Simply Typed Lambda Calculus,

* Progress and Preservation
|

‘ Announcements

s HW5
= Questions?

= Grading HW4

= Check your grades so far

Program Analysis CSCI 4450/6450, A Milanova

i Outline

= Applied lambda calculus
= Introduction to types and type systems

= Simply typed lambda calculus (System F,)
= Syntax
= Static semantics
= Dynamic semantics (next time)
= Type safety (next time)

Program Analysis CSCI 4450/6450, A Milanova

#Reading

= “Types and Programming Languages” by
Benjamin Pierce, Chapters 8 and 9

= Lecture notes based on Pierce and notes by
Dan Grossman, UW

Program Analysis CSCI 4450/6450, A Milanova

Applied Lambda Calculus (from

i Sethi)

= E::=c|x]|(M&E;)]|(E4E))
Augments the pure lambda calculus with constants.

An applied lambda calculus defines its set of
constants and reduction rules. For example:

Constants:
if, true, false

Reduction rules:
iftrue MN =25 M
if false MN =25 N

(all these are A terms,

e.g., true=Ax.Ay. x)
0, iszero, pred, succ

Program Analysis CSCI 4450/6450, A Milanova

iszero 0 =5 true

iszero (succk 0) -5 false, k>0
iszero (pred* 0) =5 false, k>0

succ (pred M) 25 M

pred (succ M) >s M 5

From an Applied Lambda Calculus to
a Functional Language

Construct

Variable
Constant
Application
Abstraction
Integer

Conditional

Let
=

Applied A-Calculus A Language (ML)

X
c

M N

AxX.M
succk 0, k>0
predk 0, k>0
if PMN

(Ax.M) N

Program Analysis CSCI 4450/6450, A Milanova

X
C

M N \¥x— M
funx=>M

k

-k

if P then M else N

let val x =N in M end
LQ"’(=M'I\QI{L 6

i The Fixed-Point Operator

= One more constant, and one more rule:

fix fix M 25 M (fix M)
= Needed to define recursive functions:
ifx=0
plus xy = ¢

plus (pred x) (succ y) otherwise

= Therefore:

plus = Ax.Ay. if (iszero x) y (plus (pred x) (succ y))

Program Analysis CSCI 4450/6450, A Milanova 7

i The Fixed-Point Operator

= But how do we define plus?

Define plus = fix M, where
M= Af. AX.Ay. if (iszero x) y (f (pred x) (succ y))
Then show that
fix M =53
}o:}‘;y if ﬂs(z;roﬂ);) y ((fix M) (pred x) (succ y))
i - ix ———
(X#. AN Eﬁ (i2er0 x)y (. (pred x) (rucey))) 772“‘ L) -2
o Akt bR (@ 1) (pred) (necy))

iThe Fixed-Point Operator

Define times =
fix (AMf.AX.Ay. if (iszero x) 0 (plus y (f (pred x) y)))

Exercise: define factorial = ?

Program Analysis CSCI 4450/6450, A Milanova 9

i The Y Combinator

= fix is, of course, a lambda expression!
= One possibility, the famous Y-combinator:
Y = Af. (Ax. f (x x)) (Ax. f (X X))

m Show that Y M indeed reduces into M (Y M):
YU =7 ()
M. (. f(Xx))(/\x 75 (xx))) My —=p

M. M (x x A W x -
[x xx)) (Ax. M (xx)) A
Ju (‘g)xr.h(xx))(r\x./«(xxg) = L (vi)

Program Analysis CSCI 4430/6450, A Milanova 10

10

i Types!

= Constants add power

= But they raise problems because they permit
“bad” terms such as

» if (AX.X) yz (arbitrary function values are
not permitted as predicates,
only true/false values)

= (0 x) (O does not apply as a function)
= succ true (undefined in our language)
= plus true 0 etc.

Program Analysis CSCI 4450/6450, A Milanova 11

11

iTypes!

= Why types?
= Safety. Catch semantic errors early
= Data abstraction. Simple types and ADTs
= Documentation (statically-typed languages only)

« Type signature is a form of specification!

= Statically typed vs. dynamically typed
languages

= Type annotations vs. type inference

= Type safe vs. type unsafe

Program Analysis CSCI 4450/6450, A Milanova 12

True + 5

12

i Types!

= Important subarea of programming
languages and program analysis

= Related to abstract interpretation, although...

= Al is framework of choice for reasoning about
imperative languages

= Type systems is framework of choice for
reasoning about functional languages

Program Analysis CSCI 4450/6450, A Milanova 13

13

iType System

= Syntax P %+

= Dynamic semantics (aka concrete
semantics!). In type theory, it is
= A sequence of reductions E—=E(— Ex— .~
Static semantics (aka abstract semantics!). In
type theory, it is defined in terms of
= Type environment
= Typing rules, also called type judgments
= This is typically referred to as the type system

Program Analysis CSCI 4450/6450, A Milanova 14

14

Example, The Static Semantics.
More On This Later!

looks up the type of x in environment I

xtEr =0T, 9%, 2 %] (Variable)

MNex:7 [=(x:nd y:nontT

FFEi:6o>1t ThRE;: o (Application)
r |" (E1 Ez) T

binding: augments environment I’

(\/ with binding of x to type ¢

Nxic mE;: 7
MN(Ax:0.E):6>1

(Abstraction)
LT+ denur Nyrbool.

Program Analysis CSCI 4450/6450, A Milanova 15

15

i Type System

= A type system either accepts a term (i.e.,
term is well-typed), or rejects it

= Type soundness, also called type safety
= Well-typed terms never “go wrong” £~&,—¢,
= More concretely: well-typed terms never reach a
stuck state (a “bad” term) during evaluation

= A programming language defines its own set of stuck
states

Tﬂue +5

—

Program Analysis CSCI 4450/6450, A Milanova 16

16

i Stuck States

= A term is “stuck” if it cannot be further reduced,
and it is not a value
n Eg, 0x

= In real programming languages stuck states
correspond to forbidden errors which is
execution of operation on illegal arguments

= We will define stuck states formally for the simply
typed lambda calculus, in just awhile

Program Analysis CSCI 4450/6450, A Milanova 17

17

‘ Stuck States Examples

= E.g., ¢ (AX.X), where c is an int constant, is a
stuck state, i.e., a meaningless state

= E.g., if c E{ E, where ¢ is an int constant, is
a stuck state
= Clearly not a value and clearly no rule applies!
= Because the evaluation rules for if-then-else are
if true E, E, 25 E,
if false E, E,2>5 E,

Program Analysis CSCI 4450/6450, A Milanova 18

18

i Type Soundness

= Remember, a type system either accepts a
term M or rejects M

= A sound type system never accepts a term
that can get stuck

= A complete type system never rejects a term
that cannot get stuck

= Typically, whether a term gets stuck is
undecidable

= Type systems choose type soundness

Program Analysis CSCI 4450/6450, A Milanova 19

19

A’@‘/l«u Coeted wor l'ompklel

T \ ok
K g

shaet:

Program Analysis CSCI 4450/6450, A Milanova 20

20

10

i Safety = Progress + Preservation

= Progress: A well-typed term is not stuck (i.e., either
it is a value, or there is an evaluation step that

applies)
= Preservation: If a well-typed term takes a step of
evaluation, then the resulting term is well-typed
= Soundness follows:

= Each state reached by program is well-typed (by
Preservation)

= A well-typed state is not stuck (by Progress)
= Thus, each state reached by the program is not stuck

Program Analysis CSCI 4450/6450, A Milanova 21

21

i Putting It All Together, Formally

= Simply typed lambda calculus (System F)
= Syntax of the simply typed lambda calculus

= The type system: type expressions, environment,
and type judgments

= The dynamic semantics
» Stuck states

= Progress and preservation theorem

Program Analysis CSCI 4450/6450, A Milanova 22

22

11

i Type Expressions

= Syntax of simply typed lambda calculus:
« Ex=x| (M B) [(E)| e

= Introducing type expressions
sTi=b|TtoT
= A type is a basic type b (we will only consider
int, for simplicity), or a function type

= Examples Tk, Wb>nuk) k> (h>ad)
. (nbsng)—nt

int
int - (int —> int) // > is right-associative, thus can
write just int - int - int 23

23

Type Environment and Type
Judgments

= A term in the simply typed lambda calculus is
= Type correcti.e., well-typed, or
= Type incorrect Fe0x%,y:%, %:%7
= The rules that judge type correctness are given
in the form of type judgments in an environment
= Environment M=E:t (Fisthe turnstile)
= Read: environment I' entails that E has type t
— Premises
= Type judgment NNeEi:oo1 N=E;:o
FEEE) 1 —— conciusion

24

12

Semantics TroiL
(\ looks up the type of x in environment I
Fxlfxe : T ariable)
) F]/—ésxml—x) :u‘—a‘Z;’ TTF3:iuk
LI Axent.x) 3) ¢ = M
- M~Ei:0o1 TFE o (Appllcatlon)
MN=(E4Ep):t
binding: augments environment I’
(\/ with blndlp&of)Z_to type S o
Nxie FE;: 7

[K'M]I— XsC h?(;\bstractlon)\
T

Program Analysis CSCI 4450/6450, A Milanova s L = N> 25

MN=(Ax:0.E{):6>1

25

i Examples

= Deduce the type for
AX: int.Ay: bool. x in the nil environment

Kl @fy:éon/,xrn,#j — X:zat

&:és./, wead - ¥ ¢ - L

[x:ndJ = dyibool.x + T = /z»/—>‘t"q: bool > 1

o v
[][—‘ AX.‘I’)A&.AV!LM/,)(g M@?j = b= bov s Ul

Program Analysis CSCI 4450/6450, A Milanova 26

26

13

i Examples

= Deduce the type for
AX: int.Ay: bool. x in the nil environment

Program Analysis CSCI 4450/6450, A Milanova

27

27

Extensions (of Language and
i Static Semantics)

I|-E;:int M-E;:int

MN-c:int |- E4+E; : int

I|-E;:int IM|-E,:int
r I- E1=E2 : bool

(Comparison)

MN-b:bool T|-Ei:1t I|-Ey:7
M-ifbthenE elseE;: t

Program Analysis CSCI 4450/6450, A Milanova

28

28

14

i Examples

= Is this a valid type?
Nil |- Ax: int.Ay: bool. x+y : int - bool — int

= Is this a valid type?
Nil |- Ax: bool.Ay: int. if x then y else y+1 :

bool — int — int

Program Analysis CSCI 4450/6450, A Milanova (Examples from MIT 2015 Program Analysis OCW)

29

29

‘ Examples

= Can we deduce the type of this term?
Af. Ax. if x=1 then x else (f (f (x-1))) : ?
M-E;:int M-E;:int
I |- E4=E; : bool

M-E;:int M-E;:int
r I- E1+E2 :int

F-b:bool F|-E;:t F|-E;: 7
M|-ifbthenE elseE;: t

Program Analysis CSCI 4450/6450, A Milanova (example from MIT 2015 Program Analysis OCW)

30

30

15

i Examples

= How about this (Ax. x (Ay. y) (x 1)) (Az.2z) : ?

= X cannot have two “different” types
= (x 1) demands int > ?
= (x (Ay.y))demands (t—>1t)—>?
= Program does not reach a “stuck state” but is

nevertheless rejected. A sound type system
typically rejects some correct programs

31

31

i Putting It All Together, Formally

= Simply typed lambda calculus (System F)
= Syntax of the simply typed lambda calculus

= The type system: type expressions, environment,
and type judgments

= The dynamic semantics
» Stuck states

= Progress and preservation theorem

Program Analysis CSCI 4450/6450, A Milanova 32

32

16

