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Out-of-Sample Prediction

f = −1

f = +1

f = ?

• A pattern exists (f)

•We don’t know it

•We have data to learn it (D)
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X ∈ Rn×d Y ∈ Rn×ω

viewers × movie ratings

credit applicants × credit features y = ±1 (approve or not)
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Data

X ∈ R231×174 Y ∈ R231×166
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Sparsity

Represent your solution using only a few . . .

c© Magdon-Ismail. Sparsity in Machine Learning: Slide 5 /23



Sparsity

Represent your solution using only a few . . .

Example: linear regression
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Xw = y

y is an optimal linear combination of the columns in X.

c© Magdon-Ismail. Sparsity in Machine Learning: Slide 6 /23



Sparsity

Represent your solution using only a few . . .

Example: linear regression
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Xw = y

y is an optimal linear combination of only a few columns in X.

(sparse regression; regularization (||w ||0 ≤ k); feature subset selection; . . . )
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Sparsity is Good

Sparse solutions generalize to out-of-sample better.

Sparse solutions are easier to interpret.

Computations are more efficient.

Problem: sparsity is a combinatorial constraint.
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Singular Value Decomposition (SVD)

X =
[
Uk Ud−k

]
[
Σk 0

0 Σd−k

] [
Vt

k

Vt

d−k

]

O(nd2)

U Σ Vt

(n× d) (d× d) (d× d)

Xk = UkΣkV
t

k

= XVkV
t

k

Xk is the best rank-k approximation to X.

Reconstruction of X using only a few features.

X X20 X40 X60

Vk is an orthonormal basis for the best k-dimensional subspace of the row space of X.
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Vk and Sparsity

Principal Components Analysis (PCA):

Z = XVk

(n× k)

Feature subset selection: Important “dimensions” of Vt

k are important for X

×s1 ×s2 ×s3 ×s4 ×s5


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Vt

k V̂t

k ∈ Rk×r

The sampled r columns are “good” if

I = Vt

kVk ≈ V̂t

kV̂k.

Sampling schemes: Largest norm (Jollife, 1972);
Randomized norm sampling (Rudelson, 1999; RudelsonVershynin, 2007);
Greedy (Batson et al, 2009; BDM, 2011).
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Approximate SVD

X = XVkV
t

k
︸ ︷︷ ︸

Xk

+E

Let V̂k be an approximate Vk

X = XV̂kV̂
t

k + Ê

V̂k is good if

|| Ê || ≤ (1 + ǫ)||E ||.
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Approximate SVD

1: Z = XR R ∼ N (d× r), Z ∈ Rn×r

2: Q = qr.factorize(Z)

3: V̂k ← svdk(Q
tX)

Theorem. Let r =
⌈
k(1 + 1

ǫ
)
⌉
and E = X− XV̂kV̂

t

k . Then,

E [||E ||] ≤ (1 + ǫ)||X− Xk ||

running time is O(ndk) = o(svd)

[BDM, FOCS 2011]
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Approximate SVD

k = 20 k = 40 k = 60

Exact SVD

Approx. SVD

c© Magdon-Ismail. Sparsity in Machine Learning: Slide 13 /23



Sparse PCA

A principal component is a “dense” combination of the feature dimensions.

A sparse principal component is a combination of a few feature dimensions.

Want Vk to have a few non-zeros in each column

Vk =
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Sparse PCA

1: Choose a few columns C of X; C ∈ Rn×r.

2: Find the best rank-k approximation of X in the span of C, XC,k.

3: Compute the SVDk of XC,k:

XC,k = UC,kΣC,kV
t

C,k.

4:

Z = XC,kVC,k = UC,kΣC,k.

Each feature in Z is a mixture of only the few original r feature dimensions in C.

||X− ZZ†X || ≤ ||X− ZVt

C,k || = ||X− XC,k ||.
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Sparse PCA

1: Choose a few columns C of X; C ∈ Rn×r.

2: Find the best rank-k approximation of X in the span of C, XC,k.

3: Compute the SVDk of

XC,k = UC,kΣC,kV
t

C,k.

4:

Z = XC,kVC,k.

Each feature in Z is a mixture of only the few original r feature dimensions in C.

||X− ZZ†X || ≤ ||X− ZVt

C,k || = ||X− XC,k || ≤
(
1 +O(2k

r
)
)
||X− Xk ||.

[BDM, FOCS 2011]
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Sparse PCA

k = 20 k = 40 k = 60

Dense PCA

Sparse PCA, r = 2k

Theorem. One can construct, in o(svd), sparse features that are as good as exact

dense PCA-features.
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Feature Subset Selection: K-Means

Choose a few features

Cluster the data using these features

PCA - dense features.

Sparse features: feature subset selection.

Compare the clusterings on all the dimensions.
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Feature Subset Selection: K-Means

Full PCA, k = 20 Sparse, r = 2k

3 clusters

4 Clusters

Theorem. There is a subset of features of size O(#clusters) which produces nearly

the optimal partition (within a constant factor). One can quickly produce features with

a log-approximation factor.

[BDM,2013]
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Feature Subset Selection: Regression
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Feature Subset Selection: Regression

PCA Sparse, r = 2k

k = 20

k = 40

Theorem. There are O(k) pure features which performs as well regressing on pcak

features (to within small additive error).

[BDM,2013]
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The Proofs

All the algorithms use the sparsifier of Vt

k in [BDM,FOCS2011].

1. Choose columns of Vt

k to preserve its singular values.

2. Ensure that the selected columns preserve the structural properties of the objective

with respect to the columns of X that are sampled.

(In all cases, the objective is a squared (Frobenius) error.)
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THANKS!

Focussed on columns of Vt

k to “sparsify” dimensions.

Can quickly approximate Vk.

Can efficiently use it to obtain

sparse PCA

small subset of features for k-means, which results in near optimal clustering.

small subset of features for regression, which results regression comparable to pcak.

Sparse solutions: easy to interpret; better generalizers; faster computations.

Using Uk instead of Vt

k one can “sparsify” data points to get coresets. [BDM,2013]


