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Abstract

Fair cake-cutting is the division of a cake or resource amongN users so
that each user is content. Users may value a given piece of cake differently,
and information about how a user values different parts of the cake can only
be obtained by requesting users to “cut” pieces of the cake into specified ra-
tios. Many distributed computing problems which involve resource sharing
can be expressed as cake-cutting problems.

One of the most interesting open questions is to determine the minimum
number of cuts required to divide the cake fairly. It is known thatO(N logN)
cuts suffices, however, it is not known whether one can do better. We show
that sorting can be reduced to cake-cutting:any algorithm that performs
fair cake-division can sort. For a general class of cake-cutting algorithms,
which we call linearly-labeled, we obtain anΩ(N logN) lower bound on
their computational complexity. All the known cake-cutting algorithms fit
into this general class, which leads us to conjecture that every cake-cutting
algorithm is linearly-labeled. If in addition, the number of comparisons
per cut is bounded (comparison-bounded algorithms), then we obtain an
Ω(N logN) lower bound on the number of cuts. All known algorithms are
comparison-bounded.

We also study variations of envy-free cake-division, where each user
feels that they have more cake than every other user. We construct util-
ity functions for which any algorithm (including continuous algorithms) re-
quiresΩ(N2) cuts to produce such divisions. These are the the first known
general lower bounds for envy-free algorithms. Finally, we study another
general class of algorithms calledphasedalgorithms, for which we show

∗An extended abstract of this paper appears as “Cake Cutting is Not a Piece of Cake” in the
Proceedings of the 20th International Symposium on Theoretical Aspects of Computer Science
(STACS’03), LNCS 2607, pp. 596-607, Berlin, Germany, February-March, 2003.



that even if one is to simply guarantee each user a piece of cake with posi-
tive value, thenΩ(N logN) cuts are needed in the worst case. Many of the
existing cake-cutting algorithms are phased.

1 Introduction

Resource sharing problems, such as chore division, inheritance allocation, and
room selection, have been extensively studied in economics and game-theory
[1, 5, 7, 10, 11, 16, 17]. Resource sharing problems arise often in distributed
computing when different users compete for the same resources. Typical exam-
ples of such distributed computing problems are: job scheduling; sharing the CPU
time of a multiprocessor machine; sharing the bandwidth of a network connection;
etc. In general, user preferences are not known, and resource division algorithms
that attempt to distribute the resource in some equitable manner have to request
information regarding preferences from the users. An important consideration for
any such resource division algorithm is that it must be in the user’s best interest to
accurately convey her preferences. Such algorithms are calledself-enforcing. An
example of a self-enforcing algorithm is a cake cutting algorithm.

The resource to be shared can be viewed as a cake, and the problem of sharing
such a resource is calledcake-cuttingor cake-division. In the original formulation
of the cake-division problem, introduced in the 1940’s by Steinhaus [16], N users
wish to share a cake in such a way that each user gets a portion of the cake that
she is content with (a number of definitions of content can be considered, and
we will discuss these more formally later). Users may value a given piece of the
cake differently. For example, some users may prefer the part of the cake with the
chocolate topping, and others may prefer the part without the topping. Suppose
there areN users, and let’s consider the situation from the first user’s point of
view. The result of a cake-division is that every user gets a portion of the cake, in
particular user 1 gets a portion. User 1 will certainly not be content if the portion
that she gets is worth (in her opinion) less than one fifth the value (in her opinion)
of the entire cake. So in order to make user 1 content, we must give her a portion
that she considers to be worthat least1/N the value of the cake, and similarly for
the other users. If we succeed in finding such a division for which all the users
are content, we say that it is afair cake-division. In this work, we study fair cake-
division, in particular, we are interested in quantifying how hard a computational
problem this is.

Many problems that appear in distributed computing environments can be ex-
pressed as a cake-division problem. For example, consider a situation in which
two or more users from the scientific computing community have experimental
applications which they wish to test on a fast multiprocessor machine. All these



users wish to share the time of the multiprocessor, however, these users might re-
side in different time zones and thus have different time preferences for using the
machine (e.g. one user might prefer to use the machine early in the morning while
the other at night). The 24-hour time period of the day can represent the cake,
which the different users wish to share. A fair cake-division will assign time slots
to the users, so that each user (knowing how many users were to share the CPU
time) is content with her share.

More formally, we represent the cake as an intervalI = [0,1]. A piece of the
cake corresponds to some sub-interval of this interval, and a portion of cake can
be viewed as a collection of pieces. The user only knows how to value pieces as
specified by her utility function, and has no knowledge about the utility functions
of the other users. The cake-division process (an assignment of portions to users)
is to be effected by a superuserS who initially has no knowledge about the utility
functions of the users.∗ In order to construct an appropriate division, the superuser
may request users to cut pieces into ratios that the superuser may specify. Based
on the information learned from a number of such cuts, the superuser must now
make an appropriate assignment of portions, such that each user is content. A
simple example will illustrate the process. Suppose that two users wish to share
the cake. The superuser can ask one of the users to cut the entire cake into two
equal parts. The superuser now asks the other user to evaluate the two resulting
parts. The second user is then assigned the part that she had higher value for, and
the first user gets the remaining part. This well known division scheme, sometimes
termed “I cut, you choose”, clearly leaves both users believing they have at least
half the cake, and it is thus a successful fair division algorithm. From this example
we see that one cut suffices to perform fair division for two users. An interesting
question to ask is: what is the minimum number of cuts required to perform a fair
division when there areN users.

The cake-division problem has been extensively studied in the literature
[4, 6, 8, 9, 12, 13, 14, 17, 18]. From a computational point of view, we want
to minimize the number of cuts needed, since this leads to a smaller number of
computational steps performed by the algorithm, which improves the performance
of the distributed computing system that performs cake cutting. Most of the al-

∗ We point out that this may appear to diverge from the accepted mentality in the field, where
protocols are viewed as self-enforcing – players are advised as to how they should cut, and are
guaranteed that if they cut according to the advice, then the result will be equitable to them. The
way such algorithms usually proceed is that the players make cuts, and somehow based on these
cuts, portions are assigned to the players. Some computing body needs to do this assignment, and
perform the necessary calculations so that the resulting assignment is guaranteed to be equitable to
all the players (provided that they followed the advice). It is exactly this computing body that we
envision as the superuser, because we would ultimately like to quantify all the computation that
takes place in the cake division process.



gorithms proposed in the literature useO(N2) cuts forN users (see for example
Algorithm A, Section2), while the best known cake-cutting algorithm, which is
based on a divide-and-conquer procedure, usesO(N logN) cuts (see for example
Algorithm B, Section2). More examples can be found in [4, 14]. It is not known
whether one can do better thanO(N logN) cuts. In fact, it is conjectured that
there is no algorithm that useso(N logN) cuts in the worst case. The problem of
determining what the minimum number of cuts required to guarantee a fair cake-
division seems to be a very hard one. We quote from Robertson and Webb [14,
Chapter 2.7]:

“The problem of determining in general the fewest number of cuts
required for fair division seems to be a very hard one. . . . We have
lost bets before, but if we were asked to gaze into the crystal ball, we
would place our money against finding a substantial improvement on
theN logN bound.”

For fair cake cutting, we consider only discrete protocols (protocols where each
cut requires a finite number of operations). A well known continuous protocol
that usesN − 1 cuts is the moving knife algorithm. CertainlyN − 1 cuts cannot
be beaten, however, such continuous algorithms are excluded from our present
discussion.

Our main result is that sorting can be reduced to cake-cutting:any fair cake-
cutting algorithm can be converted to an equivalent one that can sort an arbitrary
sequence of distinct positive integers. Further, this new algorithm uses no more
cuts (for any set ofN users) than the original one did. Therefore, cake-cutting
should be at least as hard as sorting. The heart of this reduction lies in a mech-
anism for labeling the pieces of the cake. Continuing, we define the class of
linearly-labeled cake-cutting algorithms as those for which the extra cost of la-
beling is linear in the number of cuts. Essentially, the converted algorithm is as
efficient as the original one. For the class oflinearly-labeled algorithms, we ob-
tain anΩ(N logN) lower bound on their computational complexity. To our knowl-
edge, all the known fair cake-cutting algorithms fit into this general class, which
leads us to conjecture that every fair cake-cutting algorithm islinearly-labeled,
a conjecture that we have not yet settled. From the practical point of view, the
computational power of the superuser can be a limitation, and so we introduce
the class of algorithms that allow the super user a budget, in terms of number of
comparisons, for every cut that is made. Thus, the number of comparisons that
the superuser performs can only grow linearly with the number of cuts performed.
Such algorithms we termcomparison-bounded. All the known algorithms are
comparison-bounded. If in addition to beinglinearly-labeled, the algorithm is
also comparison-bounded, then we obtain anΩ(N logN) lower bound on the
number of cuts required in the worst case. Thus the conjecture of Robertson and



Webb is true within the class oflinearly-labeled & comparison-bounded algo-
rithms. To our knowledge, this class includes all the known algorithms, which
makes it a very interesting and natural class of cake-cutting algorithms. These are
the first “hardness” results for a general class of cake-cutting algorithms that are
applicable to a general number of users. For the special case where a user takes a
solid piece, a lower of bound ofΩ(N logN) cuts is given in [15].

We also provide lower bounds for some types ofenvy-freecake-division. A
cake-division is envy-free if each user believes she has at least as large a portion
(in her opinion) as every other user, i.e., no user is envious of another user. Envy-
freeness is a usual requirement in distributed computing environments. The two
person fair division scheme presented earlier is also an envy-free division scheme.
Other envy-free algorithms for more users can be found in [3, 4, 8, 11, 14]. It is
known that for any set of utility functions there are envy-free solutions [14]. How-
ever, there are only a few envy-free algorithms known in the literature forN users
[14]. Remarkably, all these algorithms areunbounded, in the sense that there exist
utility functions for which the number of cuts is finite, but arbitrarily large. Again,
no lower bounds on the number of cuts required for envy-free division exist. We
give the first such lower bounds for two variations of the envy-free problem, and
our bounds are applicable toboth discrete and continuous algorithms. Specifi-
cally, a division isstrong envy-free, if each user believes she hasmorecake than
the other users, i.e., each user believes the other users will be envious of her. We
show thatΩ(N2) cuts are required in the worst case to guarantee a strong envy-free
division when it exists. A division issuper envy-free, if every user believes that
every other user has at most a fair share of the cake (see for example [2, 14]. We
show thatΩ(N2) cuts are required in the worst case to guarantee super envy-free
division when it exists. These lower bounds give a first explanation of why the
problem of envy-free cake-division is harder than fair cake-division for generalN.

The last class of cake-cutting algorithms that we consider are calledphased
algorithms. In phased algorithms, the execution of the algorithm is partitioned into
phases. At each phase all the “active” users make a cut. At the end of a phase users
may be assigned portions, in which case they become “inactive” for the remainder
of the algorithm. Many known cake-cutting algorithms are phased. We show that
there are utility functions for whichany phased cake-cutting algorithm requires
Ω(N logN) cuts to guarantee every user a portion they believe to be of positive
value (a much weaker condition than fair). For such algorithms, assigning positive
portions alone is hard, so requiring the portions to also be fair or envy-free can
only make the problem harder. In particular, AlgorithmB (see Section2), a well
known divide and conquer algorithm is phased, and obtains a fair division using
O(N logN) cuts. Therefore this algorithm is optimal among the class of phased
algorithmsevenif we compare to algorithms that merely assign positive value
portions. The issue of determining the maximum value that can be guaranteed to



every user withK cuts has been studied in the literature [14, Chapter 9]. We have
that for phased algorithms, this maximum value is zero forK = o(N logN).

The outline of the remainder of the paper is as follows. In the next section,
we present the formal definitions of the cake-division model that we use, and what
constitutes a cake-cutting algorithm, followed by some example algorithms. Next,
we present the lower bounds. In Section3 we introduce phased algorithms and
give lower bounds for the number of cuts needed. Section4 discusses labeled al-
gorithms and the connection to sorting. In Section5 we give the lower bounds for
envy-free division, and finally, we make some concluding remarks in Section6.

2 Preliminaries

2.1 Cake-Division

We denote the cake as the intervalI = [0,1]. A pieceof the cake is any interval
P = [l, r], 0 ≤ l ≤ r ≤ 1, wherel is the left end point andr the right end point
of P. The width of P is r − l, and we take the width of the empty set∅ to be
zero. P1 = [l1, r1] andP2 = [l2, r2] areseparatedif the width of P1 ∩ P2 is 0,
otherwise we say thatP1 andP2 overlap. P1 containsP2 if P2 ⊆ P1. If P1 andP2

are separated, then we say thatP1 is left of P2 if l1 < l2. Theconcatenationof the
M > 1 pieces{[l, s1], [s1, s2], [s2, s3], . . . , [sM−1, r]} is the piece[l, r].

A portion of the cake is a non-empty set of separated piecesW =

{P1,P2, . . . ,Pk}, k ≥ 1. Note that a portion may consist of pieces which are not ad-
jacent (i.e. a portion might be a collection of “crumbs” from different parts of the
cake). Two portionsW1 andW2 areseparatedif every piece inW1 is separated
from every piece inW2. An N-partition of the cake is a collection of separated
portionsW1, . . . ,WN whose union is the entire cakeI .

Suppose that theN usersu1, . . . , uN wish to share the cake. Each userui has a
utility functionFi(x), which determines how userui values the piece[0, x], where
0 ≤ x ≤ 1. Each userui knows only its own utility functionFi(x), and has no
information regarding the utility functions of other users. The functionsFi(x) are
monotonically non-decreasing withFi(0) = 0 andFi(1) = 1, for every userui. We
require that the value of a portion is the sum of the values of the individual pieces
in that portion†. Thus, the value of piece[l, r] to userui is Fi([l, r]) = Fi(r)−Fi(l),
and for any portionW = {P1,P2, . . .Pk}, Fi(W) =

∑k
j=1 Fi(Pi).

The goal of cake-division is to partition the entire cakeI into N separated
portions, assigning each user to a portion. Formally, acake-divisionis an N-
partitionW1, . . . ,WN of cakeI , with an assignment of portionWi to userui, for

† This is a commonly made technical assumption. Practically, there could be situations where
a pound of crumbs is not equivalent to a pound of cake.



all 1 ≤ i ≤ N. Two cake-divisionsW1, . . . ,WN andW′
1, . . . ,W′

N areequivalent
if

⋃
Pi∈W j

Pi =
⋃

Pi∈W′
j
Pi for all j, i.e., every user gets the same part of cake in

both divisions (but perhaps divided into different pieces).
The cake-division isfair or proportional if Fi(Wi) ≥ 1/N, for all 1 ≤ i ≤ N,

i.e., each userui gets what she considers to be at least1/N of the cake according
to her own utility functionFi. We obtain the following interesting variations of
fair cake-division, if, in addition to fair, we impose further restrictions orfairness
constraintson the relationship between the assigned portions:

Envy-free: Fi(Wi) ≥ Fi(W j) for all i, j; strong envy-freeif Fi(Wi) > Fi(W j)
for all i , j.

Super envy-free: Fi(W j) ≤ 1/N for all i , j; strong super envy-freeif Fi(Wi) <
1/N for all i , j.

These definitions are standard and found in [14].

2.2 Cake-Cutting Algorithms

We now move on to defining a discrete cake-cutting protocol/algorithm. Imagine
the existence of some administrator or superuserS who is responsible for the
cake-division. The superuserS has limited computing power, namely she can
perform basic operations such as comparisons, additions and multiplications. We
assume that each such basic operation requires one time step.

SuperuserS can ask the users to cut pieces of the cake in order to get infor-
mation regarding their utility functions. A cut is composed of the following steps:
superuserS specifies to userui a piece[l, r] and a ratioR with 0 ≤ R ≤ 1; the
user then returns the pointC in [l, r] such thatFi([l,C])/Fi([l, r]) = R. Thus, a
cut can be represented by the four-tuple〈ui; [l, r]; R; C〉. We callC thepositionof
the cut. It is possible that a cut could yield multiple cut positions, i.e. when some
region of the cake evaluates to zero; in such a case we require that the cut position
returned is the left-most. In cake-cutting algorithms, the endpoints of the piece to
be cut must be either 0, 1, or cut positions that have been produced by earlier cuts.
So for example, the first cut has to be of the form〈ui1; [0,1]; R1; C1〉. The second
cut could then be made on[0,1], [0,C1] or [C1,1]. From now on every piece will
be of this form. We assume that a user can construct a cut in constant time‡.

A cake-cutting algorithm (implemented by the superuserS) is a sequence of
cuts thatS constructs in order to output the desired cake-division.

‡From the computational point of view, this may be a strong assumption, for example dividing
a piece by an irrational ratio is a non-trivial computational task, however it is a standard assumption
made in the literature, and so we continue with the tradition.



Definition 2.1 (Discrete Cake-Cutting Algorithm).

Input: TheN utility functions,F1(x), . . . , FN(x) for the usersu1, . . . , uN.

Output:A cake-division satisfying the necessary fairness constraint.

Computation:The algorithm is a sequence of steps,t = 1 . . .K. At every stept,
the superuser requests a useruit to perform a cut on a piece[l t, r t] with ratio
Rt: 〈uit ; [l t, r t]; Rt; Ct〉. In determining what cut to make, the superuser may
use her limited computing power and the information contained in all pre-
vious cuts. A single cut conveys to the superuser an amount of information
that the superuser would otherwise need to obtain using some comparisons.
These comparisons need to also be taken into account in the computational
complexity of the algorithm.

The cuts as we have defined are equivalent to a constant number of compar-
isons. We say that this algorithm usesK cuts. K can depend onN and the utility
functionsFi. A correct cake-division must take into account the utility functions
of all the users, however, the superuser does not know these utility functions.
The superuser implicitly infers the necessary information about each user’s util-
ity function from the cuts made. The history of all the cuts represents the entire
knowledge thatS has regarding the utility functions of the users. By a suitable
choice of cuts,S then outputs a correct cake-division. An algorithm is named
according to the fairness constraint the cake-division must satisfy. For example,
if the output is fair (envy-free) then the algorithm is called afair (envy-free) cake-
cutting algorithm.

A number of additional requirements can be placed on the model for cake-
cutting given above. For example, when a cut is made, a common assumption in
the literature is thateveryuser evaluates the resulting two pieces for the superuser.
Computationally, this assumes that utility function evaluation is a negligible cost
operation. For the most part, our lower bounds do not require such additional
assumptions. In our discussion we will make clear what further assumptions we
make when necessary. We now defineequivalentcake-cutting algorithms.

Definition 2.2 (Equivalent Cake-Cutting Algorithms). Two cake cutting algo-
rithms are equivalent if they use the same number of cuts for any set of utility
functions, and produce equivalent cake-divisions.

2.3 Particular Algorithms

We briefly present some well known cake-cutting algorithms. More details can be
found in [14]. AlgorithmsA andB are both fair cake-cutting algorithms.



In algorithmA, all the users cut at1/N of the whole cake. The user who cut
the smallest piece is given that piece, and the remaining users recursively divide
the remainder of the cake fairly. The value of the remainder of the cake to each of
the remaining users is at least1 − 1/N, and so the resulting division is fair. This
algorithm requires12N(N + 1)− 1 cuts.

In algorithm B, for simplicity assume that there are2M users (although the
algorithm is general). All the users cut the cake at1/2. All the users to the left of
the median cut recursively divide the left “half” of the cake up to and including the
median cut, and the users who cut to the right of the median cut recursively divide
the right “half” of the cake. Since all the left users value the left part of the cake at
≥ 1/2 and all the right users value the right part of the cake at≥ 1/2, the algorithm
produces a fair division. This algorithm requiresN

⌈
log2 N

⌉ − 2d log2 N e + 1 cuts.
Below are the detailed algorithms in a format that fits within our formal cake-

cutting model.

Algorithm A:

There is a list of current users that initially contains all the users. Sett = 0 and
r0 = 0.

RepeatN − 1 times:

1. Let the current users beuj1, . . . , ujN−t .

2. From each userujα, construct the cut〈ujα; [r t,1]; 1/(N − t); C jα〉.
3. Find the userujk for which C jk is minimum and assign piece[r t,C jk]

to useru jk.

4. Remove userujk from the list of current users, setr t+1 = C jk andt =

t + 1.

At time t = N − 1 assign piece[r t,1] to the single remaining current user.

Algorithm B:

Call RecAlgB([0,1], [u1, . . . , uN]).

RecAlgB([l, r], [ui1, . . . , uiK ]):

1. If K = 1 then assign piece[l, r] to userui1 and return.

2. If K > 1, let K′ = bK/2c and letR = K′/K. For everyα = 1 . . .K,
construct the cut〈uiα; [l, r]; R; Ciα〉. Denote theK′ smallest cuts
by C1 ≤ · · · ≤ CK′, belonging to usersuj1, . . . , ujK′ and let the
remaining users beu jK′+1

, . . . , ujK .



3. Call RecAlgB([l,CK′], [u j1, . . . ,ujK′ ]) and
RecAlgB([CK′ , r], [ujK′+1

, . . . ,u jK ])

A perfectly legitimate cake-cutting algorithm that does not fit within this frame-
work is themoving knife fair division algorithm. The superuser moves a knife
continuously from the left end of the cake to the right. The first user (without loss
of generalityu1) who is happy with the piece to the left of the current position of
the knife yells “cut” and is subsequently given that piece. Useru1 is happy with
that piece, and the remaining users were happy to give up that piece. Thus the
remaining users must be happy with a fair division of the remaining of the cake.
The process is then repeated with the remaining cake and the remainingN − 1
users. This algorithm makesN − 1 cuts which cannot be improved upon, since
at leastN − 1 cuts need to be made to generateN pieces. However, this algo-
rithm does not fit within the framework we have described, and is an example of
a continuous algorithm: there is no way to simulate the moving knife with any
sequence of discrete cuts. Further, each cut in this algorithm is not equivalent to
a constant number of comparisons, for example the first cut conveys the informa-
tion in Ω(N) comparisons. Hence, such an algorithm is not of much interest from
the computational point of view. More details, including algorithms for envy-free
cake-cutting can be found in [14].

3 A Lower Bound for Phased Algorithms

We consider a general class of cake-cutting algorithms, that we call “phased”.
We find a lower bound on the number of cuts required by phased algorithms that
guarantee every user a positive valued portion.Phasedcake-cutting algorithms
have the following properties.

• The process is divided intophases.

• In each phase, everyactiveuser cuts a piece, the endpoints of which are
defined using cuts made duringpreviousphases only. In the first phase,
each user cuts the whole cake.

• A user must eventually be assigned a portion at some phase. Once a user
is assigned a portion, that user becomes inactive for the remainder of the
algorithm. (Assigned portions are not considered for the remainder of the
algorithm.)

Many cake-cutting algorithms fit into the class of phased algorithms. Typical
examples are AlgorithmsA andB, thus, we have:



Observation 3.1.AlgorithmsA andB are phased.

There also exist algorithms that are not phased, for example Steinhaus’ origi-
nal trimming algorithm, [16].

3.1 The Lower Bound

Here, we present the lower bound for phased algorithms. A piece issolid if it
does not contain any cut positions – a non-solid piece is the union of two or more
separated solid pieces. Our first observation is that any cut by a user on a non-
solid pieceP giving cut positionC can be replaced with a cut by the same user on
a solid piece contained inP, yielding thesamecut position.

Lemma 3.2. Suppose thatP is the concatenation of separated solid pieces
P1, . . . ,Pk, for k ≥ 2, and 〈ui; P; R; C〉 is a cut. Then, for suitably chosenR′

and some solid piecePm, 〈ui; Pm; R′; C〉 is a cut. Further,R′ andm depend only
onR andFi(P1), . . . , Fi(Pk).

Proof. Let vj = Fi(Pj) andv = Fi(P). Let a0 = 0 andan = Σn
j=1vj/v for n > 0.

The an form a non-decreasing sequence witha0 = 0 andak = 1. Let m be the
smallestn for whichan−1 ≤ R≤ an. SinceC is the leftmost cut that yields ratioR,
it must be thatC ∈ Pm. Let Pm = [lm, rm], then choosingR′ = Fi([lm,C])/vm must
reproduce the same cutC on Pm. Further,Fi([lm,C]) = (R− am−1)v, concluding
the proof.

Lemma3.2 allows us to convert any algorithm into an equivalentsolid piece
algorithm, one in which every cut is made on a solid piece. Without loss of gener-
ality, we thus restrict our attention to solid piece phased algorithms, where, in each
phase the users cut pieces that were solid at the beginning of the phase. It may be
the case that in a phase, two or more users will cut the same (solid) piece. Suppose
that usersu1, . . . ,uk are to cut the (solid) piece[l, r] in the ratiosR1, . . . ,Rk, and
that u1 cuts at positionC. Since the utility functions are arbitrary and since the
piece has not been cut before this phase, it is possible to choose the utility func-
tions such thatF2([l,C])

F2([l,r]) = R2, . . . ,
Fk([l,C])
Fk([l,r]) = Rk, in which case, all the users who are

to cut this piece will cut in the same position. We have thus proved the following
lemma.

Lemma 3.3. For any phased algorithm, there are utility functions for which all
users who are to cut the same (initially solid) piece will cut at the same position.

We now give our lower bound for phased algorithms, which applies to any
algorithm that guarantees each user a portion of positive value.



Theorem 3.4 (Lower bound for phased algorithms).Any phased algorithm that
guarantees each ofN users a portion of positive value for any set of utility func-
tions, requiresΩ(N logN) cuts in the worst case.

Proof. From Lemma3.3, it suffices to prove the theorem for solid piece phased
algorithms. Let the phases be0,1,2, . . ., and letpk denote the total number of
separated pieces that appear on the cake up to the end of phasek; setp0 = 1. By
Lemma3.3 there exists utility functions for which each piece from the previous
phase has contributed at most one new piece by the end of a phase (no matter how
many users cut this piece), sopk ≤ 2pk−1, hencepk ≤ 2k.

Let ak denote the number of active users at the beginning of phasek; a1 = N.
At each phase some users are assigned portions and become inactive. Certainly,
no more thanpk users become inactive at the end of phasek (since every such user
must be assigned at least one piece). Therefore,ak+1 ≥ ak − pk. Unfolding this
recursion, we get thatak ≥ N − 2k+1 + 2. The algorithm continues its execution
for as long as there are active users. Whenk =

⌊
logN

⌋ − 1, ak ≥ 2, so at least⌊
logN

⌋ − 1 phases are required.
Let Tk be the total number of cuts made up to the end of phasek. Since the

algorithm is phased, during phasek, exactlyak cuts are made (one from each
active user), thereforeTk =

∑k
i=1 ai. The total number of cuts made is therefore at

leastTb logN c−1, and using the bound forak, we get that

Tb logN c−1 ≥
b logN c−1∑

i=1

(N − 2i+1 + 2)

= N
⌊
logN

⌋ − N − 2b logN c+1 + 2
⌊
logN

⌋
= Ω(N logN).

The lower bound ofΩ(N logN) cuts for phased algorithms, demonstrates that
even the problem of assigning positive portions to users is non-trivial. This lower
bound immediately applies to fair and envy-free algorithms, since these algo-
rithms assign positive portions to users.

4 A Lower Bound for Labeled Algorithms

We present a lower bound on the number of cuts required for a general class of
fair algorithms that we refer to as “linearly-labeled & comparison-bounded”. We
prove the lower bound by reducing sorting to cake-cutting. First, we show that any
cake-cutting algorithm can be converted to alabeledalgorithm which labels every
piece in the cake-division. Then, by appropriately choosing utility functions, we
use the labels of the pieces to sort a given sequence of integers.



4.1 Labeled Algorithms

Here, we define labeled algorithms and show how any cake-cutting algorithm can
be converted to a labeled one. Afull binary tree is a binary tree in which every
node is either a leaf or the parent of two nodes. Alabeling treeis a full binary tree
in which every left edge has label 0 and every right edge has label 1. Every leaf
is labeled with the binary number obtained by concatenating the labels of every
edge on the path from the root to that leaf. An example labeling tree is shown in
Figure1. Let v be the deepest common ancestor of two leavesv1 andv2. If v1

belongs to the left subtree ofv andv2 belongs to the right subtree ofv, thenv1 is
left of v2.

Consider anN-partitionW1, . . . ,WN of the cake. The partition islabeledif
the following hold:

• For some labeling tree, every (separated) piecePi in the partition has a
distinct labelbi that is a leaf on this tree, and every leaf on this tree labels
some piece.

• Pi is left of Pj in the cake if and only if leafbi is left of leafbj in the labeling
tree.

A cake-cutting algorithm islabeled if it always produces anN-partition that is
labeled. An example of a labeled partition is shown below, in Figure1. In general,
there are many ways to label a partition, and the algorithm need only output one
of those ways.

Theorem 4.1. Every cake-cutting algorithm is equivalent to a labeled cake-
cutting algorithm.

Proof. Let H be the cake-cutting algorithm. IfH is not a solid piece algorithm,
then using Lemma3.2 we convert it into an equivalent solid piece algorithmH′.
(see Section3.1 for a definition of solid piece algorithms). Construct a labeled
partition inductively as follows. Initially, the whole cake has the empty label{}.
At staget in the algorithm, some (solid) pieceP with label b is cut to produce
a left and right piece. Label the left pieceb0, and the right pieceb1. Figure1
illustrates the process for a sequence of cut positionsC1,C2,C3,C4.

4.2 Reducing Sorting to Cake-Cutting

We will show that a labeled cake-cutting algorithm can be used to sortN positive
distinct integersx1, . . . , xN. To relate sorting to cake-cutting, we first define a “less
than” relation for pieces. If piecesP1 andP2 are separated, thenP1 < P2 if P1

is on the left ofP2. Clearly, this “<” relation imposes a total order on any set of
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Figure 1:A labeled partition and the corresponding labeling tree

separated pieces. Our approach is to show that givenN positive distinct integers,
we can construct utility functions such that any fair division will allow us to sort
the integersquickly. Define the utility functionsFi(x) = min(1,Nxi x), for userui.
Figure2, illustrates the functionsF1 andF2 for N = 2, x1 = 1 andx2 = 3. In what
follows, Fi will always refer to the utility functions defined above. LetVi = 1/Nxi .
Only pieces that overlap[0,Vi] have positive value for userui.

Consider any N-partitionW1, . . . ,WN, such that eachWi has a non-zero
value for the respective userui. Let Ri ∈ Wi be the rightmost piece ofWi that
overlaps[0,Vi]. The ordering relation on pieces now induces an ordering on por-
tions: Wi < W j if and only if Ri < Rj. Next, we show that the order of the
portionsWi is related with the order of the integersxi.

Lemma 4.2. LetW1, . . . ,WN be a fair cake-division for the utility functions
F1, . . . , FN. Then,xi < xj if and only ifW j <Wi.

Proof. Suppose that this property is violated for some pairi, j. Then,xi < xj and
Ri is left of Rj. Let Ri = [l i , r i] andRj = [l j , r j]. It must be, thatr i ≤ l j < Vj. Thus,
the total width of non-zero valued pieces of userui is less thanVj, and so the total
value of pieces assigned toui is lessthanVj/Vi = Nxi−x j ≤ 1/N, which contradicts
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Figure 2:Left: sample utility functions forN = 2. Right: the density functions
for the utility functions on the left.

the division being fair.

The ordering relation on portions can be used to sort theN-partition
W1, . . . ,WN, i.e., find the sequence of indicesi1, . . . , iN, such thatWi1 <Wi2 <
· · · <WiN . An application of Lemma4.2then gives thatxi1 > xi2 > · · · > xiN , thus
sorting the partition is equivalent to sorting the integers. We now show that if the
partition is labeled, we can use the labels to sort the portionsWi quickly, which
in turn will allow us to sort the integers quickly.

Lemma 4.3. Any labeledN-partitionW1, . . . ,WN, can be sorted inO(K) time,
whereK is the total number of pieces in the partition.

Proof. Every piecePi, i = 1, . . . ,K, has a unique labelbi and a user to which
it is assigned,u j i . Thus, represent every piece in theN-partition by the triple
〈Pi; bi; uj i 〉. We will use the labels of the pieces to sort the portionsW1, . . . ,WN.
It suffices to sort the piecesR1, . . . ,RN.

First we sort the piecesPi. Let m ≤ K be the length of the longest label§.
Normalize all the labels to lengthm by appending the necessary0’s. Denote by
b′i the normalized label for piecePi (see Figure3). This requiresO(K) time as we
operate on each piece once.
We can treat theb′i as binary numbers. By construction,Pi < Pj if and only if
b′i < b′j. Thus, if we sort the labelsb′i , we will have sorted the pieces as well.
Each labelb′i has afollower label fi defined as follows. Ifbi is a string of1’s,
then fi is nil (there is no follower). Otherwise,bi has the formX01k for some

§ The length of the label can be maintained at constant cost per cut using the labeling scheme
in Theorem4.1.



010 011000 100 110

C2 C3 C4C1

Figure 3:Normalizing the labels of Figure1

(possibly empty) binary stringX, where1k represents a binary string ofk ones,
wherek could be 0. Then,fi is the normalization ofX10k. If fi is not nil, then
the normalized label of some piecePj must befi since the labeling tree was full.
Further,Pi < Pj, and there is no pieceP′j with Pi < P′j < Pj.

We can now sort the pieces by processing them as follows. For each piecePi

computeb′i and fi. Store the piecePi in theb′i
th element of an array, keeping also

a pointer to the follower elementfi (the array need only be of size2m ≤ 2K). At
the end of this sequential processing, element 0 of the array must be occupied, so
starting at element 0, we can read off the piece stored, and jump to the follower
element, continuing until the follower element is nil. We will then have output the
sorted pieces. This process isO(K) since we operate on each piece once. (Figure
4 illustrates the process for the pieces in Figure3.)
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76
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0 1 2 3 4 5 6 7

011 110
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0 1 2 3 4 5 6 7

110100011010000

The linked list

Figure 4:The “linked” array for the normalized labels of Figure3

A scan through the sortedPi now identifies each of theRi, and a second scan



sequentially outputting〈Pi j ; ui j 〉 if 〈Pi j ; ui j 〉 was a rightmost piece forui j now out-
puts theRi in sorted order. The two scans areO(K) operations, so the entire
process isO(K), completing the proof.

By Lemma4.2, sorting the partitionW1, . . . ,WN is equivalent to (reverse)
sorting the integersx1, . . . , xN. From Lemma4.3, we know that if the fair cake-
division is labeled, then we can sort the partition inO(K) time, whereK is the
number of pieces in the partition. Thus, we obtain the following theorem, which
reduces sorting to cake-cutting:

Theorem 4.4 (Reduction of sorting to cake-cutting).Given a K-piece, la-
beled, fair cake-division for utility functionsF1, . . . , FN, we can sort the numbers
x1, . . . , xN in O(K) time.

4.3 The Lower Bound

The previous section provided the connection between labeled cake-cutting algo-
rithms and sorting. Theorem4.1showed that every cake-cutting algorithm can be
converted to an equivalent labeled cake-cutting algorithm. Of importance is the
complexity of this conversion. The approach suggested in Theorem4.1first con-
verts to an equivalent solid piece algorithm (worst caseO(K2) extra operations),
followed by conversion to a labeled one (worst caseO(K) extra operations). How-
ever, conversion to a labeled algorithm need not go through the solid piece phase.
For example, in AlgorithmA, the first piece given to a user ([0,C]) can be labeled
0 and all we need to do now is label the remaining piece ([C,1]) with a 1, which
can be treated as a solid piece for the purpose of labeling, though in actuality it
is not a solid piece. This motivates the following definition. We say that a cake-
cutting algorithmH that outputs a cake-division withK pieces islinearly-labeled
if it can be converted to a labeled algorithmH′ that outputs an equivalent cake di-
vision with O(K) pieces using at mostO(K) extra time, i.e., if it can be converted
to an equally efficient algorithm that outputs essentially the same division. To our
knowledge, all the known cake-cutting algorithms are linearly-labeled. In partic-
ular, AlgorithmsA andB can be easily converted to labeled algorithms using at
mostO(K) additional operations to output an equivalent cake-division. Thus, the
following observation is easily verified.

Observation 4.5.Algorithms A and B are linearly-labeled.

Since sorting is reducible to labeled cake-cutting, labeled cake-cutting cannot
be faster than sorting. We have the following result.

Theorem 4.6 (Lower bound for labeled algorithms).For any linearly-labeled
fair cake-cutting algorithmH, there are utility functions for whichΩ(N logN)
comparisons will be required.



Proof. To the contrary, suppose that the number of comparisons iso(N logN),
worst case. Then, the number of pieces isK = o(N logN). Since the algorithm is
linearly labeled, an equivalent labeled algorithmH′ exists that useso(N logN) ex-
tra time and also produceso(N logN) pieces. Letx1, . . . xN be any distinct positive
integers, that define the utility functionsF1, . . . , FN as in Section4.2. UsingH′,
construct a cake-division forF1, . . . , FN in o(N logN) time, producingo(N logN)
pieces. By Theorem4.4, this division can be used to sort thexi in o(N logN) extra
time, and so the total time it takes to sort iso(N logN), for any distinct positive
integers. This contradicts the well known fact that any sorting algorithm requires
Ω(N logN) comparisons for some sequence of sizeN.

From the practical point of view one might like to limit the amount of com-
putation the superuser is allowed to use in order to determine what cuts are to be
made. Each step in the algorithm involves a cut, and computations necessary for
performing the cut. Among these computations might be comparisons, i.e., the
superuser might compare cut positions. At stept, let Kt denote the number of
comparisons performed. The algorithm iscomparison-boundedif

∑T
t=1 Kt ≤ αT

for a constantα and allT. Essentially, the number of comparisons is linear in the
number of cuts.

Observation 4.7.The labeled algorithmsA andB are comparison-bounded.

We now give our lower bound on the number of cuts required for linearly-
labeled comparison-bounded algorithms.

Theorem 4.8 (Lower bound for comparison-bounded algorithms).For any
linearly-labeled comparison-bounded fair algorithmH, utility functions exist for
whichΩ(N logN) cuts will be made.

Proof. Let K be the number of cuts made, and suppose to the contrary thatK =

o(N logN). The number of pieces isO(K) = o(N logN). SinceH is linearly-
labeled, an equivalent algorithmH′ exists that useso(N logN) extra computation,
in particularo(N logN) extra comparisons, and also produceso(N logN) pieces.
Let C be number of comparisons used byH, C ≤ αK = o(N logN). Therefore,
the number of comparisons used byH′ is alsoo(N logN). Again, let the distinct
integersx1, . . . xN define the utility functionsF1, . . . , FN. UsingH′, we output an
o(N logN) piece fair division usingo(N logN) comparisons, which can be used to
sortx1, . . . , xN in O(K) time using an additionalo(N logN) comparisons. Thus we
can sortx1, . . . , xN usingo(N logN) comparisons, contradicting the well known
Ω(N logN) worst case lower bound on the number of comparisons required to
sort an arbitrary sequence of distinct numbers.



5 Lower Bounds for Envy-Free Algorithms

We give lower bounds on the number of cuts required for strong and super envy-
free division. These bounds apply to both discrete and continuous algorithms.
For strong envy-free division, it is possible that no acceptable division exists for
a given set of utility functions (for example, when every user has the same util-
ity function). Nevertheless, we show that there exist utility functions that admit
acceptable divisions for whichΩ(N2) cuts are needed.

Theorem 5.1 (Lower bound for strong envy-free division).There exist utility
functions for which a strong envy-free division exists andΩ(N2) cuts are required.

Proof. Let the user utility functions be as shown in Figure5. Essentially, the users
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Figure 5: The utility functions for envy-free algorithms

value the cake uniformly except for a small gap of sizeε which has zero value.
Outside this gap, a piece of widthx has valuex/(1− ε). Let ε = 1/N, and choose
the gap of userui to be over the interval[(i − 1)ε, iε]. This set of utility functions
admits a strong envy-free partitionW1, . . . ,WN as follows. Divide each gap into
N − 1 pieces of equal width, and assign to each userui one of the small pieces
from every other user’s gap. Since any useruj, where j , i, is assigned a piece
from ui ’s gap,Fi(Wi) > Fi(W j), and thus the division is strong envy-free.

Now, we will show that for these utility functions, any algorithm requires
Ω(N2) cuts to obtain a strong envy-free division. Consider any pair of usersui

and uj. At least one of these users is assigned a piece that overlaps the other
user’s gap. (If not, both users value the portions given to each other equivalently.
Call the valuesv1 andv2. Since the division is strong envy-free it must be that
v1 > v2 andv2 > v1 which is impossible.) Since there areN(N − 1)/2 pairs of
users, we need at leastN(N − 1)/2 pieces which overlap with some gap, each
such overlapping piece being assigned to a user. Each gap can account for at



most N − 1 such overlaps. Let0 < λ < 1, and letM be the number of gaps
that account for more thanλ(N − 1) overlaps (the remainingN − M gaps ac-
count for at mostλ(N − 1) overlaps). LetT be the total number of overlaps
accounted for. ThenN(N − 1)/2 ≤ T ≤ M(N − 1) + (N − M)λ(N − 1), from
which we get thatM ≥ N(1

2 − λ)/(1 − λ). Since each of these (separated) gaps
accounts for at leastλ(N − 1) overlaps, there must be at leastλ(N − 1) − 1 cuts
in each gap. LetK be the total number of cuts performed. Thus, it must be,

K ≥ M(λ(N− 1)− 1) ≥ N(λ(N− 1)− 1)(1
2 − λ)/(1− λ), soK = Ω

(
λ( 1

2−λ)
1−λ N2

)
. The

constant is maximized forλ ≈ 0.3 in which caseK = Ω(N2), with constant factor
0.086.

Next, we give a lower bound for the number of cuts required for super envy-
free division.

Theorem 5.2 (Lower bound for super envy-free division).There exist utility
functions for which a super envy-free division exists andΩ(N2) cuts are required.

Proof. We use utility functions similar to the ones in the previous theorem, except
now we have two gap widths,ε1 (type 1 users) andε2 (type 2 users), withε1 < ε2.
Choose the gaps so that no two gaps overlap, and let there bebN/2c type 1 users.
The utility densities are linearly independent, so a super envy-free division exists
[2, 14]. We claim that the portion given to each of thebN/2c type 1 users must
overlap the gap of every type 2 user. If not, then the entire portion of that type
1 user has combined width≥ (1 − ε1)/N (as it must be fair for the type 1 user)
and the type 2 user values it at(1 − ε1)/N(1 − ε2) > 1/N sinceε1 < ε2, so this
division cannot be super envy-free. Thus, each of thedN/2e type 2 gaps overlap
with at leastbN/2c type 1 pieces, and therefore contains at leastbN/2c − 1 cuts.
The total number of cuts is therefore at least

⌈
1
2N

⌉ (⌊
1
2N

⌋
− 1

)
= Ω(N2), with

constant factor0.25.

6 Concluding Remarks

The logic of our presentation has been to discuss cake-cutting from a general
point of view as well as to focus on some general classes of cake-cutting algo-
rithms. The most general results are that any cake-cutting algorithm can be con-
verted to a solid piece algorithm, and then to a labeled algorithm. We then showed
that any labeled fair cake-cutting algorithm can be used to sort, therefore any fair
cake-cutting algorithm can be used to sort. This provided the connection between
sorting and cake-cutting.

To relate the computational complexity of sorting to cake-cutting we needed to
consider the computational complexity of converting an arbitrary fair cake-cutting



algorithm to a labeled one. Thus, we introduced linearly-labeled algorithms which
have a computational complexity ofΩ(N logN). It appears that all fair algorithms
are linearly-labeled, and so an important open issue is to prove this conjecture. If
this is done, then every fair cake-cutting algorithm has a computational complex-
ity of Ω(N logN). We then introduced comparison-bounded algorithms to connect
the number of cuts to the computational complexity. Comparison-bounded fair al-
gorithms which are also linearly-labeled requireΩ(N logN) cuts in the worst case.
If every fair algorithm is linearly-labeled and comparison-bounded, then a long
standing open question would be answered: any fair cake-division algorithm will
requireΩ(N logN) cuts in the worst case. If a fair algorithm that is not linearly-
labeled or comparison bounded could be produced, no doubt this will give some
insight into the problem in general.

Finally we provided a strong result for phased algorithms, namely that
Ω(N logN) cuts are needed to guarantee each user a positive valued portion, and
we also obtainedΩ(N2) bounds for two types of envy-free division.

Ongoing research is to obtain better lower bounds for envy-free algorithms in
general. Some important open problems are to obtain a discrete envy free cake
cutting algorithm forn = 4 and for generaln, that uses a bounded (in terms of
n) number of cuts (or prove that none exist). It is also not known whether there
exists any algorithm (including continuous algorithms) that construct an envy free
division forn = 4 users using exactly3 cuts.
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