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Abstract

We show that, with a uniform prior on hypothesis functions having
the same training error, early stopping at some fixed training error
above the training error minimum results in an increase in the expected
generalization error. We also show that regularization methods are
equivalent to early stopping with certain non-uniform prior on the
early stopping solutions.

1 Introduction

Early stopping of training is one of the methods that aims to prevent over-
training due to powerful hypothesis class, noisy training examples or small
training set. Early stopping has been studied by Wang et. al. [9] who an-
alyzed the average optimal stopping time for generalized-linear hypotheses
and introduced and examined the effective size of the learning machine as
training proceeds. Sjoberg and Ljung [8] linked early stopping using a vali-
dation set to regularization, and showed that emphasizing the validation set
too much may result in an unregularized solution. Amari et. al. [2] deter-
mined the best validation set size in the asymptotic limit and showed that
early stopping helps little in this limit even when the best stopping point
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is known. Dodier [6] and Baldi and Chauvin [3] investigated the behav-
ior of validation curves for linear problems, and the linear auto-association
problem respectively.

In this paper, we study early stopping at a predetermined training er-
ror level. If there is no prior information, other than the training exam-
ples, all hypotheses with the same training error should be equally likely to
be chosen as the early stopping solution. When this is the case, we show
that for generalized-linear hypotheses, early stopping at any training error
level above the training error minimum increases the expected generaliza-
tion error. For general hypotheses, the same result holds, but only within
a small enough neighborhood of the training error minimum. For classi-
fication problems and the bin model [1], the expected generalization error
increases regardless of the probability of selection of hypotheses. Regulariza-
tion methods such as weight decay [4] and early stopping using a validation
set are equivalent to early stopping at a fixed training error level with a
non-uniform probability of selection over hypotheses with the same training
€error.

We will use the following notation and definitions in this paper. We are
given a training set D = {x;, yi}i]\il with inputs x; € R¢ and outputs y; € R.
The outputs are generated according to y; = f(x;)+e; where input and noise
densities may be unknown. The hypotheses that are used to learn the data
D are gw(x), with adjustable parameters w. We will refer to hypotheses by
their adjustable parameters w, unless indicated otherwise.

We define the training error Ey and the generalization error £ at w as:

1 N

Eo(w) = > (gw(xn) = 9n)’ B(w) = ((gw(x) — f(x))*
N

n=1 xe

Let wg be a local minimum of the training error Ey. Let § > 0 and
Es = Eo(wg) + 6. Let Ws = {Aw : Ey(wy + Aw) = Es}. The set
of hypotheses wg + Wy form the early stopping set. We define early
stopping at training error FEjs as choosing a hypothesis from the early
stopping set. We denote the probability of selecting wy + Aw as the early
stopping solution by Pw,(Aw). This probability is zero if Aw ¢W;. The
mean generalization error at training error level Fj is:

Emean(Eé) = / PWJ (AW)E(WO + AW)dAW
AW€W5



Py, is said to be uniform if VAw, Aw’ € Ws, Pw,(Aw) = Py, (AW'),
i.e. if hypotheses with the same training error are equally likely to be chosen
as the early stopping solution.

In sections 2 and 3 we study early stopping at a predetermined training
error level with uniform Pyy,, for generalized-linear and general hypotheses
respectively. Section 4 analyzes early stopping for classification problems
and the bin model. Section 5 relates early stopping using a validation set and
weight decay to our framework and points to possible research directions.

2 Generalized-Linear Hypotheses

Let ¢(x) = [po(x), d1(X),...,dn(x)]" where ¢;(x) : R — R are basis
functions and <¢(x)¢(x)T> exists. We define generalized-linear hypotheses
X

as gw(x) = w’ ¢(x) with fixed ¢(.) and adjustable parameters w. If ¢y(x) =
1 and ¢;(x) = z;,1 < ¢ < d we obtain the usual linear hypothesis; if ¢;(x) =
H?le? ,kj > 0 we obtain a polynomial hypothesis.

Let ®puny = [¢(x1),...,¢(xn)] be the training inputs transformed by
the basis functions ¢(.). Let ynx1 = [y1,...,yn]" be the training outputs.
When ®®7 is full rank!, the unique training error minimum is given by:

wo = (307) '@y

The Hessians of training and generalization errors are constant positive
semi-definite? matrices at all w:

Hpo(w) = 2——  Hp(w) =2 ($(x)¢(x)")_

Any higher derivatives of E and FEj are 0 everywhere. Hence, for any Aw,

the generalization and training errors of wg - Aw can be written as:
B(wo + Aw) = E(wo) + Aw’ 0E(wo) + Aw” (¢(x)¢(x)") Aw (1)

ot
Ey(wo = Aw) = Ey(wp) + AWTTAW (2)

'We will assume that all matrix inverses needed exist for the rest of the paper.
2 Any matrix of the form AA7 is positive semi-definite, because for any w of proper di-
mensions, w” AA"w = ||ATw]||? > 0, hence ®®” is positive semi-definite. <¢(x)¢(x)T>x

is also positive semi-definite since the expectation exists and ®®7 — y_ o <¢(x)¢(x)T>x



Theorem 1: When all hypotheses with the same training error are equally
likely to be chosen as the early stopping solution, the mean generalization
error at any training error level above the training error minimum is greater
than the generalization error of the training error minimum. More specifi-
cally, for any 6 > 0, Epean(Fs) = E(wq) + 3(6), for some 3(6) > 0.

Proof: Proofs for all theorems are given in the appendix.
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Figure 1: Early stopping at a training error § above Ey(wy) results in higher
generalization error when all hypotheses having the same training error are
equally likely to be chosen as the early stopping solution.

Note that this result does not depend on the noise level, number of
training examples, the target function or hypothesis function complexity.
Even if the target function was a constant and the hypothesis is a 100th
degree polynomial, theorem 1 tells us that we should stop only at the training
error minimum.

The following theorem compares the mean generalization error between

any two training error levels:
Theorem 2: When all hypotheses with the same training error are equally
likely to be chosen as the early stopping solution, the mean generalization
error is an increasing function of the early stopping training error. In other
words, for 0 < 61 < 82, Emean(Es,) < Emean(Es,)-



3 General Hypotheses

When the hypotheses are continuous and differentiable functions, we can
approximate the hypotheses around a training error minimum by means of
a generalized-linear hypothesis function. There can be at most N (number of
training examples) basis functions, otherwise ®®7 would be singular. For
example, if Taylor approximation is used, each basis function would be a
derivative of the hypothesis at the training error minimum. Depending on
N:

e If N is finite, the approximation by the generalized-linear function
would be accurate only around the training error minimum. Hence
we can claim that theorems 1 and 2 hold but only for small enough §
depending on N and the derivatives of the general hypothesis function
at the training error minimum.

e As N — o0, the approximation error goes to 0, and hence we can claim
theorems 1 and 2 hold. In other words, if there are infinitely many
examples and no other information, the best strategy is to descend on
the training error till the minimum.

4 Classification Problems and the Bin Model

For classification problems, bin model [1] can be utilized to prove that mean
generalization error increases as the training error increases. Since the proof
does not have any assumptions about the probability distribution on the
hypotheses with the same training error, it is worth mentioning here.

We will use the following version of the bin model: Let the M hypothe-
ses in the learning model have generalization errors 7y, ..., 7. Determine
the training errors of hypotheses vy,...,va by picking N i.i.d. inputs and
finding the errors on these samples for each bin. m,, corresponds to the
generalization error £ of a hypotheses, and v, corresponds to the training
error Ey. P[.] will denote the probability of the occurrence of an event.

The mean generalization error for training error level v is:

M
Emean(v) = Emv] =Y mmPlrm|vm = v] (3)
m=1
Theorem 3: For classification problems and hypotheses that can be for-
malized using the bin model, the mean generalization error is an increasing
function of the training error.



5 Link to Early Stopping Using a Validation Set
and Weight Decay and Future Research

Early stopping using a validation set operates as follows: the whole data
is partitioned into a training and a validation set. The training error is
minimized, and the validation error is monitored in the mean time. The
hypothesis at which the validation error reaches its minimum is taken to be
the early stopping solution. Early stopping using a validation set has two
components that affect its performance:

e Validation set size: If the validation set is too small or large, early
stopping may result in worse performance than minimizing the training
error on all data. Although [2] suggests a validation set size, it is valid
for very large training sets. A possible remedy for the validation set
size problem is using all data for training, and early stopping not based
on a validation set, but some other criterion. For example, if prior
information or hints about the target function, such as, invariances
[5], monotonicity [7] etc. are known, the hint error can be monitored
while descending on the training error and training can be stopped
according to the hint error. Another criteria is the level of training
error, which we have examined in this paper.

e Optimization algorithm: Which hypotheses are visited by the op-
timization algorithm [8], or the initial hypothesis at which training
starts [2] highly affect the performance of early stopping. Instead of
the optimization algorithm determining which solution should be cho-
sen for early stopping, any prior information about the data should de-
termine how the optimization algorithm should behave. In this paper
we have used the probability distribution on the hypotheses with the
same training error both to incorporate any prior information about
the target and to specify the optimization algorithm. If there is no
prior information, all solutions with the same training error should be
equally likely to be chosen as the solution, which is the case we have
analyzed.

Success of weight decay depends on whether certain priors about the data
are true or not. Weight decay results in a solution with smaller weights than
the training error minimum. The training error minimum has large weights
if certain criteria about the data and hypotheses are satisfied (in the case of
generalized-linear hypotheses, if target outputs have additive noise and the



target function is also generalized-linear with the same basis functions as the
hypotheses). Provided that the training error minimum has weights larger
than the target and the weight decay parameter is chosen small enough,
the weight decay solution has smaller generalization error than the training
error minimum. Since weight decay solution’s training error is larger than
that of the training error minimum, weight decay can be seen as a method
of early stopping. Different from the ones we have analyzed, in this case
Py is not uniform. It is actually a delta function nonzero only at the
weight decay solution. This shows us that based on the prior information
we have about the target function, we can have a nonuniform Pw, and a
decrease in the mean generalization error. Incorporation of other kinds of
prior information, such as invariances, monotonicity etc. into early stopping
is a promising research direction.

For generalized-linear hypotheses functions, when training starts from
small weights and a small decent rate is used, the hypotheses visited during
the descent usually lies close to weight decay solutions [4]. Provided that
the validation set is not too large, early stopping using a validation set stops
at a hypothesis close to a weight decay solution with a certain weight decay
parameter. As long as the corresponding weight decay parameter is small
enough, and the assumptions about target and noise are true, the solution
is likely to have generalization error less than the training error minimum.
This may be the reason why early stopping seems to be resulting in better
generalization error in practice.

Appendix

Proof of Theorem 1:

Let the early stopping training error level be Es = Ey(wg) + § for some
6 > 0. Then, from equation (2), the early stopping set consists of wo+ W4 =
wo + {Aw: AWT%LTAW = §}. The mean generalization error is:

Emean(Eé) = / PW5 (AW)E(W() + AW)dAW
AweEW

For any Aw € Wy, hence satisfying AWT%AW = ¢, there exists a
—Aw € Wy, therefore we can rewrite the mean generalization error as:

Emean (Eé) =



0.5 / (Pw, (Aw)E(wo + Aw) + P, (—Aw)E(wy — Aw)) dAw
AwWeEW;

Now, since Py, is uniform, it is also symmetric, i.e. Pw,(Aw) =
Py, (—Aw). For the proof of this theorem symmetry is the only restriction
we need on Pyw,. Using symmetry of Pyw,, equation (1), and the fact that

/  Pw;(Aw)dAw = 1:
AweEW

Emean(Es) = E(wg) + / PW(;(AW)AWT<¢(x)¢(x)T>wadAw
AwcWg
= E(wo) + B(6)

Since ($(x)¢(x)")_is positive semi-definite and Pw,(Aw) > 0,

86)= [ Pwawaw! (p04(x)") AwdAw20 (1)

AweEW;

a

Proof of Theorem 2:

By theorem 1, Epean(Es, ) = E(wo)+06(61) and Epean(Es,) = E(wo)+0(82)
for 3(61),3(62) > 0. Let 0 < §; < §3. We need to prove 8(61) < 5(62).

Let V(6) = [ Aw{¢(x)¢(x)") AwdAw, and let 7 be the
AwcWg X

surface area of the h dimensional ellipsoid AWT%AW = 6. Since Pw, is
uniform, from equation 4:

B _ Py V(8)
BGr) Py V()

Define k2 = &2 > 1. Let Wy, = {Aw : Aw'22"Aw = 6;}. Then
W, = {kAw : 'Aw € W, }. By means of change of variables Au = kAw
in V(62) we have Vi) _ ght1,

V(o)
We can define the surface area as the derivative of the volume:
f dAw — f dAw
1 . AwT 22 ‘M’ Aw<b+l AwT 22 ‘N’ Aw<é
— = lim
Ps -0 l



~ lim M / dAw

1—0 l
AwT —q’j{\’rT Aw<é

b1
= / dAw

AwT 22 Aw<s

Hence - = %5 J dAw. By means of change of variables
1
awT 22l Aw<s,

_ Ps —h+1
Au = AY we have 5— = k=11, Therefore, 2 = k~"+1.
u R Wwe have 5~ k P, erefore, 52 k

Hence, 568 = k=M +1gh+l = k2 > 1. D

Proof of Theorem 3:

Expanding the mean generalization error from equation (3):

M
Elrlv] = Z T P [T |Vim = V]

m=1
E%:l Tm Plvm = v|mm] Plmm]
E%:l Py, = v|mp] Py
En]\;jzl 71'mP[ﬂ'm]7"mNV(1 - 7Tm)N(l_y)
E%:l Plmp]mm N7 (1 — Wm)N(l_V)
Taking the derivative of £[n|v]| w.r.to v:
&lnl
dv

Erean (V)

= Qo Z Qm,k(ﬂ-m_ﬂ'k)ln(l

Tm <7k

Tm 1—7rk>

— Tm Tk

1
N(Zgzl P[Wm]meU(l—ﬂm)N(l—u))

Qmpi = TNV (1 — Wm)N(l_V)ﬂ'kNU(l - Wk)N(l_V) > 0. When 7, < 7 both

m 1=
(i — ) and In (752127

Therefore the mean generalization error is an increasing function of the
training error. O

where Q¢ = > > 0 and

) are negative hence the derivative is positive.
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