
1

Simply Typed Lambda Calculus,
Progress and Preservation

1

Announcements

n HW5
n Questions?

n Grading HW4

n Check your grades so far

Program Analysis CSCI 4450/6450, A Milanova 2

2

2

Outline

n Applied lambda calculus
n Introduction to types and type systems

n Simply typed lambda calculus (System F1)
n Syntax
n Static semantics
n Dynamic semantics (next time)
n Type safety (next time)

Program Analysis CSCI 4450/6450, A Milanova 3

3

Reading

n “Types and Programming Languages” by
Benjamin Pierce, Chapters 8 and 9

n Lecture notes based on Pierce and notes by
Dan Grossman, UW

Program Analysis CSCI 4450/6450, A Milanova 4

4

3

Program Analysis CSCI 4450/6450, A Milanova 5

Applied Lambda Calculus (from
Sethi)

n E ::= c | x | (lx.E1) | (E1 E2)
Augments the pure lambda calculus with constants.
An applied lambda calculus defines its set of
constants and reduction rules. For example:
Constants: Reduction rules:
if, true, false
(all these are l terms,
e.g., true=lx.ly. x)
0, iszero, pred, succ

if true M N àδ M
if false M N àδ N

iszero 0 àδ true
iszero (succk 0) àδ false, k>0
iszero (predk 0) àδ false, k>0
succ (pred M) àδ M
pred (succ M) àδ M

5

Program Analysis CSCI 4450/6450, A Milanova 6

From an Applied Lambda Calculus to
a Functional Language

Construct Applied l-Calculus A Language (ML)

Variable x x
Constant c c
Application M N M N
Abstraction lx.M fun x => M
Integer succk 0, k>0 k

predk 0, k>0 -k
Conditional if P M N if P then M else N

Let (lx.M) N let val x = N in M end

6

4

Program Analysis CSCI 4450/6450, A Milanova 7

The Fixed-Point Operator

n One more constant, and one more rule:
fix fix M àδ M (fix M)

n Needed to define recursive functions:

n Therefore:
plus = lx.ly. if (iszero x) y (plus (pred x) (succ y))

y if x = 0

plus (pred x) (succ y) otherwise
plus x y =

x-1 y+1

M(M(M…))

7

Program Analysis CSCI 4450/6450, A Milanova 8

The Fixed-Point Operator

n But how do we define plus?

Define plus = fix M, where
M = lf. lx.ly. if (iszero x) y (f (pred x) (succ y))
Then show that
fix M =δβ
lx.ly. if (iszero x) y ((fix M) (pred x) (succ y))

8

5

Program Analysis CSCI 4450/6450, A Milanova 9

Define times =
fix (lf.lx.ly. if (iszero x) 0 (plus y (f (pred x) y)))

Exercise: define factorial = ?

The Fixed-Point Operator

9

The Y Combinator

n fix is, of course, a lambda expression!
n One possibility, the famous Y-combinator:
Y = lf. (lx. f (x x)) (lx. f (x x))
n Show that Y M indeed reduces into M (Y M):

10Program Analysis CSCI 4430/6450, A Milanova

10

6

Program Analysis CSCI 4450/6450, A Milanova 11

Types!

n Constants add power
n But they raise problems because they permit

“bad” terms such as
n if (lx.x) y z (arbitrary function values are

not permitted as predicates,
only true/false values)

n (0 x) (0 does not apply as a function)
n succ true (undefined in our language)
n plus true 0 etc.

11

Types!

n Why types?
n Safety. Catch semantic errors early
n Data abstraction. Simple types and ADTs
n Documentation (statically-typed languages only)

n Type signature is a form of specification!

n Statically typed vs. dynamically typed
languages

n Type annotations vs. type inference
n Type safe vs. type unsafe
Program Analysis CSCI 4450/6450, A Milanova 12

12

7

Types!

n Important subarea of programming
languages and program analysis

n Related to abstract interpretation, although…
n AI is framework of choice for reasoning about

imperative languages
n Type systems is framework of choice for

reasoning about functional languages

Program Analysis CSCI 4450/6450, A Milanova 13

13

Type System

n Syntax
n Dynamic semantics (aka concrete

semantics!). In type theory, it is
n A sequence of reductions

n Static semantics (aka abstract semantics!). In
type theory, it is defined in terms of
n Type environment
n Typing rules, also called type judgments
n This is typically referred to as the type system

14Program Analysis CSCI 4450/6450, A Milanova

14

8

Program Analysis CSCI 4450/6450, A Milanova 15

Example, The Static Semantics.
More On This Later!

Γ |- E1 : σ®τ Γ |- E2 : σ
Γ |- (E1 E2) : τ

Γ |- x : τ

Γ,x:σ |- E1 : τ
Γ |- (lx:σ. E1) : σ® τ

(Variable)

(Application)

(Abstraction)

binding: augments environment Γ
with binding of x to type σ

looks up the type of x in environment Γ

x:τ Γ∈

15

Type System

n A type system either accepts a term (i.e.,
term is well-typed), or rejects it

n Type soundness, also called type safety
n Well-typed terms never “go wrong”
n More concretely: well-typed terms never reach a

stuck state (a “bad” term) during evaluation
n A programming language defines its own set of stuck

states

Program Analysis CSCI 4450/6450, A Milanova 16

16

9

Stuck States

n A term is “stuck” if it cannot be further reduced,
and it is not a value
n E.g., 0 x

n In real programming languages stuck states
correspond to forbidden errors which is
execution of operation on illegal arguments

n We will define stuck states formally for the simply
typed lambda calculus, in just awhile

Program Analysis CSCI 4450/6450, A Milanova 17

17

Stuck States Examples

n E.g., c (lx.x), where c is an int constant, is a
stuck state, i.e., a meaningless state

n E.g., if c E1 E2 where c is an int constant, is
a stuck state
n Clearly not a value and clearly no rule applies!
n Because the evaluation rules for if-then-else are
if true E1 E2 àδ E1

if false E1 E2àδ E2
Program Analysis CSCI 4450/6450, A Milanova 18

18

10

Type Soundness

n Remember, a type system either accepts a
term M or rejects M

n A sound type system never accepts a term
that can get stuck

n A complete type system never rejects a term
that cannot get stuck

n Typically, whether a term gets stuck is
undecidable
n Type systems choose type soundness

Program Analysis CSCI 4450/6450, A Milanova 19

19

Type Soundness

Program Analysis CSCI 4450/6450, A Milanova 20

20

11

Safety = Progress + Preservation

n Progress: A well-typed term is not stuck (i.e., either
it is a value, or there is an evaluation step that
applies)

n Preservation: If a well-typed term takes a step of
evaluation, then the resulting term is well-typed

n Soundness follows:
n Each state reached by program is well-typed (by

Preservation)
n A well-typed state is not stuck (by Progress)
n Thus, each state reached by the program is not stuck

Program Analysis CSCI 4450/6450, A Milanova 21

21

Putting It All Together, Formally

n Simply typed lambda calculus (System F1)
n Syntax of the simply typed lambda calculus
n The type system: type expressions, environment,

and type judgments
n The dynamic semantics

n Stuck states
n Progress and preservation theorem

Program Analysis CSCI 4450/6450, A Milanova 22

22

12

23

Type Expressions

n Syntax of simply typed lambda calculus:
n E ::= x | (lx: τ. E1) | (E1 E2) | c

n Introducing type expressions
n τ ::= b | τ® τ
n A type is a basic type b (we will only consider

int, for simplicity), or a function type
n Examples

int
int ® (int ® int) // ® is right-associative, thus can

write just int ® int ® int
23

Type Environment and Type
Judgments

n A term in the simply typed lambda calculus is
n Type correct i.e., well-typed, or
n Type incorrect

n The rules that judge type correctness are given
in the form of type judgments in an environment
n Environment Γ |- E : τ (|- is the turnstile)
n Read: environment Γ entails that E has type τ

n Type judgment Γ |- E1 : σ®τ Γ |- E2 : σ
Γ |- (E1 E2) : τ

Premises

Conclusion

24

13

Program Analysis CSCI 4450/6450, A Milanova 25

Semantics

Γ |- E1 : σ®τ Γ |- E2 : σ
Γ |- (E1 E2) : τ

Γ |- x : τ

Γ,x:σ |- E1 : τ
Γ |- (lx:σ. E1) : σ® τ

(Variable)

(Application)

(Abstraction)

binding: augments environment Γ
with binding of x to type σ

looks up the type of x in environment Γ

x:τ Γ∈

25

Program Analysis CSCI 4450/6450, A Milanova 26

Examples

n Deduce the type for
lx: int.ly: bool. x in the nil environment

26

14

Program Analysis CSCI 4450/6450, A Milanova 27

Examples

n Deduce the type for
lx: int.ly: bool. x in the nil environment

27

Extensions (of Language and
Static Semantics)

Program Analysis CSCI 4450/6450, A Milanova 28

Γ |- c : int
Γ |- E1 : int Γ |- E2 : int

Γ |- E1+E2 : int

Γ |- E1 : int Γ |- E2 : int
Γ |- E1=E2 : bool

Γ |- b : bool Γ |- E1 : τ Γ |- E2 : τ
Γ |- if b then E1 else E2 : τ

(Comparison)

28

15

Examples

n Is this a valid type?
Nil |- lx: int.ly: bool. x+y : int ® bool ® int

n Is this a valid type?
Nil |- lx: bool.ly: int. if x then y else y+1 :

bool ® int ® int

Program Analysis CSCI 4450/6450, A Milanova (Examples from MIT 2015 Program Analysis OCW) 29

29

Examples

n Can we deduce the type of this term?
lf. lx. if x=1 then x else (f (f (x-1))) : ?

Program Analysis CSCI 4450/6450, A Milanova (example from MIT 2015 Program Analysis OCW) 30

Γ |- E1 : int Γ |- E2 : int
Γ |- E1+E2 : int

Γ |- E1 : int Γ |- E2 : int
Γ |- E1=E2 : bool

Γ |- b : bool Γ |- E1 : τ Γ |- E2 : τ
Γ |- if b then E1 else E2 : τ

30

16

Examples

n How about this (lx. x (ly. y) (x 1)) (lz. z) : ?

n x cannot have two “different” types
n (x 1) demands int ® ?
n (x (ly. y)) demands (τ® τ) ® ?

n Program does not reach a “stuck state” but is
nevertheless rejected. A sound type system
typically rejects some correct programs

31

31

Putting It All Together, Formally

n Simply typed lambda calculus (System F1)
n Syntax of the simply typed lambda calculus
n The type system: type expressions, environment,

and type judgments
n The dynamic semantics

n Stuck states
n Progress and preservation theorem

Program Analysis CSCI 4450/6450, A Milanova 32

32

