Types and Type Based Analysis:
* Lambda Calculus, Intro to Haskell

‘ Announcements

= Welcome back!

= HWS is out
= Grades. | am still grading HW4

= Moving on with Types and Type-based
Analysis

Program Analysis CSCI 4450/6450, A Milanova

i Outline

= Pure lambda calculus, a review
= Syntax and semantics (last time)
= Free and bound variables (last time)
= Substitution (last time)
= Rules (last time)
= Normal forms
» Reduction strategies

m Interpreters for the Lambda calculus
m Coding them in Haskell

Program Analysis CSCI 4450/6450, A Milanova

i Syntax of Pure Lambda Calculus

= A-calculus formulae (e.g., AX. x y) are called
expressions or terms

m E:= x|(A.Eq)]|(E4Ey)
= A L-expression is one of
« Variable: x
= Abstraction (i.e., function definition): Ax. E4
= Application: E4 E,

Program Analysis CSCI 4450/6450, A Milanova/BG Ryder

i Syntactic Conventions

= Parentheses may be dropped from “stand-
alone” terms (E4 E;) and (Ax. E)

= E.g., (fx) may be written as f x

= Function application groups from left-to-right
(i.e., it is left-associative)

= E.g., Xy z abbreviates ((xy) z)
| Eg, E1 E2 E3 E4 abbreV'ateS (((E1 E2) E3) E4)

= Parentheses in x (y z) are necessary! Why?
eI O AL sty venst pRiot KBRS

Vot " x) (Oyy) (M.22))

Program Analysis CSCI 4450/6450, A Milanova/BG Ryder

i Syntactic Conventions

= Application has higher precedence than
abstraction

= Another way to say this is that the scope of the
dot extends as far to the right as possible

s Eg,AX.xz =AX.(x2z2)=(Ax.(x2))=
(Ax. (x2))#F ((Ax.x)z)

= WARNING: This is the most common syntactic
convention (e.g., Pierce 2002). However, some
books give abstraction higher precedence; you
might have seen that different convention

Rules (Axioms) of Lambda
Calculus

= o rule (a-conversion): renaming of parameter
(choice of parameter name does not matter)
= AX. E 2 Az. (E[z/Xx]) provided z is not free in E
= e.g., AX. XX isthesameasAz.zz

= [rule (B-reduction): function application
(substitutes argument for parameter)

= (Ax.E) M >, E[M/x]
Note: E[M/x] as defined in class last time
=eg., (AX.X)z>52

Program Analysis CSCI 4450/6450, A Milanova

Rules of Lambda Calculus:

Exercises | Ba-rdetio
hx. M x —oy M provided x coes Uot occur

ase /4“ varialle m g,

= Reduce Inbscipate M= VN oo Uis a fuucha veler
Thew by g = Mx. (M) x = M w[x/a]
(Ax.x)y 2> y (M hlx[=] s d-revase of s v)

(Ax. x) (Ay.y) 2 '{)«y.y)
(AX.Ay.Az. x z (y Z)) (Au. u) (Av. V) > ?

Program Analysis CSCI 4450/6450, A Milanova 8

i Reductions

= An expression (Ax.E) M is called a redex
(for reducible expression)

= An expression is in normal form if it cannot
be B-reduced

= The normal form is the meaning of the term,
the “answer”

Program Analysis CSCI 4450/6450, A Milanova 9

i Definitions of Normal Form

= Normal form (NF): a term without redexes

= Head normal form (HNF)
= X is in HNF
= (AX. E) is in HNF if E is in HNF

= (XE, E, ... E,) is in HNF X [((yy)(hez))

E E
= Weak head normal form (WHNF)

= X is in WHNF
= (Ax. E) is in WHNF
= (X E, E, ... E,) is in WHNF

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 10

10

i Questions

m Az. z zis in NF, HNF, or WHNF? vF. ve=>/ur= ek
m (Az. Zz Z) (AX. X) iS IN? Neither
m AX.AY.AZ. X Z (y (Au. u)) is in? VF

E T ts
= (AX.Ay. X) Z ((AX. Z X) (AX. Z X)) is in? Vet
= Z ((AX. Z X) (AX. Z X)) iS in? HNF oud WhoE
m (Az.(AX.AY. X) Z ((AX. z X) (AX. Z X))) is in?
WhNF

Program Analysis CSCI 4450/6450, A Milanova 11

11

Simple Reduction Exercise

m C=AXAyAf. fxy

m H =Af. f (AX.Ay. X) T =Af. f (AX.Ay. y)
= Whatis H (C a b)?

> (AMf. f (Ax.Ay. X)) (C a b)

> (C ab) (Ax.Ay. X)

> ((AWx.Ay.Af. fxy)ab) (AXx.Ay. x)

> (AMf. fab) (AXx.Ay. Xx)

> (Ax.Ay.x)ab

> d CSCl4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 12

12

An expression with no free

variables is called combinator.

i Exe rC|Se/, S, |, C, H, T are combinators.

m S =AXAYy.AZ. X Z (Y 2)

m | =2AX. X
= WhatisSI111? at each step.

Reducible expression is underlined

(AXAyAz. xz(y2z)) 111
s (AWwAz. lz(y2z)) Il

> (Az.1z(12))1
SN =Ax.x)1(11)
s> () = (Ax. x) (11)
sH=MAx.x)1>1

Program Analysis CSCI 4450/6450, A Milanova

13

13

Aside: Trace Semantics

= Models a trace of program execution

= In the imperative world &% /= (%)=
= Basic operation: assignment statement

cve (‘gﬁrr, O;ur)

MEwee

= Execution (transition system) is a sequence of

state transitions
= Assignment: §:x=E;¢: ...
(4:0) 2> (6 o[x<€[E]l(0)])
= Assignment: §:x=E; OpE>;¢: ...

(40) > (4 o[x<[[Ell(o) Op [[El(o)])

Program Analysis CSCI 4450/6450, A Milanova

14

14

i Aside: Trace Semantics

= In the functional worl
= Basic operation is function application

= Execution (transition system) is a sequence of
B-reductions

(AxAyAz.xz(yz))II1I
>(AyAz. lz(yz))ll
>(Az.1z(12))1

Muswee

AX. X

15

15

i Outline

= Pure lambda calculus, a review
= Syntax and semantics
= Free and bound variables
= Substitution
= Rules (alpha rule, beta rule)
= Normal forms
» Reduction strategies

= Lambda calculus interpreters
= Coding them in Haskell

Program Analysis CSCI 4450/6450, A Milanova

16

16

Reduction Strategy

T i
= Let us look at (XX.Xng x z (y z)) (Au. u) (Av. V)
: T NOT 4 Revex !
= Actually, there are (at least) two “reduction paths”:
Path 1: (AX.Ay.Az. x z (y z)) (AuU. u) (Av. V) >4

(Ay.Az. (Au.u) z (y z)) (Av. V) >4
(Az. (Au. u) Z ((Av. v) 2)) 24 (Az. Z ((Av. V) 2)) ¢
Az.z2z

Path 2: (AX.Ay.Az. x z (y z)) (Au. u) (Av. V) >4
(Ay.Az. (Au. u) z (y 2)) (Av. V) 24
(Ay.Az. z (y 2)) (AV. V) 2 (AZ. Z ((Av. V) 2)) >4
AZ.Z22Z2

17

17

Aok = " — —

‘ Reduction Strategy “* =~ -

= A reduction strategy (also called evaluation
order) is a strategy for choosing redexes
= How do we arrive at the normal form (answer)?
= Applicative order reduction chooses the
leftmost-innermost redex in an expression
= Also referred to as call-by-value reduction
= Normal order reduction chooses the leftmost-
outermost redex in an expression
= Also referred to as call-by-name reduction

Program Analysis CSCI 4450/6450, A Milanova 18

18

c'—Ae(c)
Reduction Strategy: Examples
X: X

y — —
= Evaluate (Ax. X)\(l) f(-—(x!. y) (Az.2Z)) {Mx.E ¢ Ax. AP(E)

= Using applicative order reduction: (£, C, ¢ &, < AP(e)

[)(X.XYH/\Z-Z_)‘?) EZ"'”(Ez)

Qzz)(dzz) > i £, % MG

e ap (£, T5/%])
= Using normal order reductjon 8

(Cy) () (Bry) (Fez)) = {*4
Coa— t =
(\zz) (Gyy1(Az2))

Quy)22) -\

19

19

i Reduction Strategy

= In our examples, both strategies produced
the same result. This is not always the case

= First, look at expression (Ax. x x) (Ax. x x). What

happens when we apply B-reduction to this
expression?

= Then look at (Az.y) ((Ax. x x) (AX. X X))
= Applicative order reduction — what happens?
= Normal order reduction — what happens?

Program Analysis CSCI 4450/6450, A Milanova 20

20

10

i Church-Rosser Theorem

= Normal form implies that there are no more
reductions possible

m Church-Rosser Theorem, informally

= If normal form exists, then it is unique (i.e., result
of computation does not depend on the order
that reductions are applied; i.e., no expression
can have two distinct normal forms)

= If normal form exists, then normal order will find it

Program Analysis CSCI 4450/6450, A Milanova 21

21

i Reduction Strategy

= Intuitively:

= Applicative order (call-by-value) is an eager

evaluation strategy. Also known as strict
=

= Normal order (call-by-name) is a lazy
evaluation strategy

s What order of evaluation do most PLs use?

Program Analysis CSCI 4450/6450, A Milanova 22

22

11

i Exercises

= Evaluate (Ax.Ay. X y) ((Az. z) w)
= Using applicative order reduction

= Using normal order reduction

Program Analysis CSCI 4450/6450, A Milanova 23

23

i Interpreters

= An interpreter for the lambda calculus is a
program that reduces lambda expressions to
“answers”

= We must specify ME, WIWE FIVF?
= The definition of “answer”. Which normal form?

= The reduction strategy. How do we choose
redexes in an expression? AP, NoRYy

Program Analysis CSCI 4450/6450, A Milanova 24

24

12

Haskell syntax:
letIn

i An Interpreter case f o

->

= Definition by caseson E ::=x| Ax.E; |E4 E;
!nterpret(x) =X \WHF
interpret(Ax.E,) = AX.E,
interpret(E4 E,) = let f = interpret(E,)
" incasefof
AX.E; -> interpret(E;[E,/x])
. >fE, = ok
= What normal form: Weak head normal form
= What strategy: Normal order

Program Analysis CSCI 4450/6450, A Milanova (modified from MIT 2015 Program Analysis OCW) 25

25

i Another Interpreter

= Definition by caseson E ::=x | Ax. E; | E4 E;
interpret(x) = x
interpret(Ax.E,) = Ax.E, WENF
interpret(E4 E,) = let f = interpret(E,)
a = interpret(E,)
incase fof 4o
Ax.E; = interpret(E;[alx])
- >fa =
= What normal form: Weak head normal form

= What strategy: Applicative order 2

26

13

i Outline

= Pure lambda calculus, a review
= Syntax and semantics
= Free and bound variables
= Substitution
= Rules (alpha rule, beta rule)
= Reduction strategies
= Normal form

= Lambda calculus interpreters
m Coding them in Haskell

Program Analysis CSCI 4450/6450, A Milanova 27

27

i Coding them in Haskell

= In HWS you will code an interpreter in Haskell
= Haskell
= A functional programming language

= Key ideas
= Lazy evaluation
= Static typing and polymorphic type inference
= Algebraic data types and pattern matching
= Monads ... and more

Program Analysis CSCI 4450/6450, A Milanova 28

28

14

i Lazy Evaluation

= Unlike Scheme (and most programming languages)
Haskell does lazy evaluation, i.e., normal order
reduction

= It won’t evaluate an argument expr. until it is needed
> f x =[] // ftakes x and returns the empty list

> f (repeat 1) // returns? “=p [q\"—’ (sboro %) #+-") BT
S SODETE

> head (tail [1..]) // returns?

> 2 /[[1..] is infinite list of integers

= Lazy evaluation allows us to work with infinite .

structures!

29

‘ Static Typing and Type Inference

= Unlike Scheme, which is dynamically typed,
Haskell is statically typed!

= Unlike Java/C++ we don’t always have to
write type annotations. Haskell infers types!

= A lot more on type inference later!
> f x = head x // f returns the head of list x

> f True // returns? N)ﬂﬁ [a]~ &
» Couldn't match expected type ‘[a]’ with actual type ‘Bool’
* In the first argument of ‘', namely ‘True’

In the expression: f True ... 30

30

15

i Algebraic Data Types

= Algebraic data types are tagged unions (aka
sums) of products (aka records)

data Shape = Line Point Point

| Triangle Point Point Point union
| Quad Point Point Point Point

Haskell keyword | new constructors (a.k.a. tags, disjuncts, summands)
Line is a binary constructor, Triangle is a ternary ...

the ne;/v type

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 31

31

i Algebraic Data Types in HW5

= Constructors create new values
= Defining a lambda expression
type Name = String
data Expr = Var Name
| Lambda Name Expr
| App Expr Expr

> e1 = Var “x” // Lambda term x
> e2 = Lambda “x” e1 // Lambda term Ax.x 3

32

16

Examples of Algebraic Data
i Types |
Polymorphic types.

ais a type parameter!

data Bool = True | False
data Day = Mon | Tue | Wed-{Thu | Fri | Sat | Sun

data List a = Nil | Cons a (List a)
data Tree a = Leaf a | Node (Tree a) (Tree a)
boual [N
| data Maybe a = Nothing | Just a | phovel LA

Maybe type denotes that result of computation can
be a or Nothing. Maybe is a monad.

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 33

33

Data Constructors vs Type

i Constructors

= Data constructor constructs a “program
object’
= E.g., Var, Lambda, and App are data constructs

= Type constructor constructs a “type object”
= E.g., Maybe is a unary type constructor

Program Analysis CSCI 4450/6450, A Milanova 34

34

17

Type signature of anchorPnt: takes

i Patte 18 MatCh | ng a Shape and returns a Pnt.

= Examine values-of an algebraic data type

anchorPnt :: Shape -2 Pnt

anchorPnt s = case s of
Line p1p2 > p1
Triangle p3 p4 p5 = p3
Quad p6 p7 p8 p9 > pb6

= Two points

= Test: does the given value match this pattern?

= Binding: if value matches, bind corresponding
values of s and pattern

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 35

35

‘ Pattern Matching in HWS

isFree::Name - Expr = Bool
isFreeve=
case e of
Var n - if (n == v) then True else False

Lambda - == | Type signature of isFree. In Haskell, all functions
are curried, i.e., they take just one argument.

isFree takes a variable name, and returns a function
that takes an expression and returns a boolean.

Of course, we can interpret isFree as a function
that takes a variable name name and an expression
E, and returns true if variable name is free in E.

Program Analysis CSCI 4450/6450, A Milanova 36

36

18

i Haskell Resources

m http://www.seas.upenn.edu/~cis194/spring13/

= https://www.haskell.org/

Program Analysis CSCI 4450/6450, A Milanova

37

37

19

http://www.seas.upenn.edu/~cis194/spring13/

