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Types and Type Based Analysis:
Lambda Calculus, Intro to Haskell
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Announcements

n Quiz 4 on Abstract Interpretation

n HW5 is out
n Moving on to Types and Type-based 

Analysis

n Have a great Spring break!
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Overview
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Program Execution: Signs Analysis:

xà1,yà-1,zà2

Lattice 2Z

|[x=y+z]|({(1,-1,2),(0,1,2),…})
=
{(1,-1,2),(…),…}

xà+,yà-,zà+

Signs Lattice

γ
α

|[x=y+z]|( (+, -, +) )
=
(T, -, 0)
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Outline

n Pure lambda calculus, a review
n Syntax and semantics
n Free and bound variables
n Rules (alpha rule, beta rule)
n Normal forms
n Reduction strategies

n Interpreters for the Lambda calculus
n Coding them in Haskell
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Lambda Calculus
n A theory of functions 

n Theory behind functional programming
n Turing-complete: any computable function can 

be expressed and evaluated using the calculus

n Lambda (l) calculus expresses function 
definition and function application
n f(x)=x*x becomes   lx. x*x
n g(x)=x+1 becomes   lx. x+1
n f(5) becomes   (lx. x*x) 5 à 5*5à 25
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Syntax of Pure Lambda Calculus

n l-calculus formulae (e.g., lx. x y) are called 
expressions or terms

n E ::= x | ( lx. E1 ) | ( E1 E2 )
n A l-expression is one of 

n Variable: x
n Abstraction (i.e., function definition): lx. E1
n Application: E1 E2 
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Syntactic Conventions

n Parentheses may be dropped from “stand-
alone” terms ( E1 E2 ) and ( lx. E )
n E.g., ( f x ) may be written as f x

n Function application groups from left-to-right 
(i.e., it is left-associative)
n E.g., x y z abbreviates ( ( x y ) z )
n E.g., E1 E2 E3 E4 abbreviates ( ( ( E1 E2 ) E3 ) E4 )
n Parentheses in x (y z) are necessary! Why?
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Syntactic Conventions

n Application has higher precedence than 
abstraction
n Another way to say this is that the scope of the 

dot extends as far to the right as possible
n E.g., lx. x z = lx. ( x z ) = ( lx. ( x z ) ) =

( lx. (x z) ) ≠ ( ( lx. x ) z )
n WARNING: This is the most common 

syntactic convention (e.g., Pierce 2002). 
However, some books give abstraction 
higher precedence; you might have seen that 
different convention

8



5

Semantics of Lambda Calculus

n An expression has as its meaning the value 
that results after evaluation is carried out 

n Somewhat informally, evaluation is the 
process of reducing expressions
E.g., (lx.ly. x + y) 3 2 à (ly. 3 + y) 2 à 3 + 2 = 5
(Note: this example is just an informal illustration. 
There is no + in the pure lambda calculus!)  
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Free and Bound Variables
n Abstraction ( lx. E ) is also referred as binding
n Variable x is said to be bound in lx. E

n The set of free variables of E is the set of 
variables that appear unbound in E

n Defined by cases on E
n Var x:
n App E1 E2:
n Abs lx. E:

free(x) = {x}
free(E1 E2) = free(E1) U free(E2)

free(lx.E) = free(E) - {x}
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Free and Bound Variables

n A variable x is bound if it is in the scope of a 
lambda abstraction: as in lx. E

n Variable is free otherwise

1. (lx. x) y

2. (lz. z z) (lx. x) 
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Free and Bound Variables

3. lx.ly.lz. x z (y (lu. u))
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Free and Bound Variables

n We must take free and bound variables into 
account when reducing expressions
E.g., (lx.ly. x y) (y w)

n First, rename bound y in ly. x y to z: lz. x z
(lx.ly. x y) (y w) à (lx.lz. x z) (y w) 

n Second, apply the reduction rule that substitutes 
(y w) for x in the body ( lz. x z )

( lz. x z ) [(y w)/x] à ( lz. (y w) z ) = lz. y w z
13
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Substitution, formally

n (lx.E) M à E[M/x] replaces all free occurrences 
of x in E by M

n E[M/x] is defined by cases on E:
n Var: y[M/x] =

y[M/x] =
n App: (E1 E2)[M/x] =
n Abs: (ly.E1)[M/x] =

(ly.E1)[M/x] =
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M if x = y
y otherwise

(E1[M/x] E2[M/x])
(ly.E1) if x = y
lz.((E1[z/y])[M/x]) otherwise,

where z NOT in free(E1) U free(M) U {x}
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Substitution, formally

(lx.ly. x y) (y w) 
à (ly. x y)[(y w)/x]
à l1_. ( ((x y)[1_/y])[(y w)/x] ) 
à l1_. ( (x 1_)[(y w)/x] )
à l1_. ( (y w) 1_ )
à l1_. y w 1_
You will have to implement precisely this 
substitution algorithm in Haskell
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Rules (Axioms) of Lambda 
Calculus

n a rule (a-conversion): renaming of parameter 
(choice of parameter name does not matter)
n lx. E àa lz. (E[z/x]) provided z is not free in E
n e.g., lx. x x is the same as lz. z z

n b rule (b-reduction): function application 
(substitutes argument for parameter)
n (lx.E) M àb E[M/x]
Note: E[M/x] as defined on previous slide!
n e.g., (lx. x) z àb z
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Rules of Lambda Calculus: 
Exercises

n Reduce

(lx. x) y à ?

(lx. x) (ly. y) à ?

(lx.ly.lz. x z (y z)) (lu. u) (lv. v) à ?
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Rules of Lambda Calculus: 
Exercises

(lx.ly.lz. x z (y z)) (lu. u) (lv. v) àab
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Reductions

n An expression ( lx.E ) M is called a redex
(for reducible expression)

n An expression is in normal form if it cannot 
be β-reduced

n The normal form is the meaning of the term, 
the “answer”
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Definitions of Normal Form

n Normal form (NF): a term without redexes
n Head normal form (HNF)

n x is in HNF
n (lx. E) is in HNF if E is in HNF 
n (x E1 E2 … En) is in HNF

n Weak head normal form (WHNF)
n x is in WHNF
n (lx. E) is in WHNF
n (x E1 E2 … En) is in WHNF
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Questions

n lz. z z is in NF, HNF, or WHNF?
n (lz. z z) (lx. x) is in?
n lx.ly.lz. x z (y (lu. u)) is in?

n (lx.ly. x) z ((lx. z x) (lx. z x)) is in?
n z ((lx. z x) (lx. z x)) is in?
n (lz.(lx.ly. x) z ((lx. z x) (lx. z x))) is in?
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Simple Reduction Exercise

n C = lx.ly.lf. f x y
n H = lf. f (lx.ly. x) T = lf. f (lx.ly. y)
n What is H (C a b)?
à (lf. f (lx.ly. x)) (C a b)
à (C a b) (lx.ly. x)
à ((lx.ly.lf. f x y) a b) (lx.ly. x)
à (lf. f a b) (lx.ly. x)
à (lx.ly. x) a b 
à a CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 22
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Exercise

n S = lx.ly.lz. x z (y z)
n I = lx. x
n What is S I I I?
( lx.ly.lz. x z (y z) ) I I I
à (ly.lz. I z (y z) ) I I
à (lz. I z (I z) ) I
à I I (I I) = (lx. x) I (I I)
à I (I I) = (lx. x) (I I)
à I I = (lx. x) I à I 

An expression with no free 
variables is called combinator.
S, I, C, H, T are combinators. 

Reducible expression is underlined
at each step.
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Outline

n Pure lambda calculus, a review
n Syntax and semantics
n Free and bound variables
n Rules (alpha rule, beta rule)
n Normal form
n Reduction strategies

n Lambda calculus interpreters
n Coding them in Haskell
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Reduction Strategy

n Let us look at (lx.ly.lz. x z (y z)) (lu. u) (lv. v)

n Actually, there are (at least) two “reduction paths”:
Path 1: (lx.ly.lz. x z (y z)) (lu. u) (lv. v) àβ

(ly.lz. (lu. u) z (y z)) (lv. v) àβ
(lz. (lu. u) z ((lv. v) z)) àβ (lz. z ((lv. v) z)) àβ
lz. z z

Path 2: (lx.ly.lz. x z (y z)) (lu. u) (lv. v) àβ
(ly.lz. (lu. u) z (y z)) (lv. v) àβ
(ly.lz. z (y z)) (lv. v) àβ (lz. z ((lv. v) z)) àβ
lz. z z
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Reduction Strategy

n A reduction strategy (also called evaluation 
order) is a strategy for choosing redexes
n How do we arrive at the normal form (answer)?

n Applicative order reduction chooses the 
leftmost-innermost redex in an expression
n Also referred to as call-by-value reduction

n Normal order reduction chooses the leftmost-
outermost redex in an expression
n Also referred to as call-by-name reduction
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Reduction Strategy: Examples 

n Evaluate (lx. x x) ( (ly. y) (lz. z) )
n Using applicative order reduction:
(lx. x x) ( (ly. y) (lz. z) )
à (lx. x x) (lz. z)
à (lz. z) (lz. z) à (lz. z)
n Using normal order reduction
(lx. x x) ( (ly. y) (lz. z) )
à (ly. y) (lz. z) ( (ly. y) (lz. z) )
à (lz. z) ( (ly. y) (lz. z) )
à (ly. y) (lz. z) à (lz. z)
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Reduction Strategy

n In our examples, both strategies produced 
the same result. This is not always the case
n First, look at expression (lx. x x) (lx. x x). What 

happens when we apply β-reduction to this 
expression?

n Then look at (lz.y) ((lx. x x) (lx. x x))
n Applicative order reduction – what happens?
n Normal order reduction – what happens?
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Church-Rosser Theorem

n Normal form implies that there are no more 
reductions possible 

n Church-Rosser Theorem, informally
n If normal form exists, then it is unique (i.e., result 

of computation does not depend on the order 
that reductions are applied; i.e., no expression 
can have two distinct normal forms)

n If normal form exists, then normal order will find it

29
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Reduction Strategy

n Intuitively:

n Applicative order (call-by-value) is an eager 
evaluation strategy. Also known as strict

n Normal order (call-by-name) is a lazy
evaluation strategy

n What order of evaluation do most PLs use?
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Exercises

n Evaluate (lx.ly. x y) ((lz. z) w) 
n Using applicative order reduction

n Using normal order reduction

31Program Analysis CSCI 4450/6450, A Milanova
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Interpreters 

n An interpreter for the lambda calculus is a 
program that reduces lambda expressions to 
“answers”

n We must specify
n The definition of “answer”. Which normal form?
n The reduction strategy. How do we choose 

redexes in an expression?
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An Interpreter

n Definition by cases on E ::= x |  lx. E1 | E1 E2
interpret(x) = x
interpret(lx.E1) = lx.E1

interpret(E1 E2) = let f = interpret(E1)
in case f of

lx.E3  -> interpret(E3[E2/x])
- -> f E2

n What normal form: Weak head normal form
n What strategy: Normal order

33

Haskell syntax:
let …. in 
case f of 
->

Program Analysis CSCI 4450/6450, A Milanova (modified from MIT 2015 Program Analysis OCW) 
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Another Interpreter

n Definition by cases on E ::= x |  lx. E1 | E1 E2
interpret(x) = x
interpret(lx.E1) = lx.E1

interpret(E1 E2) = let f = interpret(E1)
a = interpret(E2)

in case f of
lx.E3  à interpret(E3[a/x])

- à f a
n What normal form: Weak head normal form
n What strategy: Applicative order 34
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Outline

n Pure lambda calculus, a review
n Syntax and semantics
n Free and bound variables
n Rules (alpha rule, beta rule)
n Reduction strategies
n Normal form

n Lambda calculus interpreters
n Coding them in Haskell
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Coding them in Haskell

n In HW5 you will code an interpreter in Haskell
n Haskell

n A functional programming language

n Key ideas
n Lazy evaluation
n Static typing and polymorphic type inference
n Algebraic data types and pattern matching
n Monads … and more
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Lazy Evaluation

n Haskell implements lazy evaluation, i.e., normal 
order reduction
n It won’t evaluate an argument expr. until it is needed

> f x = [] // f takes x and returns the empty list
> f (repeat 1) // returns? 
> []
> head (tail [1..]) // returns? 
> 2 // [1..] is infinite list of integers
n Lazy evaluation allows us to work with infinite 

structures! 
37
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Static Typing and Type Inference

n Unlike Python, which is dynamically typed, 
Haskell is statically typed!

n Unlike Java/C++ we don’t always have to 
write type annotations. Haskell infers types!
n A lot more on type inference later!

> f x = head x // f returns the head of list x
> f True // returns?
• Couldn't match expected type ‘[a]’ with actual type ‘Bool’
• In the first argument of ‘f’, namely ‘True’

In the expression: f True … 38
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Algebraic Data Types

n Algebraic data types are tagged unions (aka 
sums) of products (aka records)

data Shape = Line Point Point
| Triangle Point Point Point
| Quad Point Point Point Point
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union

Haskell keyword

the new type

new constructors (a.k.a. tags, disjuncts, summands)
Line is a binary constructor, Triangle is a ternary …
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Algebraic Data Types in HW5

n Constructors create new values
n Defining a lambda expression

type Name = String 
data Expr = Var Name

| Lambda Name Expr
| App Expr Expr

> e1 = Var “x” // Lambda term x
> e2 = Lambda “x” e1 // Lambda term lx.x 40

40



21

Examples of Algebraic Data 
Types

data Bool = True | False
data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

data List a = Nil | Cons a (List a)
data Tree a = Leaf a | Node (Tree a) (Tree a)

data Maybe a =  Nothing | Just a
Maybe type denotes that result of computation can 
be a or Nothing. Maybe is a monad.
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Polymorphic types.
a is a type parameter!

41

Data Constructors vs Type 
Constructors

n Data constructor constructs a “program 
object”
n E.g., Var, Lambda, and App are data constructs

n Type constructor constructs a “type object”
n E.g., Maybe is a unary type constructor 
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Pattern Matching

n Examine values of an algebraic data type
anchorPnt :: Shape à Pnt
anchorPnt s = case s of

Line       p1 p2 à p1
Triangle p3 p4 p5 à p3
Quad     p6 p7 p8 p9 à p6

n Two points
n Test: does the given value match this pattern?
n Binding: if value matches, bind corresponding 

values of s and pattern
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Type signature of anchorPnt: takes
a Shape and returns a Pnt.
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Pattern Matching in HW5

isFree::Name à Expr à Bool
isFree v e =

case e of
Var n à if (n == v) then True else False
Lambda …
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Type signature of isFree. In Haskell, all functions
are curried, i.e., they take just one argument.
isFree takes a variable name, and returns a function 
that takes an expression and returns a boolean.

Of course, we can interpret isFree as a function 
that takes a variable name name and an expression
E, and returns true if variable name is free in E.
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