
1

Simple Type Inference

1

Announcements

n Graded HW4!

n Graded HW5!

n HW6 up!

n Working on paper list and presentation
schedule

2

2

2

Outline

n Simple type inference
n Expressions, types and type environment (last time)
n Goal and intuition (last time)
n Equality constraints
n Substitution
n Robinson’s unification
n Type inference strategies

n Algorithm V (Strategy One) and
n Algorithm V (Strategy Two)

3Programming in Haskell, A Milanova

3

Type Inference

Programming in Haskell, A Milanova (slide text due to
Simon Peyton Jones) 4

The task of type inference is to

Reject bad programs with a decent error message

Elaborate good programs

4

3

Expressions

Programming in Haskell, A Milanova 5

E ::= c | x | lx.E | E1 E2 |
E1 + E2 | E1 = E2 |
if E1 then E2 else E3 |
let x = E1 in E2

Language of the Simply Typed Lambda calculus:

For the purposes of type inference, there are no types in
syntax

The type of each subexpression is derived by simple type
inference

5

Types

Programming in Haskell, A Milanova 6

τ ::= b | τ1® τ2 | t

Types (as known as simple types or monotypes):

t is a type variable
(tyvar)

b is a base type
Assume Int and Bool

6

4

Type Environment

Programming in Haskell, A Milanova 7

Gamma ::= Identifiers -> Types

Type environment Gamma maps identifiers (variables) to
types:

For example, we can only type subexpression

(f x)

in a type environment that binds identifies f and x to
types. E.g., in Gamma = [f :: t -> t, x :: t]

7

Goal and Intuition

Programming in Haskell, A Milanova 8

\x -> \y -> xGiven

\x -> \y -> x :: t1 -> t2 -> t1Deduce

1. Construct parse tree for expression. Associate a fresh
tyvar to each identifier and each subexpression

2. Generate equality constraints (based on typing rules)

3. Solve equality constraints using unification

4. Deduce type for expression

8

5

Programming in Haskell, A Milanova 9

\x -> \y -> x

9

Programming in Haskell, A Milanova 10

\f -> \x -> f (f x)

10

6

Programming in Haskell, A Milanova 11

(\f -> f 5) (\x -> x + 1)

11

Programming in Haskell, A Milanova 12

let f = \x -> x in f 1

12

7

Equality Constraints

Programming in Haskell, A Milanova 13

Two key concepts

§ Equality
§ What does it mean for two types to be equal?
§ Structural equality

§ Unification
§ Can two types be made equal by choosing appropriate

substitutions for their type variables?
§ Robinson’s unification algorithm

13

What does it mean for two types τa and τb to be equal?

Structural equality

Suppose τa = t1 ® t2

τb = t3 ® t4

Structural equality entails
τa ~ τb means t1 ® t2 ~ t3 ® t4 iff t1 ~ t3 and t2 ~ t4

14Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW)

14

8

Can two types be made equal by choosing appropriate
substitutions for their type variables?

Robinson’s unification algorithm
Suppose τa = Int®t1

τb = t2®Bool
Can we unify τa and τb?

Suppose τa = Int ®t1

τb = Bool®Bool
Can we unify τa and τb?

15

Yes, if Bool/t1 and Int/t2

No.
Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW)

15

Example

t1® Bool ~ (Int ® t2) ® t3

Programming in Haskell, A Milanova 16

® ®

t1 Bool ®

Int t2

t3

Yes, if Int®t2/t1 and Bool/t3

16

9

Substitution

Language of types
τ ::= b // base type: Int and Bool

| t // type variable (tyvar)
| τ1® τ2 // function type

A substitution is a map
S : Type Variable à Type
S = [τ1/t1, … τn/tn] // substitute type τi for tyvar ti

A substitution instance τ’ = S τ
S = [t0®Bool / t1] τ = t1®t1 then
S τ = S(t1®t1) = (t1®t1)[t0®Bool / t1] = (t0®Bool) ® (t0®Bool)

Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW) 17

17

Substitutions can be composed
S1 = [t0®Bool/t1]
S2 = [Int/t0]
τ = t1®t1

S2 S1 τ = S2 (S1 (t1®t1)) = ?

Programming in Haskell, A Milanova 18

Exercises

18

10

Substitutions can be composed
S1 = [tx/t1]
S2 = [tx/t2]

τ = t2®t1

S2 S1 τ = ?

Programming in Haskell, A Milanova 19

19

Substitutions can be composed
S1 = [t1/t2]
S2 = [t3/t1]
S3 = [t4®Int/t3]

τ = t1®t2

S3 S2 S1 τ = ?

Programming in Haskell, A Milanova 20

20

11

Principal Unifier

A unifier is a substitution that unifies (i.e., makes equal) a set of
constraints
A principal unifier is a most general unifier of a set of
constraints

{ (t1®t1) ® t1®t1 ~ t2 ® t3 }

Programming in Haskell, A Milanova 21

21

Exercise

A principal unifier is the most general unifier of a set of
constraints

Find principal unifiers (when they exist) for
{ Int®Int ~ t1®t2 }
{ Int ~ Int®t2 }
{ t1 ~ Int®t2 }

{ t1 ~ Int, t2 ~ t1®t1 }
{ t1®t2 ~ t2®t3, t3 ~ t4®t5 }

Programming in Haskell, A Milanova 22

22

12

Unification

n Unify: tries to unify τ1 and τ2 and returns a principal
unifier for τ1 = τ2 if unification is successful

def Unify(τ1,τ2) =
case (τ1,τ2)

(τ1,t2) = [τ1/t2] provided t2 does not occur in τ1

(t1,τ2) = [τ2/t1] provided t1 does not occur in τ2

(b1,b2) = if (eq? b1 b2) then [] else fail
(τ11®τ12, τ21®τ22) = let S1 = Unify(τ11,τ21)

S2 = Unify(S1 τ12, S1 τ22)
in S2 S1 // compose substitutions

otherwise = fail 23

This is the occurs check!

23

Exercise

Unify (Int®Int, t1®t2) yields ?

Unify (Int, Int®t2) yields ?

Unify (t1, Int®t2) yields ?

Programming in Haskell, A Milanova 24

24

13

Unify Set of Constraints C

Robinson’s algorithm unifies (i.e., solves) a single constraint
τ1 ~ τ2.

What if we have a set of constraints?

Intuition:
1. Pick a constraint τ1 ~ τ2 from the set
2. Solve τ1 ~ τ2 either failing or succeeding getting subst S

If fail, then done, constraints cannot be unified
If success, then first apply S on remaining constraints as S carries

structure that must be taken into account

25Programming in Haskell, A Milanova

25

Unify Set of Constraints C

UnifySet: tries to unify C and returns a principal unifier for C
if unification is successful

def UnifySet (C) =
if C is Empty Set then [] // Empty subsitution
else let

C = { τ1 ~ τ2 } U C’
S = Unify (τ1,τ2) // Unify returns a substitution S

in
UnifySet (S(C’)) S
// Compose the substitutions

26Programming in Haskell, A Milanova

26

14

Exercise

UnifySet { t1 ~ Int, t2 ~ t1®t1 } yields ?

UnifySet { t1®t2 ~ t2®t3, t3 ~ t4®t5 } yields ?

UnifySet { tf ~ t2®t1, tf ~ tx®t2 } yields ?

UnifySet { t2 ~ t4®t1, t2 ~ tf®t3, t4 ~ tx®Int, tf ~
Int®t3, tx ~ Int } yields ? 27

27

Outline

n Simple type inference
n Expressions, types and type environment
n Goal and intuition
n Equality constraints
n Substitution
n Robinson’s unification
n Type inference strategies

n Algorithm V (Strategy One) and
n Algorithm V (Strategy Two)

28Programming in Haskell, A Milanova

28

15

Type Inference Strategies

Strategy One aka constraint-based typing (Haskell)
Traverse expression’s parse tree and generate constraints.
Solve constraints offline producing substitution map S.
Finally, apply S on expression tyvar to infer the principal
type of expression

Strategy Two (Classical Hindley Milner)
Generate and solve constraints on-the-fly while traversing
parse tree. Build and apply substitution map incrementally

Programming in Haskell, A Milanova 29

29

def V(Γ, E) = case E of
c -> ({}, TypeOf(c))

x -> if (x NOT in Dom(Γ)) then fail
else ({}, Γ(x))

\x -> E1 -> let (CE1,TE1) = V(Γ+{x:tx},E1) – tx is fresh tyvar
in (CE1,tx®TE1)

Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW) 30

Constraint Generation
Strategy One

30

16

def V(Γ, E) = case E of
…
E1 E2 -> let (CE1,TE1) = V(Γ,E1)

(CE2,TE2) = V(Γ,E2)
in (CE1 + CE2 + {TE1 ~ TE2 ®t}, t) -- t is fresh tyvar

let x = E1 in E2 -> let (CE1,TE1) = V(Γ+{x:tx},E1)
(CE2,TE2) = V(Γ+{x:TE1},E2)

in (CE1 + CE2 + {tx ~ TE1}, TE2)

Programming in Haskell, A Milanova (based on MIT 2015 Program Analysis OCW) 31

31

Programming in Haskell, A Milanova 32

(\f -> f 5) (\x -> x + 1)

32

17

Programming in Haskell, A Milanova 33

let f = \x -> x in f 1

33

def V(Γ, E) = case E of
c -> ([], TypeOf(c))

x -> if (x NOT in Dom(Γ)) then fail
else ([], TE)

\x -> E1 -> let (SE1,TE1) = V(Γ+{x:tx},E1)
in (SE1, SE1(tx)®TE1)

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 34

On-the-fly Generation and
Resolution

Strategy Two

34

18

def V(Γ, E) = case E of
E1 E2 -> let (SE1,TE1) = V(Γ,E1)

(SE2,TE2) = V(SE1(Γ),E2)
S = Unify(SE2(TE1),TE2®t)

in (S SE2 SE1, S(t)) // S SE2 SE1

let x = E1 in E2 -> let (SE1,TE1) = V(Γ+{x:tx},E1)
S = Unify(SE1(tx),TE1)
(SE2,TE2) = V(S SE1(Γ)+{x:S(TE1)},E2)

in (SE2 S SE1, TE2)

Programming in Haskell, A Milanova (from MIT 2015 Program Analysis OCW) 35

35

Programming in Haskell, A Milanova 36

(\f -> f 5) (\x -> x + 1)

36

