HARDNESS RESULTS FOR CAKE CUTTING®

Costas Busch Mukkai S. Krishnamoorthy Malik Magdon-Ismail
Department of Computer Science
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180
{buschc,moorthy,magdon}@cs.rpi.edu

Abstract

Fair cake-cutting is the division of a cake or resource améngers so
that each user is content. Users may value a given piece of cii&eedily,
and information about how a user valuefelient parts of the cake can only
be obtained by requesting users to “cut” pieces of the cake into specified ra-
tios. Many distributed computing problems which involve resource sharing
can be expressed as cake-cutting problems.

One of the most interesting open questions is to determine the minimum
number of cuts required to divide the cake fairly. It is known tB@tl log N)
cuts stffices, however, it is not known whether one can do better. We show
that sorting can be reduced to cake-cuttiragty algorithm that performs
fair cake-division can sort. For a general class of cake-cutting algorithms,
which we calllinearly-labeled, we obtain anQ(N logN) lower bound on
their computational complexity. All the known cake-cutting algorithms fit
into this general class, which leads us to conjecture that every cake-cutting
algorithm islinearly-labeled. If in addition, the number of comparisons
per cut is boundedcomparison-bounded algorithms), then we obtain an
Q(NlogN) lower bound on the number of cuts. All known algorithms are
comparison-bounded.

We also study variations of envy-free cake-division, where each user
feels that they have more cake than every other user. We construct util-
ity functions for which any algorithm (including continuous algorithms) re-
quiresQ(N?) cuts to produce such divisions. These are the the first known
general lower bounds for envy-free algorithms. Finally, we study another
general class of algorithms callgdhasedalgorithms, for which we show

*An extended abstract of this paper appears as “Cake Cutting is Not a Piece of Cake” in the
Proceedings of the 20th International Symposium on Theoretical Aspects of Computer Science
(STACS’03), LNCS 2607, pp. 596-607, Berlin, Germany, February-March, 2003.

that even if one is to simply guarantee each user a piece of cake with posi-
tive value, therf2(N log N) cuts are needed in the worst case. Many of the
existing cake-cutting algorithms are phased.

1 Introduction

Resource sharing problems, such as chore division, inheritance allocation, and
room selection, have been extensively studied in economics and game-theory
[1, 5,17, 110, 11, 16, 17]. Resource sharing problems arise often in distributed
computing when dferent users compete for the same resources. Typical exam-
ples of such distributed computing problems are: job scheduling; sharing the CPU
time of a multiprocessor machine; sharing the bandwidth of a network connection;
etc. In general, user preferences are not known, and resource division algorithms
that attempt to distribute the resource in some equitable manner have to request
information regarding preferences from the users. An important consideration for
any such resource division algorithm is that it must be in the user’s best interest to
accurately convey her preferences. Such algorithms are @leénforcing An
example of a self-enforcing algorithm is a cake cutting algorithm.

The resource to be shared can be viewed as a cake, and the problem of sharing
such aresource is calledke-cuttingor cake-division In the original formulation
of the cake-division problem, introduced in the 1940’s by Steinha6ls N users
wish to share a cake in such a way that each user gets a portion of the cake that
she is content with (a number of definitions of content can be considered, and
we will discuss these more formally later). Users may value a given piece of the
cake diferently. For example, some users may prefer the part of the cake with the
chocolate topping, and others may prefer the part without the topping. Suppose
there areN users, and let’s consider the situation from the first user’s point of
view. The result of a cake-division is that every user gets a portion of the cake, in
particular user 1 gets a portion. User 1 will certainly not be content if the portion
that she gets is worth (in her opinion) less than one fifth the value (in her opinion)
of the entire cake. So in order to make user 1 content, we must give her a portion
that she considers to be wordhleastl/N the value of the cake, and similarly for
the other users. If we succeed in finding such a division for which all the users
are content, we say that it iair cake-division In this work, we study fair cake-
division, in particular, we are interested in quantifying how hard a computational
problem this is.

Many problems that appear in distributed computing environments can be ex-
pressed as a cake-division problem. For example, consider a situation in which
two or more users from the scientific computing community have experimental
applications which they wish to test on a fast multiprocessor machine. All these

users wish to share the time of the multiprocessor, however, these users might re-
side in diferent time zones and thus havéelient time preferences for using the
machine (e.g. one user might prefer to use the machine early in the morning while
the other at night). The 24-hour time period of the day can represent the cake,
which the diferent users wish to share. A fair cake-division will assign time slots

to the users, so that each user (knowing how many users were to share the CPU
time) is content with her share.

More formally, we represent the cake as an intetval[0, 1]. A piece of the
cake corresponds to some sub-interval of this interval, and a portion of cake can
be viewed as a collection of pieces. The user only knows how to value pieces as
specified by her utility function, and has no knowledge about the utility functions
of the other users. The cake-division process (an assignment of portions to users)
is to be dfected by a superus&who initially has no knowledge about the utility
functions of the usersln order to construct an appropriate division, the superuser
may request users to cut pieces into ratios that the superuser may specify. Based
on the information learned from a number of such cuts, the superuser must now
make an appropriate assignment of portions, such that each user is content. A
simple example will illustrate the process. Suppose that two users wish to share
the cake. The superuser can ask one of the users to cut the entire cake into two
equal parts. The superuser now asks the other user to evaluate the two resulting
parts. The second user is then assigned the part that she had higher value for, and
the first user gets the remaining part. This well known division scheme, sometimes
termed “I cut, you choose”, clearly leaves both users believing they have at least
half the cake, and it is thus a successful fair division algorithm. From this example
we see that one cut fices to perform fair division for two users. An interesting
guestion to ask is: what is the minimum number of cuts required to perform a fair
division when there arbl users.

The cake-division problem has been extensively studied in the literature
[4,16,8,19, 12, 13, 114,17, 18]. From a computational point of view, we want
to minimize the number of cuts needed, since this leads to a smaller number of
computational steps performed by the algorithm, which improves the performance
of the distributed computing system that performs cake cutting. Most of the al-

* We point out that this may appear to diverge from the accepted mentality in the field, where
protocols are viewed as self-enforcing — players are advised as to how they should cut, and are
guaranteed that if they cut according to the advice, then the result will be equitable to them. The
way such algorithms usually proceed is that the players make cuts, and somehow based on these
cuts, portions are assigned to the players. Some computing body needs to do this assignment, and
perform the necessary calculations so that the resulting assignment is guaranteed to be equitable to
all the players (provided that they followed the advice). It is exactly this computing body that we
envision as the superuser, because we would ultimately like to quantify all the computation that
takes place in the cake division process.

gorithms proposed in the literature u®¢N?) cuts forN users (see for example
Algorithm A, Section2), while the best known cake-cutting algorithm, which is
based on a divide-and-conquer procedure, @&tElog N) cuts (see for example
Algorithm B, Section2). More examples can be found 4, 14]. It is not known
whether one can do better th&@{N logN) cuts. In fact, it is conjectured that
there is no algorithm that use$N log N) cuts in the worst case. The problem of
determining what the minimum number of cuts required to guarantee a fair cake-
division seems to be a very hard one. We quote from Robertson and Aébb [
Chapter 2.7]:

“The problem of determining in general the fewest number of cuts
required for fair division seems to be a very hard one. ...We have
lost bets before, but if we were asked to gaze into the crystal ball, we
would place our money against finding a substantial improvement on
theNlogN bound.”

For fair cake cutting, we consider only discrete protocols (protocols where each
cut requires a finite number of operations). A well known continuous protocol
that useN — 1 cuts is the moving knife algorithm. Certainly — 1 cuts cannot

be beaten, however, such continuous algorithms are excluded from our present
discussion.

Our main result is that sorting can be reduced to cake-cuttingfair cake-
cutting algorithm can be converted to an equivalent one that can sort an arbitrary
sequence of distinct positive integers. Further, this new algorithm uses no more
cuts (for any set o users) than the original one did. Therefore, cake-cutting
should be at least as hard as sorting. The heart of this reduction lies in a mech-
anism for labeling the pieces of the cake. Continuing, we define the class of
linearly-labeled cake-cutting algorithms as those for which the extra cost of la-
beling is linear in the number of cuts. Essentially, the converted algorithm is as
efficient as the original one. For the clasdioéarly-labeled algorithms, we ob-
tain anQ(N log N) lower bound on their computational complexity. To our knowl-
edge, all the known fair cake-cutting algorithms fit into this general class, which
leads us to conjecture that every fair cake-cutting algorithfimésarly-labeled,

a conjecture that we have not yet settled. From the practical point of view, the
computational power of the superuser can be a limitation, and so we introduce
the class of algorithms that allow the super user a budget, in terms of number of
comparisons, for every cut that is made. Thus, the number of comparisons that
the superuser performs can only grow linearly with the number of cuts performed.
Such algorithms we terrmomparison-bounded. All the known algorithms are
comparison-bounded. If in addition to beinglinearly-labeled, the algorithm is

also comparison-bounded, then we obtain af2(NlogN) lower bound on the
number of cuts required in the worst case. Thus the conjecture of Robertson and

Webb is true within the class dihearly-labeled & comparison-bounded algo-
rithms. To our knowledge, this class includes all the known algorithms, which
makes it a very interesting and natural class of cake-cutting algorithms. These are
the first “hardness” results for a general class of cake-cutting algorithms that are
applicable to a general number of users. For the special case where a user takes a
solid piece, a lower of bound &(N log N) cuts is given in'15].

We also provide lower bounds for some typeseafy-freecake-division. A
cake-division is envy-free if each user believes she has at least as large a portion
(in her opinion) as every other user, i.e., no user is envious of another user. Envy-
freeness is a usual requirement in distributed computing environments. The two
person fair division scheme presented earlier is also an envy-free division scheme.
Other envy-free algorithms for more users can be foun®,4,[8, /11, 14]. It is
known that for any set of utility functions there are envy-free solutidds [How-
ever, there are only a few envy-free algorithms known in the literaturll fasers
[14]. Remarkably, all these algorithms areboundedin the sense that there exist
utility functions for which the number of cuts is finite, but arbitrarily large. Again,
no lower bounds on the number of cuts required for envy-free division exist. We
give the first such lower bounds for two variations of the envy-free problem, and
our bounds are applicable twth discrete and continuous algorithms. Specifi-
cally, a division isstrong envy-fregif each user believes she ha®recake than
the other users, i.e., each user believes the other users will be envious of her. We
show thatQ(N?) cuts are required in the worst case to guarantee a strong envy-free
division when it exists. A division isuper envy-freef every user believes that
every other user has at most a fair share of the cake (see for exé2nbi. [We
show thatQ(N?) cuts are required in the worst case to guarantee super envy-free
division when it exists. These lower bounds give a first explanation of why the
problem of envy-free cake-division is harder than fair cake-division for geheral

The last class of cake-cutting algorithms that we consider are caliagded
algorithms. In phased algorithms, the execution of the algorithm is partitioned into
phases. At each phase all the “active” users make a cut. Atthe end of a phase users
may be assigned portions, in which case they become “inactive” for the remainder
of the algorithm. Many known cake-cutting algorithms are phased. We show that
there are utility functions for whiclany phased cake-cutting algorithm requires
Q(NlogN) cuts to guarantee every user a portion they believe to be of positive
value (a much weaker condition than fair). For such algorithms, assigning positive
portions alone is hard, so requiring the portions to also be fair or envy-free can
only make the problem harder. In particular, AlgoritiBr{see Sectio2), a well
known divide and conquer algorithm is phased, and obtains a fair division using
O(NlogN) cuts. Therefore this algorithm is optimal among the class of phased
algorithmsevenif we compare to algorithms that merely assign positive value
portions. The issue of determining the maximum value that can be guaranteed to

every user withK cuts has been studied in the literatutd,[Chapter 9]. We have
that for phased algorithms, this maximum value is zerdfet o(N log N).

The outline of the remainder of the paper is as follows. In the next section,
we present the formal definitions of the cake-division model that we use, and what
constitutes a cake-cutting algorithm, followed by some example algorithms. Next,
we present the lower bounds. In Sect@me introduce phased algorithms and
give lower bounds for the number of cuts needed. Sedidiscusses labeled al-
gorithms and the connection to sorting. In Seckome give the lower bounds for
envy-free division, and finally, we make some concluding remarks in Se@tion

2 Preliminaries

2.1 Cake-Division

We denote the cake as the interVat [0, 1]. A pieceof the cake is any interval
P=1Ir],0 <I <r <1, wherel is the left end point and the right end point
of P. Thewidth of Pisr — I, and we take the width of the empty gketo be
zero. Py = [ly,r1] and P, = [l,, 1] areseparatedf the width of P, N P, is 0,
otherwise we say th&; andP, overlap P; containsP; if P, C P;. If P; andP,
are separated, then we say tRats left of P, if I; < |,. Theconcatenatiorof the
M > 1 pieced{[l, s1],[S1,], [S2, %], - - - » [Su-1,]} IS the piecdl, r].

A portion of the cake is a non-empty set of separated piet¥s =
{P1, P2, ..., P4}, k> 1. Note that a portion may consist of pieces which are not ad-
jacent (i.e. a portion might be a collection of “crumbs” fronftelient parts of the
cake). Two portionsi; andW, areseparatedf every piece inW, is separated
from every piece inWW,. An N-patrtition of the cake is a collection of separated
portionsWy,..., Wy whose union is the entire cake

Suppose that thN usersuy, .. ., uy wish to share the cake. Each usghas a
utility function F;(x), which determines how user values the piecfo, x|, where
0 < x < 1. Each usen; knows only its own utility functionF;(x), and has no
information regarding the utility functions of other users. The functigiis) are
monotonically non-decreasing with(0) = 0 andF;(1) = 1, for every usen;. We
require that the value of a portion is the sum of the values of the individual pieces
in that portioit. Thus, the value of piedé, r] to usemny; is F;([l,r]) = Fi(r) - F;(l),
and for any portior’ = {Py, P,,... P}, Fi(W) = I%_, Fi(P).

The goal of cake-division is to partition the entire cdkento N separated
portions, assigning each user to a portion. Formallgake-divisionis an N-
partition W, ..., Wy of cakel, with an assignment of portioh/; to useru;, for

 This is a commonly made technical assumption. Practically, there could be situations where
a pound of crumbs is not equivalent to a pound of cake.

all 1 <i < N. Two cake-divisionsW, ..., Wy andW;,..., W areequivalent
if Upew, Pi = Upew Pi for all j, i.e., every user gets the same part of cake in
both divisions (but perhaps divided intdidirent pieces).

The cake-division igair or proportionalif Fi(‘W;) > 1/N, forall1 <i < N,
i.e., each useu; gets what she considers to be at leg$ of the cake according
to her own utility functionF;. We obtain the following interesting variations of
fair cake-division, if, in addition to fair, we impose further restrictiongarness
constraintson the relationship between the assigned portions:

Envy-free: Fi(W;) > Fi(W)) for all i, j; strong envy-freéf Fi(W;) > Fi(W))
foralli # j.

Super envy-free: Fi(W;) < 1/Nforalli # |; strong super envy-freié F;(W;) <
1/Nforalli # j.

These definitions are standard and founcili].[

2.2 Cake-Cutting Algorithms

We now move on to defining a discrete cake-cutting projatgdrithm. Imagine

the existence of some administrator or superusavho is responsible for the
cake-division. The superusé& has limited computing power, namely she can
perform basic operations such as comparisons, additions and multiplications. We
assume that each such basic operation requires one time step.

SuperusesS can ask the users to cut pieces of the cake in order to get infor-
mation regarding their utility functions. A cut is composed of the following steps:
superuser specifies to usew; a piecefl,r] and a ratioR with 0 < R < 1, the
user then returns the poitin [I,r] such that~([I, C])/Fi([l,r]) = R Thus, a
cut can be represented by the four-tufulg[l, r]; R; C). We callC the positionof
the cut. It is possible that a cut could yield multiple cut positions, i.e. when some
region of the cake evaluates to zero; in such a case we require that the cut position
returned is the left-most. In cake-cutting algorithms, the endpoints of the piece to
be cut must be either 0, 1, or cut positions that have been produced by earlier cuts.
So for example, the first cut has to be of the faump; [0, 1]; Ry; C1). The second
cut could then be made g6, 1], [0, C,] or [C4, 1]. From now on every piece will
be of this form. We assume that a user can construct a cut in consta#it time

A cake-cutting algorithm (implemented by the superuSgis a sequence of
cuts thatS constructs in order to output the desired cake-division.

*From the computational point of view, this may be a strong assumption, for example dividing
apiece by anirrational ratio is a non-trivial computational task, however it is a standard assumption
made in the literature, and so we continue with the tradition.

Definition 2.1 (Discrete Cake-Cutting Algorithm).
Input: TheN utility functions,F(x), ..., Fn(X) for the usersy,, ..., Uy.
Output: A cake-division satisfying the necessary fairness constraint.

Computation:The algorithm is a sequence of steps; 1...K. At every step,
the superuser requests a usgrto perform a cut on a piedé, r;] with ratio
R (u; [, r]; Ri; Cp). In determining what cut to make, the superuser may
use her limited computing power and the information contained in all pre-
vious cuts. A single cut conveys to the superuser an amount of information
that the superuser would otherwise need to obtain using some comparisons.
These comparisons need to also be taken into account in the computational
complexity of the algorithm.

The cuts as we have defined are equivalent to a constant number of compar-
isons. We say that this algorithm ug€<suts. K can depend o and the utility
functionsF;. A correct cake-division must take into account the utility functions
of all the users, however, the superuser does not know these utility functions.
The superuser implicitly infers the necessary information about each user’s util-
ity function from the cuts made. The history of all the cuts represents the entire
knowledge thatS has regarding the utility functions of the users. By a suitable
choice of cutsS then outputs a correct cake-division. An algorithm is named
according to the fairness constraint the cake-division must satisfy. For example,
if the output is fair (envy-free) then the algorithm is callefha (envy-free) cake-
cutting algorithm

A number of additional requirements can be placed on the model for cake-
cutting given above. For example, when a cut is made, a common assumption in
the literature is thagveryuser evaluates the resulting two pieces for the superuser.
Computationally, this assumes that utility function evaluation is a negligible cost
operation. For the most part, our lower bounds do not require such additional
assumptions. In our discussion we will make clear what further assumptions we
make when necessary. We now defatgiivalentcake-cutting algorithms.

Definition 2.2 (Equivalent Cake-Cutting Algorithms). Two cake cutting algo-
rithms are equivalent if they use the same number of cuts for any set of utility
functions, and produce equivalent cake-divisions.

2.3 Particular Algorithms

We briefly present some well known cake-cutting algorithms. More details can be
found in [14]. Algorithms A andB are both fair cake-cutting algorithms.

In algorithmA, all the users cut a/N of the whole cake. The user who cut
the smallest piece is given that piece, and the remaining users recursively divide
the remainder of the cake fairly. The value of the remainder of the cake to each of
the remaining users is at ledst- 1/N, and so the resulting division is fair. This
algorithm requiregN(N + 1) - 1 cuts.

In algorithm B, for simplicity assume that there a?¥ users (although the
algorithm is general). All the users cut the cakd &. All the users to the left of
the median cut recursively divide the left “half” of the cake up to and including the
median cut, and the users who cut to the right of the median cut recursively divide
the right “half” of the cake. Since all the left users value the left part of the cake at
> 1/2 and all the right users value the right part of the cake &t2, the algorithm
produces a fair division. This algorithm requing§log, N1 - 2['°%N1 4 1 cuts.

Below are the detailed algorithms in a format that fits within our formal cake-
cutting model.

Algorithm A:

There is a list of current users that initially contains all the userst Sdd and
ro =0.

RepealN — 1 times:

1. Let the current users hg,, ..., u;, .
2. From each usau; , construct the cufu;,; [r, 1]; 1/(N - t); C;,).

3. Find the useuw;, for which C;, is minimum and assign piede;, C;,]
to useru;,.

4. Remove useu;, from the list of current users, sgt; = C;, andt =
t+ 1

Attimet = N — 1 assign piecéry, 1] to the single remaining current user.

Algorithm B:
Call RecAlgHJ[O, 1], [ug, ..., un]).

RecAlgg][l, r], [ui, ..., W.]):

1. If K = 1then assign piecf, r] to useru;, and return.

2. IfK>1,letK’ = |K/2]and letR = K’'/K. Foreverya = 1...K,
construct the cutu;;[l,r]; R, Ci,). Denote theK’ smallest cuts
by C; < --- < Cy, belonging to users;,,...,u;, and let the
remaining users be,, ..., Uj,.

3. Call RecAlgg[l, Cx], [uj,, ..., Uj.]) and
RecAlgB[Ck-, r], [Uj..,,-- > Uj])

A perfectly legitimate cake-cutting algorithm that does not fit within this frame-
work is themoving knife fair division algorithm The superuser moves a knife
continuously from the left end of the cake to the right. The first user (without loss
of generalityu;) who is happy with the piece to the left of the current position of
the knife yells “cut” and is subsequently given that piece. UWsdas happy with

that piece, and the remaining users were happy to give up that piece. Thus the
remaining users must be happy with a fair division of the remaining of the cake.
The process is then repeated with the remaining cake and the remaining
users. This algorithm makdd — 1 cuts which cannot be improved upon, since

at leastN — 1 cuts need to be made to generalgieces. However, this algo-
rithm does not fit within the framework we have described, and is an example of
a continuous algorithmthere is no way to simulate the moving knife with any
sequence of discrete cuts. Further, each cut in this algorithm is not equivalent to
a constant number of comparisons, for example the first cut conveys the informa-
tion in Q(N) comparisons. Hence, such an algorithm is not of much interest from
the computational point of view. More details, including algorithms for envy-free
cake-cutting can be found ii4).

3 A Lower Bound for Phased Algorithms

We consider a general class of cake-cutting algorithms, that we call “phased”.
We find a lower bound on the number of cuts required by phased algorithms that
guarantee every user a positive valued portiBhasedcake-cutting algorithms
have the following properties.

e The process is divided infoghases

¢ In each phase, evemlctive user cuts a piece, the endpoints of which are
defined using cuts made durimgeviousphases only. In the first phase,
each user cuts the whole cake.

e A user must eventually be assigned a portion at some phase. Once a user
is assigned a portion, that user becomes inactive for the remainder of the
algorithm. (Assigned portions are not considered for the remainder of the
algorithm.)

Many cake-cutting algorithms fit into the class of phased algorithms. Typical
examples are Algorithm& andB, thus, we have:

Observation 3.1. AlgorithmsA and B are phased.

There also exist algorithms that are not phased, for example Steinhaus’ origi-
nal trimming algorithm, 16].

3.1 The Lower Bound

Here, we present the lower bound for phased algorithms. A pieseligif it

does not contain any cut positions — a non-solid piece is the union of two or more
separated solid pieces. Our first observation is that any cut by a user on a non-
solid pieceP giving cut positionC can be replaced with a cut by the same user on

a solid piece contained iR, yielding thesamecut position.

Lemma 3.2. Suppose thaP is the concatenation of separated solid pieces
Pi,...,Px for k > 2, and(u; P; R, C) is a cut. Then, for suitably chosd®i
and some solid piecBy, (u;; Pm; R’; C) is a cut. Further,R andm depend only
onRandFi(Py),..., Fi(Py).

Proof. Letv; = Fi(P;) andv = F;i(P). Letay = O anda, = 2?:1v,-/v forn > 0.
The a, form a non-decreasing sequence wagh= 0 anda, = 1. Let m be the
smallesin for whicha,_; < R < a,. SinceC is the leftmost cut that yields rati®,
it must be thaC € Py, Let Py, = [Im, I'm], then choosindr = Fi([Im, C]) /v must
reproduce the same cGton P, Further,F;([Im C]) = (R - an-1)v, concluding
the proof. |

Lemma3.2 allows us to convert any algorithm into an equivalealid piece
algorithm, one in which every cut is made on a solid piece. Without loss of gener-
ality, we thus restrict our attention to solid piece phased algorithms, where, in each
phase the users cut pieces that were solid at the beginning of the phase. It may be
the case that in a phase, two or more users will cut the same (solid) piece. Suppose
that userauy, ..., Ux are to cut the (solid) piec, r] in the ratiosR, ..., R, and
thatu; cuts at positiorC. Since the utility functions are arbitrary and since the
piece has not been cut before this phase, it is possible to choose the utility func-
tions such tha 22(([[';?) =Ry, ..., FFkk(([['l’JC]])) = R, in which case, all the users who are
to cut this piece will cut in the same position. We have thus proved the following
lemma.

Lemma 3.3. For any phased algorithm, there are utility functions for which all
users who are to cut the same (initially solid) piece will cut at the same position.

We now give our lower bound for phased algorithms, which applies to any
algorithm that guarantees each user a portion of positive value.

Theorem 3.4 (Lower bound for phased algorithms).Any phased algorithm that
guarantees each dfl users a portion of positive value for any set of utility func-
tions, require2(N log N) cuts in the worst case.

Proof. From Lemmae3.3 it suffices to prove the theorem for solid piece phased
algorithms. Let the phases lfel, 2,..., and letp, denote the total number of
separated pieces that appear on the cake up to the end ofipisase, = 1. By
Lemma3.3 there exists utility functions for which each piece from the previous
phase has contributed at most one new piece by the end of a phase (no matter how
many users cut this piece), gp < 2px_1, hencep, < 2%,

Let ax denote the number of active users at the beginning of pkiase= N.

At each phase some users are assigned portions and become inactive. Certainly,
no more tharpy users become inactive at the end of phageance every such user

must be assigned at least one piece). Therefpe,> ax — p«. Unfolding this
recursion, we get that, > N — 21 + 2. The algorithm continues its execution

for as long as there are active users. Wkea | logN | — 1, ax > 2, so at least

| logN | — 1 phases are required.

Let Ty be the total number of cuts made up to the end of plkasgince the
algorithm is phased, during phakeexactly a, cuts are made (one from each
active user), thereforg, = Zik:lai. The total number of cuts made is therefore at
IeastTLlogNJ_l, and using the bound fax, we get that

| logN |-1

> (N-2"42)

i=1

N[logN | - N — 2L°9NI+1 4 2 jogN | = Q(N log N).

\%

TLIogNJ—l

The lower bound of2(N log N) cuts for phased algorithms, demonstrates that
even the problem of assigning positive portions to users is non-trivial. This lower
bound immediately applies to fair and envy-free algorithms, since these algo-
rithms assign positive portions to users.

4 A Lower Bound for Labeled Algorithms

We present a lower bound on the number of cuts required for a general class of
fair algorithms that we refer to as “linearly-labeled & comparison-bounded”. We
prove the lower bound by reducing sorting to cake-cutting. First, we show that any
cake-cutting algorithm can be converted taleledalgorithm which labels every
piece in the cake-division. Then, by appropriately choosing utility functions, we
use the labels of the pieces to sort a given sequence of integers.

4.1 Labeled Algorithms

Here, we define labeled algorithms and show how any cake-cutting algorithm can
be converted to a labeled one. flll binary treeis a binary tree in which every
node is either a leaf or the parent of two nodedabeling treeis a full binary tree
in which every left edge has label 0 and every right edge has label 1. Every leaf
is labeled with the binary number obtained by concatenating the labels of every
edge on the path from the root to that leaf. An example labeling tree is shown in
Figurell. Letv be the deepest common ancestor of two leayesndv,. If v,
belongs to the left subtree gfandv, belongs to the right subtree @f thenv; is
left of v,.

Consider arN-partition Wy, ..., Wy of the cake. The partition igbeledif
the following hold:

e For some labeling tree, every (separated) piBcén the partition has a
distinct labelb; that is a leaf on this tree, and every leaf on this tree labels
some piece.

o P;isleft of P;inthe cake if and only if lealf is left of leafb; in the labeling
tree.

A cake-cutting algorithm igabeledif it always produces amN-partition that is
labeled. An example of a labeled partition is shown below, in Fiduia general,
there are many ways to label a partition, and the algorithm need only output one
of those ways.

Theorem 4.1. Every cake-cutting algorithm is equivalent to a labeled cake-
cutting algorithm.

Proof. Let H be the cake-cutting algorithm. H is not a solid piece algorithm,
then using Lemm®&.2 we convert it into an equivalent solid piece algoritliih
(see Sectior8.1 for a definition of solid piece algorithms). Construct a labeled
partition inductively as follows. Initially, the whole cake has the empty ldpel
At staget in the algorithm, some (solid) piede with labelb is cut to produce

a left and right piece. Label the left pieb®, and the right piecél. Figurel
illustrates the process for a sequence of cut posiing,, Cs, Cy.]

4.2 Reducing Sorting to Cake-Cutting

We will show that a labeled cake-cutting algorithm can be used td\spdsitive
distinct integers, .. ., Xy. To relate sorting to cake-cutting, we first define a “less
than” relation for pieces. If piecd?, andP, are separated, thé?y, < P, if P;
is on the left ofP,. Clearly, this <” relation imposes a total order on any set of

Labeling Tree

010 011
Cake
label: 00 010 011 10 11
0 Cz Cs C, C4 1

Figure 1:A labeled partition and the corresponding labeling tree

separated pieces. Our approach is to show that dgWwpnositive distinct integers,
we can construct utility functions such that any fair division will allow us to sort
the integerguickly. Define the utility functiond=;(x) = min(1, N*x), for useru.
Figure?, illustrates the functiong; andF, for N = 2, x; = 1 andx, = 3. In what
follows, F; will always refer to the utility functions defined above. Mt= 1/N%.
Only pieces that overlaj®, V;] have positive value for user.

Consider any N-partitioriW/y, ..., Wy, such that eacl¥; has a non-zero
value for the respective usey. Let R € ‘W, be the rightmost piece oW; that
overlapg0, Vi]. The ordering relation on pieces now induces an ordering on por-
tions: W; < W; if and only if R < R;. Next, we show that the order of the
portionsW; is related with the order of the integexs

Lemma 4.2. Let W,,..., Wy be a fair cake-division for the utility functions
Fi,...,Fn. Thenx < x; if and only ifW; < W,.

Proof. Suppose that this property is violated for some pgir Then,x < X; and
R isleft of R;. LetR = [l;,ri] andR; = [l;,r;]. It must be, that; < |; < V;. Thus,
the total width of non-zero valued pieces of usgis less tharV/;, and so the total
value of pieces assignedpis lessthanV;/V; = N7 < 1/N, which contradicts

Utility Functions for Sorting, N=2 Utility Density Functions for Sorting, for N=2

8
n
7t Fl(x)zmin(Nx,l)
0.8- F,() ol F,()=min(N°x,1)
5t
0.6t i k k 1 . dF,
S x
g F1(X) % 4
0.4F 3
) 2
L F_(x)=min(Nx,1)
0.2 1 dF
F,(9=min(N°x,1) 1t 1
7 . ‘ o
o | o2 04 | 06 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
V, Vi Va Vi

Figure 2: Left: sample utility functions foN = 2. Right: the density functions
for the utility functions on the left.

the division being fair. |

The ordering relation on portions can be used to sort Mhpartition
Wi,..., Wy, i.e, find the sequence of indicgs. . ., iy, such thatW;, < W, <
.-+ < Wi,. An application of Lemmd.Zthen gives thak;, > X, > --- > X, thus
sorting the partition is equivalent to sorting the integers. We now show that if the
partition is labeled, we can use the labels to sort the portidfiguickly, which
in turn will allow us to sort the integers quickly.

Lemma 4.3. Any labeledN-partition ‘Wy,. .., Wy, can be sorted iO(K) time,
whereK is the total number of pieces in the partition.

Proof. Every pieceP;, i = 1,...,K, has a unique labdd and a user to which
it is assignedy;,. Thus, represent every piece in thepartition by the triple
(Pi; bi; uj,). We will use the labels of the pieces to sort the portiofs, . .., Wy.
It suffices to sort the piecds, ..., Ry.

First we sort the pieceB;. Let m < K be the length of the longest label
Normalize all the labels to lengtm by appending the necessag. Denote by
b/ the normalized label for pied® (see Figurd). This requiresO(K) time as we
operate on each piece once.

We can treat thé as binary numbers. By constructioR, < P; if and only if
bi < bj. Thus, if we sort the labels], we will have sorted the pieces as well.
Each labelb) has afollower label f; defined as follows. Ib; is a string ofl’s,
then f; is nil (there is no follower). Otherwisdy has the formx01 for some

¥ The length of the label can be maintained at constant cost per cut using the labeling scheme
in Theorenv.1

000 010 011 100 110

G, Cs C Cy4

Figure 3:Normalizing the labels of Figur#

(possibly empty) binary stringX, where1* represents a binary string &fones,
wherek could be 0. Thenf; is the normalization oX10¢. If f; is not nil, then
the normalized label of some pieBe must bef; since the labeling tree was full.
Further,P; < P;, and there is no piedé’j with P; < P’j < Pj.

We can now sort the pieces by processing them as follows. For eachRyiece
computeb! and f;. Store the piec®; in the bi’th element of an array, keeping also
a pointer to the follower elemerit (the array need only be of si2Z" < 2X). At
the end of this sequential processing, element 0 of the array must be occupied, so
starting at element O, we can reafil the piece stored, and jump to the follower
element, continuing until the follower element is nil. We will then have output the
sorted pieces. This procesS$K) since we operate on each piece once. (Figure
4 illustrates the process for the pieces in FigBine

7N

LI 1 dfem] [| | |

0 1 2 3 4 5 6 7
Insert label 011

| | [eiojonr| | [uo] |

0 1 2 3 4 5 6 7
Insert labels 010 and 110

P VIR Ve N
|ooo| |01o|011|1oo| |110| |
0O 1 2 3 4 5 6 7
The linked list

Figure 4:The “linked” array for the normalized labels of FigiRe

A scan through the sortd® now identifies each of thg;, and a second scan

sequentially outputtingP; ; u;,) if (P;;; u;;) was a rightmost piece fas; now out-
puts theR in sorted order. The two scans aB¥K) operations, so the entire
process i€O(K), completing the proof. n

By Lemma4.2, sorting the partitionfWs, ..., Wy is equivalent to (reverse)
sorting the integerg;, ..., Xy. From Lemmead.3 we know that if the fair cake-
division is labeled, then we can sort the partitionQ(K) time, whereK is the
number of pieces in the partition. Thus, we obtain the following theorem, which
reduces sorting to cake-cutting:

Theorem 4.4 (Reduction of sorting to cake-cutting).Given a K-piece, la-
beled, fair cake-division for utility functiors,, ..., Fy, we can sort the numbers
X1, ..., Xy IN O(K) time.

4.3 The Lower Bound

The previous section provided the connection between labeled cake-cutting algo-
rithms and sorting. Theorer 1 showed that every cake-cutting algorithm can be
converted to an equivalent labeled cake-cutting algorithm. Of importance is the
complexity of this conversion. The approach suggested in Thedrgfirst con-

verts to an equivalent solid piece algorithm (worst c@¢ki?) extra operations),
followed by conversion to a labeled one (worst c@K) extra operations). How-
ever, conversion to a labeled algorithm need not go through the solid piece phase.
For example, in Algorithn#, the first piece given to a usgf(C]) can be labeled

0 and all we need to do now is label the remaining pig€2X]) with a 1, which

can be treated as a solid piece for the purpose of labeling, though in actuality it
is not a solid piece. This motivates the following definition. We say that a cake-
cutting algorithmH that outputs a cake-division witk pieces idinearly-labeled

if it can be converted to a labeled algorithi that outputs an equivalent cake di-
vision with O(K) pieces using at mo€2(K) extra time, i.e., if it can be converted

to an equally #icient algorithm that outputs essentially the same division. To our
knowledge, all the known cake-cutting algorithms are linearly-labeled. In partic-
ular, AlgorithmsA andB can be easily converted to labeled algorithms using at
mostO(K) additional operations to output an equivalent cake-division. Thus, the
following observation is easily verified.

Observation 4.5. Algorithms A and B are linearly-labeled.

Since sorting is reducible to labeled cake-cutting, labeled cake-cutting cannot
be faster than sorting. We have the following result.

Theorem 4.6 (Lower bound for labeled algorithms). For any linearly-labeled
fair cake-cutting algorithmH, there are utility functions for whicl&(N log N)
comparisons will be required.

Proof. To the contrary, suppose that the number of comparisorgNdog N),
worst case. Then, the number of pieceKis o(NlogN). Since the algorithm is
linearly labeled, an equivalent labeled algoriththexists that useg(N log N) ex-

tra time and also produce¢N log N) pieces. Lek, ... xy be any distinct positive
integers, that define the utility functios, ..., Fy as in Sectio}.2. UsingH’,
construct a cake-division fdfy, ..., Fy in o(N log N) time, producingd(N log N)
pieces. By Theore.4, this division can be used to sort tikan o(N log N) extra
time, and so the total time it takes to soroi@ log N), for any distinct positive
integers. This contradicts the well known fact that any sorting algorithm requires
Q(N log N) comparisons for some sequence of size |

From the practical point of view one might like to limit the amount of com-
putation the superuser is allowed to use in order to determine what cuts are to be
made. Each step in the algorithm involves a cut, and computations necessary for
performing the cut. Among these computations might be comparisons, i.e., the
superuser might compare cut positions. At stefet K; denote the number of
comparisons performed. The algorithmcismparison-boundeid 3|, K; < oT
for a constantr and allT. Essentially, the number of comparisons is linear in the
number of cuts.

Observation 4.7. The labeled algorithm# and B are comparison-bounded.

We now give our lower bound on the number of cuts required for linearly-
labeled comparison-bounded algorithms.

Theorem 4.8 (Lower bound for comparison-bounded algorithms).For any
linearly-labeled comparison-bounded fair algorithth utility functions exist for
whichQ(N log N) cuts will be made.

Proof. Let K be the number of cuts made, and suppose to the contrar{Ktkat
o(NlogN). The number of pieces ©(K) = o(NlogN). SinceH is linearly-
labeled, an equivalent algorithhlY exists that uses(N log N) extra computation,
in particularo(N log N) extra comparisons, and also produoéd log N) pieces.
Let C be number of comparisons used HyC < aK = o(NlogN). Therefore,
the number of comparisons used Hyis alsoo(N logN). Again, let the distinct
integersxy, . .. Xy define the utility functions-, ..., Fy. UsingH’, we output an
o(N log N) piece fair division usin@(N log N) comparisons, which can be used to
sortxy, ..., Xy in O(K) time using an additiona(N log N) comparisons. Thus we
can sortxy, ..., Xy usingo(NlogN) comparisons, contradicting the well known
Q(NlogN) worst case lower bound on the number of comparisons required to
sort an arbitrary sequence of distinct numbers. |

5 Lower Bounds for Envy-Free Algorithms

We give lower bounds on the number of cuts required for strong and super envy-
free division. These bounds apply to both discrete and continuous algorithms.
For strong envy-free division, it is possible that no acceptable division exists for
a given set of utility functions (for example, when every user has the same util-
ity function). Nevertheless, we show that there exist utility functions that admit
acceptable divisions for whic2(N?) cuts are needed.

Theorem 5.1 (Lower bound for strong envy-free division).There exist utility
functions for which a strong envy-free division exists Q{N?) cuts are required.

Proof. Letthe user utility functions be as shown in Figbreessentially, the users

Utility Function for Envy-Free Division Utility Density Function for Envy—Free Division

F()
dF(x)
o
(=2}
=

%
m

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 5: The utility functions for envy-free algorithms

value the cake uniformly except for a small gap of sizehich has zero value.
Outside this gap, a piece of widthhas valuex/(1 — €). Lete = 1/N, and choose

the gap of useu,; to be over the intervd(i — 1)e, i€]. This set of utility functions

admits a strong envy-free partitiow’,, . .., Wy as follows. Divide each gap into
N — 1 pieces of equal width, and assign to each useme of the small pieces
from every other user’s gap. Since any usgrwherej # i, is assigned a piece
from u’s gap,Fi(Wi) > Fi(W;), and thus the division is strong envy-free.

Now, we will show that for these utility functions, any algorithm requires
Q(N?) cuts to obtain a strong envy-free division. Consider any pair of ugers
andu;. At least one of these users is assigned a piece that overlaps the other
user’s gap. (If not, both users value the portions given to each other equivalently.
Call the values/; andv,. Since the division is strong envy-free it must be that
v; > Vp, andv, > v; which is impossible.) Since there agN — 1)/2 pairs of
users, we need at least(N — 1)/2 pieces which overlap with some gap, each
such overlapping piece being assigned to a user. Each gap can account for at

mostN — 1 such overlaps. Led < 1 < 1, and letM be the number of gaps

that account for more thaa(N — 1) overlaps (the remainingl — M gaps ac-

count for at mosti(N — 1) overlaps). LetT be the total number of overlaps

accounted for. ThemN(N - 1)/2 < T < M(N -1)+ (N - M)A(N - 1), from

which we get thaM > N(% — A)/(1 - 2). Since each of these (separated) gaps

accounts for at least(N — 1) overlaps, there must be at leagN — 1) — 1 cuts

in each gap. LeK be the total number of cuts performed. Thus, it must be,
1_

K > MO(N - 1)— 1) > NQ(N - 1) - 1)& - 2)/(1- 2), SOK = Q(%NZ). The

constant is maximized fot ~ 0.3 in which caseK = Q(N?), with constant factor

0.086 n

Next, we give a lower bound for the number of cuts required for super envy-
free division.

Theorem 5.2 (Lower bound for super envy-free division).There exist utility
functions for which a super envy-free division exists @(N?) cuts are required.

Proof. We use utility functions similar to the ones in the previous theorem, except
now we have two gap widthg; (type 1 users) ane, (type 2 users), witl; < e,.
Choose the gaps so that no two gaps overlap, and let thers t#| type 1 users.
The utility densities are linearly independent, so a super envy-free division exists
[2,14]. We claim that the portion given to each of thbl/2 | type 1 users must
overlap the gap of every type 2 user. If not, then the entire portion of that type
1 user has combined width (1 — €)/N (as it must be fair for the type 1 user)
and the type 2 user values it @ — ¢)/N(1 — &) > 1/N sincee; < e, so this
division cannot be super envy-free. Thus, each of tR¢2] type 2 gaps overlap
with at least N/2 | type 1 pieces, and therefore contains at [¢&§t2 | — 1 cuts.

The total number of cuts is therefore at IeﬁéN 1 ([%NJ - 1) = Q(N?), with
constant facto0.25. u

6 Concluding Remarks

The logic of our presentation has been to discuss cake-cutting from a general
point of view as well as to focus on some general classes of cake-cutting algo-
rithms. The most general results are that any cake-cutting algorithm can be con-
verted to a solid piece algorithm, and then to a labeled algorithm. We then showed
that any labeled fair cake-cutting algorithm can be used to sort, therefore any fair
cake-cutting algorithm can be used to sort. This provided the connection between
sorting and cake-cutting.

To relate the computational complexity of sorting to cake-cutting we needed to
consider the computational complexity of converting an arbitrary fair cake-cutting

algorithm to a labeled one. Thus, we introduced linearly-labeled algorithms which
have a computational complexity OfN log N). It appears that all fair algorithms

are linearly-labeled, and so an important open issue is to prove this conjecture. If
this is done, then every fair cake-cutting algorithm has a computational complex-
ity of Q(N log N). We then introduced comparison-bounded algorithms to connect
the number of cuts to the computational complexity. Comparison-bounded fair al-
gorithms which are also linearly-labeled requitéN log N) cuts in the worst case.

If every fair algorithm is linearly-labeled and comparison-bounded, then a long
standing open question would be answered: any fair cake-division algorithm will
requireQQ(N log N) cuts in the worst case. If a fair algorithm that is not linearly-
labeled or comparison bounded could be produced, no doubt this will give some
insight into the problem in general.

Finally we provided a strong result for phased algorithms, namely that
Q(NlogN) cuts are needed to guarantee each user a positive valued portion, and
we also obtaine®(N?) bounds for two types of envy-free division.

Ongoing research is to obtain better lower bounds for envy-free algorithms in
general. Some important open problems are to obtain a discrete envy free cake
cutting algorithm forn = 4 and for generah, that uses a bounded (in terms of
n) number of cuts (or prove that none exist). It is also not known whether there
exists any algorithm (including continuous algorithms) that construct an envy free
division forn = 4 users using exactl§ cuts.

References
[1] J. Barbanel. Game-theoretic algorithms for fair and strongly fair cake division with
entitlements Colloquium Math, 69:59-53, 1995.

[2] J. Barbanel. Super envy-free cake division and independence of meakuvizdh.
Anal. Appl, 197:54-60, 1996.

[3] Steven J. Brams and Allan D Taylor. An envy-free cake division protodoh.
Math. Monthly 102:9-18, 1995.

[4] Steven J. Brams and Allan D. Tayldrair Division: From Cake-Cutting to Dispute
Resolution Cambridge University Press, New York, NY, 1996.

[5] Stephen Demko and Theodore P. Hill. Equitable distribution of indivisible objects.
Mathematical Social Sciences6(2):145-58, October 1988.

[6] L. E. Dubins and E. H. Spanier. How to cut a cake fairkkm. Math. Monthly
68:1-17, 1961.

[7] Jacob Glazer and Ching-to Albert Ma. ffigient allocation of a ‘prize’ — King
Solomon’s dilemmaGames and Economic Behav;jid(3):223-233, 1989.

[8] C-J Haake, M. G. Raith, and F. E. Su. Bidding for envy-freeness: A procedural
approach to n-player fair-division problem&ocial Choice and Welfayel9:723—
749, 2000.

[9] Sven O. Krumke, Maarten Lipmann, Willem E. de Paepe, Diana Poensgen, Jbrg
Rambau, Leen Stougie, and Gerhard J. Woeginger. How to cut a cake almost fairly.
In Proceedings of the 13th Annual ACM-SIAM Symposium On Discrete Mathematics
(SODA-02) pages 263-264, New York, January 6—8 2002. ACM Press.

[10] Jerzy Legut and Wilczynski. Optimal partitioning of a measuarble spReeed-
ings of the American Mathematical Societ@4(1):262—264, September 1988.

[11] Elisa Peterson and F. E. Su. Four-person envy-free chore dividiathematics
Magazine April 2002.

[12] K. Rebman. How to get (at least) a fair share of the cakeMathematical Plums
(Edited by R. Honsberger), The Mathematical Association of Amgrages 22—-37,
1979.

[13] Jack Robertson and William Webb. Approximating fair division with a limited num-
ber of cuts.J. Comp. Theory72(2):340-344, 1995.

[14] Jack Robertson and William Webkake-Cutting Algorithms: Be Fair If You Can
A. K. Peters, Nattick, MA, 1998.

[15] Jiri Sgall and Gerhard J. Woeginger. A lower bound for cake cuttindeurmpean
Symposium on Algorithms (ESApges 459-469, 2003.

[16] H. Steinhaus. The problem of fair divisioRconometrical6:101-104, 1948.

[17] F. E. Su. Rental harmony: Sperner’s lemma in fair divisilemerican Mathematical
Monthly, 106:930-942, 1999.

[18] Gerhard J. Woeginger. An approximation scheme for cake division with a linear
number of cuts. IrEuropean Symposium on Algorithms (ESpages 896901,
2002.

