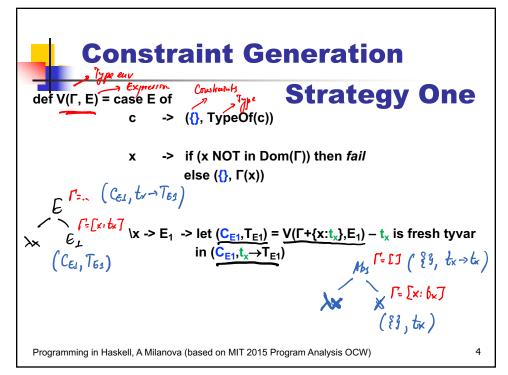
Strategy Two (Classical Hindley Milner)

Generate and solve constraints on-the-fly while traversing parse tree. Build and apply substitution map incrementally

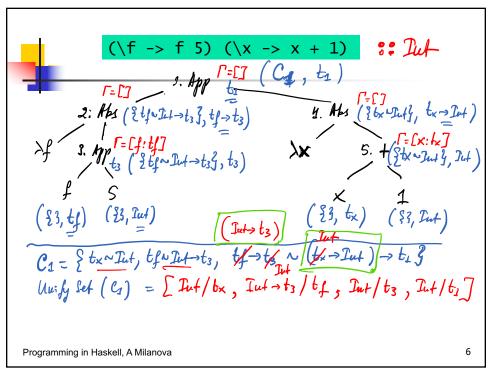
Programming in Haskell, A Milanova

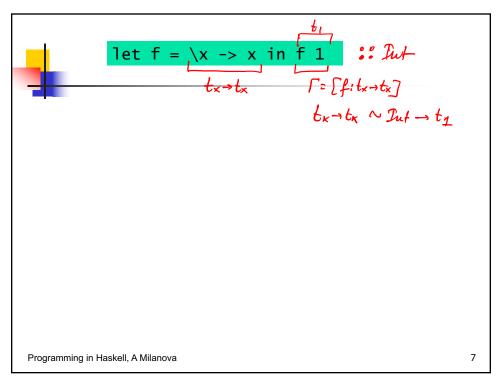
3

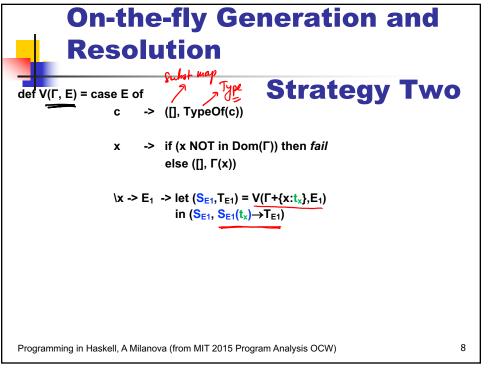
3



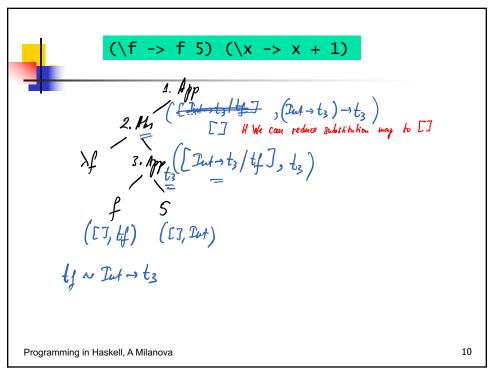
```
def \ V(\Gamma, E) = case \ E \ of
\vdots
E_1 E_2 \rightarrow let \ (C_{E1}, T_{E1}) = V(\Gamma, E_1)
(C_{E2}, T_{E2}) = V(\Gamma, E_2)
in \ (C_{E1} + C_{E2} + \{T_{E1} \sim T_{E2} \rightarrow t\}, t) \rightarrow t \ is \ fresh \ tyvar
(C_{E1}, T_{E1}) \quad (C_{E1}, T_{E2})
let \ x = E_1 \ in \ E_2 \rightarrow let \ (C_{E1}, T_{E1}) = V(\Gamma + \{x:t_x\}, E_1)
(C_{E2}, T_{E2}) = V(\Gamma + \{x:T_{E1}\}, E_2)
in \ (C_{E1} + C_{E2} + \{t_x \sim T_{E1}\}, T_{E2})
Programming \ in \ Haskell, A \ Milanova \ (based \ on \ MIT \ 2015 \ Program \ Analysis \ OCW)
```







```
def \ V(\Gamma, E) = case \ E \ of
E_1 \ E_2 \ \rightarrow let \ (S_{E1}, T_{E1}) = V(\Gamma, E_1)
(S_{E2}, T_{E2}) = \underbrace{V(S_{E1}(\Gamma), E_2)}_{S = Unify(S_{E2}(T_{E1}), T_{E2} \to t)}
in \ (S \ S_{E2} \ S_{E1}, S(t)) \ / \ S \ S_{E2} \ S_{E1}
(S_{E1}, T_{E1}) \quad (S_{E2}, T_{E2}) \quad Sel \ (Te_1) \ \land Te_2 \to t
let \ x = E_1 \ in \ E_2 \rightarrow let \ (S_{E1}, T_{E1}) = V(\Gamma + \{x: t_x\}, E_1\}
S = Unify(S_{E1}(t_x), T_{E1})
(S_{E2}, T_{E2}) = V(S \ S_{E1}(\Gamma) + \{x: S(T_{E1})\}, E_2\}
in \ (S_{E2} \ S_{E1}, T_{E2})
Programming \ in \ Haskell, \ A \ Milanova \ (from \ MIT \ 2015 \ Program \ Analysis \ OCW)
```



Outline

- Hindley Milner (also known as Milner Damas)
 - Monotypes (types) and polytypes (type schemes)
 - Instantiation and generalization
 - Algorithm W
 - Observations

Programming in Haskell, A Milanova

11

11

Towards Hindley Milner

A sound type system rejects some good programs

Canonical example

let $f = \x -> x$

in

if (f True) then (f 1) else 1

This is a good program, it does not "get stuck" Term is NOT typable in Simple types It is typable in Hindley Milner!

Programming in Haskell, A Milanova

12

let
$$f = \langle x \rangle x$$

in

if (f True) then (f 1) else 1

Constraints

$$t_f \sim t_1 \rightarrow t_1$$

t_f ~ Bool→t₂ // at call (f True)

 $t_f \sim |nt \rightarrow t_3|$ // at call (f 1)

Does not unify!

Programming in Haskell, A Milanova

13

13

Solution:

 $\underline{\text{Generalize}} \text{ the type variable in type of } \textbf{f}$

 $t_f: t_1 {\rightarrow} t_1$ becomes $t_f: \forall t_1.t_1 {\rightarrow} t_1$

Different uses of generalized type variables are instantiated differently

(f True) instantiates t_f into $u_1 \rightarrow u_1$ (u_1 is fresh)

 $u_1 \rightarrow u_1$ unifies with **Bool** $\rightarrow t_2$, no problem

E.g., (f 1) instantiates t_f into $u_2 \rightarrow u_2$ (u_2 is fresh)

When can we generalize?

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW)

Expression Syntax (to study Hindley Milner)

Expressions:

['=[x:\t...]

 $E := c | x | \x -> E_1 | E_1 E_2 | let x = E_1 in E_2$

Let is the only place where we ordroduce polymorphism

There are no types in the syntax

The type of each sub-expression is derived by the Hindley Milner type inference algorithm

Programming in Haskell, A Milanova (from MIT's 2015 Program Analysis OCW)

15

15

4

Type Syntax (to study Hindley Milner)

Types (aka monotypes):

 $\tau := \mathbf{b} \mid \tau_1 \rightarrow \tau_2 \mid \mathbf{t}$ is a type variable

E.g., Int, Bool, Int \rightarrow Bool, $t_1\rightarrow$ Int, $t_1\rightarrow t_1$, etc.

Type schemes (aka polymorphic types):

 $\sigma ::= \tau \mid \forall t.\sigma \qquad \forall t_{\ell}, \forall t_{\ell}, \forall t_{3}, \forall t_{1}, \forall t_{2}, \forall t_{3}, \forall t_{1}, \forall t_{2}, \forall t_{3}, \forall t_{2}, \forall t_{3}, \forall t_{4}, \forall t_{4}, \forall t_{5}, t$

t₃ is a "free" type ✓ variable as it isn't bound under ∀

Note: all quantifiers appear in the beginning, τ cannot contain schemes

Type environment now

Gamma ::= Identifiers → Type schemes

Programming in Haskell, A Milanova (from MIT's 2015 Program Analysis OCW)

Instantiations Turus a o (polytype) Pubo a

Type scheme $\sigma = \forall t_1...t_n \cdot \tau$ can be instantiated into a type τ ' by substituting types for the bound variables (BV) under the universal quantifier ∀

 τ ' = $S \tau$ S is a substitution s.t. Domain(S) $\supseteq BV(\sigma)$

 τ ' is said to be an instance of σ ($\sigma > \tau$ ')

τ' is said to be a generic instance when S maps type variables to new (i.e., fresh) type variables

$$\forall t_1, t_1 \rightarrow t_1 \qquad \begin{array}{c} u_1 \rightarrow u_1 \\ u_2 \rightarrow u_2 \end{array} \qquad u_3 \rightarrow u_3$$

Programming in Haskell, A Milanova (modified from MIT's 2015 Program Analysis OCW)

17

17

E.g.,
$$\sigma = \forall t_1 t_2 \cdot (Int \rightarrow t_1) \rightarrow t_2 \rightarrow t_3$$

$$\forall [a/t_1, b/t_2] = ((2a + b_1) \rightarrow t_2 \rightarrow t_3) [a/t_1, b/t_2] = (2a + b_2) \rightarrow b \rightarrow t_3$$

E.g.,
$$\sigma = \forall t_1.t_1 \rightarrow t_1$$

Programming in Haskell, A Milanova (modified from MIT's 2015 Program Analysis OCW)

Generalization (aka Closing)

We can generalize a type $\underline{}$ as follows

Gen
$$(\Gamma,\tau)$$
 = $\forall t_1,...t_n.\tau$
where $\{t_1...t_n\}$ = $FV(\tau) - FV(\Gamma)$

Generalization introduces polymorphism

Programming in Haskell, A Milanova (from MIT's 2015 Program Analysis OCW)

19

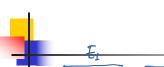
19

Quantify type variables that are free in τ but are not free in the type environment Γ

E.g., **Gen**([],
$$t_1 \rightarrow t_2$$
) yields $\forall t_1 \forall t_2$, $t_3 \forall t_4 \forall t_5 \forall t_4 \forall t_5 \forall t_6 \forall t_8 \forall t_$

E.g.,
$$Gen([],t_1\rightarrow t_2)$$
 yields $\forall t_1 \forall t_2, t_1 \rightarrow t_2$
E.g., $Gen([x:t_2],t_1\rightarrow t_2)$ yields $\forall t_1, t_2 \rightarrow t_2$
 $u_1 \rightarrow t_2$ $u_2 \rightarrow t_2$

Programming in Haskell, A Milanova (from MIT's 2015 Program Analysis OCW)



let $f = \langle x \rangle$ in if (f True) then (f 1) else 1

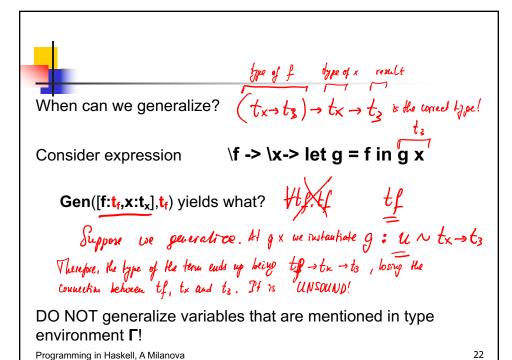
- 1. Infer type for $\x -> x : t_x \rightarrow t_x$ (a monotype)
- Generalize type using $Gen([],t_x \rightarrow t_x)$: $\forall t_x.t_x \rightarrow t_x$ (a type scheme)

- Pass type scheme to if (f True) then (f 1) else 1
- Instantiate for each f in if (f True) then (f 1) else 1 [u₁/tx] (tx→tx) where u₁ is fresh tyvar at (f True) [u₂/tx] (tx→tx) where u₂ is fresh tyvar at (f 1)

Programming in Haskell, A Milanova

21

21



Hindley Milner Type Inference, Rough Sketch

let $x = E_1$ in E_2

- 1. Calculate type T_{E1} for E₁ in Γ;x:t_x; T_{E1} is a monotype
- Generalize free type variables in T_{E1} to get the type scheme for T_{E1} (be mindful of caveat!)
- Extend environment with $x:Gen(\Gamma,T_{E1})$ and start typing E_2
- Every time algorithm sees \mathbf{x} in $\mathbf{E_2}$, it instantiates x's type scheme using fresh type variables

E.g., id's type scheme is $\forall t_1.t_1 \rightarrow t_1$ so id is instantiated to $\mathbf{u_k} \rightarrow \mathbf{u_k}$ at (id 1)

Programming in Haskell, A Milanova

23

23

Hindley Milner Type Inference

Just like with Simple types, there are two strategies

Strategy One

Simple types extended with generalization and instantiation Generate all constraints, then solve

Strategy Two

Again, simple types with generalization and instantiation Generate and solve constraints on-the-fly This is classical Algorithm W

Programming in Haskell, A Milanova

24

Example

 $x \rightarrow \text{let } f = y \rightarrow x \text{ in (f True, f 1)}$

Programming in Haskell, A Milanova

25

25

•

Strategy Two: Algorithm W

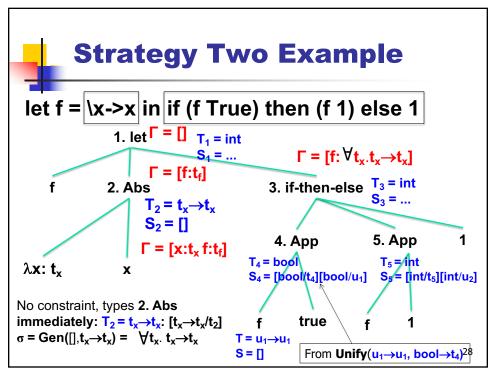
Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW)

```
def W(\Gamma, E) = case E of 

// continues from previous slide 

// ...

E_1 E_2 \rightarrow \text{let } (S_{E1}, T_{E1}) = \text{W}(\Gamma, E_1)
(S_{E2}, T_{E2}) = \text{W}(S_{E1}(\Gamma), E_2)
S = \text{Unify}(S_{E2}(T_{E1}), T_{E2} \rightarrow t)
in (S S_{E2} S_{E1}, S(t))
\text{let } x = E_1 \text{ in } E_2 \rightarrow \text{let } (S_{E1}, T_{E1}) = \text{W}(\Gamma + \{x:t_x\}, E_1)
S = \text{Unify}(S_{E1}(t_x), T_{E1})
\sigma = \text{Gen}(S S_{E1}(\Gamma), S(T_{E1}))
(S_{E2}, T_{E2}) = \text{W}(S S_{E1}(\Gamma) + \{x:\sigma\}, E_2)
in (S_{E2} S_{E1}, T_{E2})
\text{Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW)}
```



Example

 $x \rightarrow \text{let } f = y \rightarrow x \text{ in (f True, f 1)}$

Programming in Haskell, A Milanova

29

29

Hindley Milner Observations

Notes

- Do not generalize over type variables mentioned in type environment (they are used elsewhere)
- let is the only way of defining polymorphic constructs
- Generalize the types of let-bound identifiers only after processing their definitions

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW)

Hindley Milner Observations

- Generates the most general type (principal type) for each term/subterm
- Type system is sound
- Complexity of Algorithm W
 It is PSPACE-Hard because of nested let blocks

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW)

31

31

Hindley Milner Limitations

Only let-bound constructs can be polymorphic and instantiated differently

let twice f x = f (f x)
in twice twice succ 4 // let-bound polymorphism

let twice f x = f (f x)
 foo g = g g succ 4 // lambda-bound
in foo twice

Programming in Haskell, A Milanova

$$(\x \rightarrow x \ (\y \rightarrow y) \ (x \ 1)) \ (\z \rightarrow z)$$

$$| \text{let } x = (\z \rightarrow z) \\ | \text{in} \\ | x \ (\y \rightarrow y) \ (x \ 1)$$

$$| \text{Programming in Haskell, A Milanova}|$$
 33