
1

Types and Type Based Analysis:
Lambda Calculus, Intro to Haskell

1

Announcements

n Quiz 4 on Abstract Interpretation

n HW5 is out
n Moving on to Types and Type-based

Analysis

n Have a great Spring break!
Program Analysis CSCI 4450/6450, A Milanova 2

2

2

Overview

3

Program Execution: Signs Analysis:

xà1,yà-1,zà2

Lattice 2Z

|[x=y+z]|({(1,-1,2),(0,1,2),…})
=
{(1,-1,2),(…),…}

xà+,yà-,zà+

Signs Lattice

γ
α

|[x=y+z]|((+, -, +))
=
(T, -, 0)

3

Outline

n Pure lambda calculus, a review
n Syntax and semantics
n Free and bound variables
n Rules (alpha rule, beta rule)
n Normal forms
n Reduction strategies

n Interpreters for the Lambda calculus
n Coding them in Haskell

Program Analysis CSCI 4450/6450, A Milanova 4

4

3

Lambda Calculus
n A theory of functions

n Theory behind functional programming
n Turing-complete: any computable function can

be expressed and evaluated using the calculus

n Lambda (l) calculus expresses function
definition and function application
n f(x)=x*x becomes lx. x*x
n g(x)=x+1 becomes lx. x+1
n f(5) becomes (lx. x*x) 5 à 5*5à 25

Program Analysis CSCI 4450/6450, A Milanova 5

5

Program Analysis CSCI 4450/6450, A Milanova/BG Ryder 6

Syntax of Pure Lambda Calculus

n l-calculus formulae (e.g., lx. x y) are called
expressions or terms

n E ::= x | (lx. E1) | (E1 E2)
n A l-expression is one of

n Variable: x
n Abstraction (i.e., function definition): lx. E1
n Application: E1 E2

6

4

Program Analysis CSCI 4450/6450, A Milanova/BG Ryder 7

Syntactic Conventions

n Parentheses may be dropped from “stand-
alone” terms (E1 E2) and (lx. E)
n E.g., (f x) may be written as f x

n Function application groups from left-to-right
(i.e., it is left-associative)
n E.g., x y z abbreviates ((x y) z)
n E.g., E1 E2 E3 E4 abbreviates (((E1 E2) E3) E4)
n Parentheses in x (y z) are necessary! Why?

7

8

Syntactic Conventions

n Application has higher precedence than
abstraction
n Another way to say this is that the scope of the

dot extends as far to the right as possible
n E.g., lx. x z = lx. (x z) = (lx. (x z)) =

(lx. (x z)) ≠ ((lx. x) z)
n WARNING: This is the most common

syntactic convention (e.g., Pierce 2002).
However, some books give abstraction
higher precedence; you might have seen that
different convention

8

5

Semantics of Lambda Calculus

n An expression has as its meaning the value
that results after evaluation is carried out

n Somewhat informally, evaluation is the
process of reducing expressions
E.g., (lx.ly. x + y) 3 2 à (ly. 3 + y) 2 à 3 + 2 = 5
(Note: this example is just an informal illustration.
There is no + in the pure lambda calculus!)

9

9

Program Analysis CSCI 4450/6450, A Milanova 10

Free and Bound Variables
n Abstraction (lx. E) is also referred as binding
n Variable x is said to be bound in lx. E

n The set of free variables of E is the set of
variables that appear unbound in E

n Defined by cases on E
n Var x:
n App E1 E2:
n Abs lx. E:

free(x) = {x}
free(E1 E2) = free(E1) U free(E2)

free(lx.E) = free(E) - {x}

10

6

11

Free and Bound Variables

n A variable x is bound if it is in the scope of a
lambda abstraction: as in lx. E

n Variable is free otherwise

1. (lx. x) y

2. (lz. z z) (lx. x)

Program Analysis CSCI 4450/6450, A Milanova

11

12

Free and Bound Variables

3. lx.ly.lz. x z (y (lu. u))

Program Analysis CSCI 4450/6450, A Milanova

12

7

13

Free and Bound Variables

n We must take free and bound variables into
account when reducing expressions
E.g., (lx.ly. x y) (y w)

n First, rename bound y in ly. x y to z: lz. x z
(lx.ly. x y) (y w) à (lx.lz. x z) (y w)

n Second, apply the reduction rule that substitutes
(y w) for x in the body (lz. x z)

(lz. x z) [(y w)/x] à (lz. (y w) z) = lz. y w z
13

14

Substitution, formally

n (lx.E) M à E[M/x] replaces all free occurrences
of x in E by M

n E[M/x] is defined by cases on E:
n Var: y[M/x] =

y[M/x] =
n App: (E1 E2)[M/x] =
n Abs: (ly.E1)[M/x] =

(ly.E1)[M/x] =

Program Analysis CSCI 4450/6450, A Milanova

M if x = y
y otherwise

(E1[M/x] E2[M/x])
(ly.E1) if x = y
lz.((E1[z/y])[M/x]) otherwise,

where z NOT in free(E1) U free(M) U {x}

14

8

Substitution, formally

(lx.ly. x y) (y w)
à (ly. x y)[(y w)/x]
à l1_. (((x y)[1_/y])[(y w)/x])
à l1_. ((x 1_)[(y w)/x])
à l1_. ((y w) 1_)
à l1_. y w 1_
You will have to implement precisely this
substitution algorithm in Haskell
Program Analysis CSCI 4450/6450, A Milanova 15

15

Program Analysis CSCI 4450/6450, A Milanova 16

Rules (Axioms) of Lambda
Calculus

n a rule (a-conversion): renaming of parameter
(choice of parameter name does not matter)
n lx. E àa lz. (E[z/x]) provided z is not free in E
n e.g., lx. x x is the same as lz. z z

n b rule (b-reduction): function application
(substitutes argument for parameter)
n (lx.E) M àb E[M/x]
Note: E[M/x] as defined on previous slide!
n e.g., (lx. x) z àb z

16

9

Program Analysis CSCI 4450/6450, A Milanova 17

Rules of Lambda Calculus:
Exercises

n Reduce

(lx. x) y à ?

(lx. x) (ly. y) à ?

(lx.ly.lz. x z (y z)) (lu. u) (lv. v) à ?

17

Program Analysis CSCI 4450/6450, A Milanova 18

Rules of Lambda Calculus:
Exercises

(lx.ly.lz. x z (y z)) (lu. u) (lv. v) àab

18

10

Program Analysis CSCI 4450/6450, A Milanova 19

Reductions

n An expression (lx.E) M is called a redex
(for reducible expression)

n An expression is in normal form if it cannot
be β-reduced

n The normal form is the meaning of the term,
the “answer”

19

Definitions of Normal Form

n Normal form (NF): a term without redexes
n Head normal form (HNF)

n x is in HNF
n (lx. E) is in HNF if E is in HNF
n (x E1 E2 … En) is in HNF

n Weak head normal form (WHNF)
n x is in WHNF
n (lx. E) is in WHNF
n (x E1 E2 … En) is in WHNF

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 20

20

11

Questions

n lz. z z is in NF, HNF, or WHNF?
n (lz. z z) (lx. x) is in?
n lx.ly.lz. x z (y (lu. u)) is in?

n (lx.ly. x) z ((lx. z x) (lx. z x)) is in?
n z ((lx. z x) (lx. z x)) is in?
n (lz.(lx.ly. x) z ((lx. z x) (lx. z x))) is in?

Program Analysis CSCI 4450/6450, A Milanova 21

21

Simple Reduction Exercise

n C = lx.ly.lf. f x y
n H = lf. f (lx.ly. x) T = lf. f (lx.ly. y)
n What is H (C a b)?
à (lf. f (lx.ly. x)) (C a b)
à (C a b) (lx.ly. x)
à ((lx.ly.lf. f x y) a b) (lx.ly. x)
à (lf. f a b) (lx.ly. x)
à (lx.ly. x) a b
à a CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 22

22

12

Program Analysis CSCI 4450/6450, A Milanova 23

Exercise

n S = lx.ly.lz. x z (y z)
n I = lx. x
n What is S I I I?
(lx.ly.lz. x z (y z)) I I I
à (ly.lz. I z (y z)) I I
à (lz. I z (I z)) I
à I I (I I) = (lx. x) I (I I)
à I (I I) = (lx. x) (I I)
à I I = (lx. x) I à I

An expression with no free
variables is called combinator.
S, I, C, H, T are combinators.

Reducible expression is underlined
at each step.

23

Outline

n Pure lambda calculus, a review
n Syntax and semantics
n Free and bound variables
n Rules (alpha rule, beta rule)
n Normal form
n Reduction strategies

n Lambda calculus interpreters
n Coding them in Haskell

Program Analysis CSCI 4450/6450, A Milanova 24

24

13

25

Reduction Strategy

n Let us look at (lx.ly.lz. x z (y z)) (lu. u) (lv. v)

n Actually, there are (at least) two “reduction paths”:
Path 1: (lx.ly.lz. x z (y z)) (lu. u) (lv. v) àβ

(ly.lz. (lu. u) z (y z)) (lv. v) àβ
(lz. (lu. u) z ((lv. v) z)) àβ (lz. z ((lv. v) z)) àβ
lz. z z

Path 2: (lx.ly.lz. x z (y z)) (lu. u) (lv. v) àβ
(ly.lz. (lu. u) z (y z)) (lv. v) àβ
(ly.lz. z (y z)) (lv. v) àβ (lz. z ((lv. v) z)) àβ
lz. z z

25

Program Analysis CSCI 4450/6450, A Milanova 26

Reduction Strategy

n A reduction strategy (also called evaluation
order) is a strategy for choosing redexes
n How do we arrive at the normal form (answer)?

n Applicative order reduction chooses the
leftmost-innermost redex in an expression
n Also referred to as call-by-value reduction

n Normal order reduction chooses the leftmost-
outermost redex in an expression
n Also referred to as call-by-name reduction

26

14

27

Reduction Strategy: Examples

n Evaluate (lx. x x) ((ly. y) (lz. z))
n Using applicative order reduction:
(lx. x x) ((ly. y) (lz. z))
à (lx. x x) (lz. z)
à (lz. z) (lz. z) à (lz. z)
n Using normal order reduction
(lx. x x) ((ly. y) (lz. z))
à (ly. y) (lz. z) ((ly. y) (lz. z))
à (lz. z) ((ly. y) (lz. z))
à (ly. y) (lz. z) à (lz. z)

27

Program Analysis CSCI 4450/6450, A Milanova 28

Reduction Strategy

n In our examples, both strategies produced
the same result. This is not always the case
n First, look at expression (lx. x x) (lx. x x). What

happens when we apply β-reduction to this
expression?

n Then look at (lz.y) ((lx. x x) (lx. x x))
n Applicative order reduction – what happens?
n Normal order reduction – what happens?

28

15

Program Analysis CSCI 4450/6450, A Milanova 29

Church-Rosser Theorem

n Normal form implies that there are no more
reductions possible

n Church-Rosser Theorem, informally
n If normal form exists, then it is unique (i.e., result

of computation does not depend on the order
that reductions are applied; i.e., no expression
can have two distinct normal forms)

n If normal form exists, then normal order will find it

29

Program Analysis CSCI 4450/6450, A Milanova 30

Reduction Strategy

n Intuitively:

n Applicative order (call-by-value) is an eager
evaluation strategy. Also known as strict

n Normal order (call-by-name) is a lazy
evaluation strategy

n What order of evaluation do most PLs use?

30

16

Exercises

n Evaluate (lx.ly. x y) ((lz. z) w)
n Using applicative order reduction

n Using normal order reduction

31Program Analysis CSCI 4450/6450, A Milanova

31

Interpreters

n An interpreter for the lambda calculus is a
program that reduces lambda expressions to
“answers”

n We must specify
n The definition of “answer”. Which normal form?
n The reduction strategy. How do we choose

redexes in an expression?

Program Analysis CSCI 4450/6450, A Milanova 32

32

17

An Interpreter

n Definition by cases on E ::= x | lx. E1 | E1 E2
interpret(x) = x
interpret(lx.E1) = lx.E1

interpret(E1 E2) = let f = interpret(E1)
in case f of

lx.E3 -> interpret(E3[E2/x])
- -> f E2

n What normal form: Weak head normal form
n What strategy: Normal order

33

Haskell syntax:
let …. in
case f of
->

Program Analysis CSCI 4450/6450, A Milanova (modified from MIT 2015 Program Analysis OCW)

33

Another Interpreter

n Definition by cases on E ::= x | lx. E1 | E1 E2
interpret(x) = x
interpret(lx.E1) = lx.E1

interpret(E1 E2) = let f = interpret(E1)
a = interpret(E2)

in case f of
lx.E3 à interpret(E3[a/x])

- à f a
n What normal form: Weak head normal form
n What strategy: Applicative order 34

34

18

Outline

n Pure lambda calculus, a review
n Syntax and semantics
n Free and bound variables
n Rules (alpha rule, beta rule)
n Reduction strategies
n Normal form

n Lambda calculus interpreters
n Coding them in Haskell

Program Analysis CSCI 4450/6450, A Milanova 35

35

Coding them in Haskell

n In HW5 you will code an interpreter in Haskell
n Haskell

n A functional programming language

n Key ideas
n Lazy evaluation
n Static typing and polymorphic type inference
n Algebraic data types and pattern matching
n Monads … and more

Program Analysis CSCI 4450/6450, A Milanova 36

36

19

Lazy Evaluation

n Haskell implements lazy evaluation, i.e., normal
order reduction
n It won’t evaluate an argument expr. until it is needed

> f x = [] // f takes x and returns the empty list
> f (repeat 1) // returns?
> []
> head (tail [1..]) // returns?
> 2 // [1..] is infinite list of integers
n Lazy evaluation allows us to work with infinite

structures!
37

37

Static Typing and Type Inference

n Unlike Python, which is dynamically typed,
Haskell is statically typed!

n Unlike Java/C++ we don’t always have to
write type annotations. Haskell infers types!
n A lot more on type inference later!

> f x = head x // f returns the head of list x
> f True // returns?
• Couldn't match expected type ‘[a]’ with actual type ‘Bool’
• In the first argument of ‘f’, namely ‘True’

In the expression: f True … 38

38

20

Algebraic Data Types

n Algebraic data types are tagged unions (aka
sums) of products (aka records)

data Shape = Line Point Point
| Triangle Point Point Point
| Quad Point Point Point Point

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 39

union

Haskell keyword

the new type

new constructors (a.k.a. tags, disjuncts, summands)
Line is a binary constructor, Triangle is a ternary …

39

Algebraic Data Types in HW5

n Constructors create new values
n Defining a lambda expression

type Name = String
data Expr = Var Name

| Lambda Name Expr
| App Expr Expr

> e1 = Var “x” // Lambda term x
> e2 = Lambda “x” e1 // Lambda term lx.x 40

40

21

Examples of Algebraic Data
Types

data Bool = True | False
data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

data List a = Nil | Cons a (List a)
data Tree a = Leaf a | Node (Tree a) (Tree a)

data Maybe a = Nothing | Just a
Maybe type denotes that result of computation can
be a or Nothing. Maybe is a monad.
Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 41

Polymorphic types.
a is a type parameter!

41

Data Constructors vs Type
Constructors

n Data constructor constructs a “program
object”
n E.g., Var, Lambda, and App are data constructs

n Type constructor constructs a “type object”
n E.g., Maybe is a unary type constructor

Program Analysis CSCI 4450/6450, A Milanova 42

42

22

Pattern Matching

n Examine values of an algebraic data type
anchorPnt :: Shape à Pnt
anchorPnt s = case s of

Line p1 p2 à p1
Triangle p3 p4 p5 à p3
Quad p6 p7 p8 p9 à p6

n Two points
n Test: does the given value match this pattern?
n Binding: if value matches, bind corresponding

values of s and pattern
Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 43

Type signature of anchorPnt: takes
a Shape and returns a Pnt.

43

Pattern Matching in HW5

isFree::Name à Expr à Bool
isFree v e =

case e of
Var n à if (n == v) then True else False
Lambda …

Program Analysis CSCI 4450/6450, A Milanova 44

Type signature of isFree. In Haskell, all functions
are curried, i.e., they take just one argument.
isFree takes a variable name, and returns a function
that takes an expression and returns a boolean.

Of course, we can interpret isFree as a function
that takes a variable name name and an expression
E, and returns true if variable name is free in E.

44

