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Out-of-Sample Prediction

e A pattern exists (f)
f=+1 e We don’t know it
e We have data to learn it (D)
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Sparsity

Represent your solution using only a few ...

&
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Sparsity

Represent your solution using only a few ...

Example: linear regression

y is an optimal linear combination of the columns in X.
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Sparsity

Represent your solution using only a few ...

Example: linear regression

Xw =y

y is an optimal linear combination of only a few columns in X.

(sparse regression; regularization (| w |, < k); feature subset selection; ... )
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Sparsity is Good

Sparse solutions generalize to out-of-sample better.
Sparse solutions are easier to interpret.

Computations are more efficient.

Problem: sparsity is a combinatorial constraint.
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Singular Value Decomposition (SVD)

Y 0 Vi
X = _ k d2
T
U ) A
(n x d) (d x d) (d x d)
Xk UiV,
= XViV,

X} 1s the best rank-k£ approximation to X.

Reconstruction of X using only a few features.

Xo X40 Xe0

V. is an orthonormal basis for the best k-dimensional subspace of the row space of X.
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V. and Sparsity

Principal Components Analysis (PCA):

Z = XVg
(n x k)

Feature subset selection: Important “dimensions” of V, are important for X

X81 fXS2 X 83 X84 X85 ;

4 kxr
Vi VI € R¥™
The sampled r columns are “good” if

[ = VIV, &~ VIV,

Sampling schemes: Largest norm (Jollife, 1972);
Randomized norm sampling (Rudelson, 1999; RudelsonVershynin, 2007);
Greedy (Batson et al, 2009; BDM, 2011).
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Approximate SVD

X = X\/;NZ +E

——
Xk

Let Vi be an approximate Vi

X = X\A/k\?z + D

Vi is good if

|E] < (1+olE].
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Approximate SVD

. 7 =XR R~N(dx7r), ZeR™
» Q = QR.FACTORIZE(Z)
s Vi <= SVDy(Q"X)

Theorem. Let r = [k(l + %” and B = X — XV V. Then,

EIE] <@ +e)]X—Xg|

running time is O(ndk) = o(SVD)

[BDM, FOCS 2011]
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Approximate SVD

" Exact SVD

Approx. SVD
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Sparse PCA

A principal component is a “dense” combination of the feature dimensions.
A sparse principal component is a combination of a few feature dimensions.

Want V. to have a few non-zeros in each column
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Sparse PCA

. Choose a few columns C of X; C € R™",
. IFind the best rank-£ approximation of X in the span of C, X¢ .
. Compute the SVDy, of X i

T
Xok = UcrlorVe

—

2= XcpVer = Ugp2ick

Each feature in 7 is a mixture of only the few original r feature dimensions in C.

| X = ZZX | < |X = ZVg, | = X = Xex .
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Sparse PCA

. Choose a few columns C of X; C € R"*".
. IFind the best rank-£ approximation of X in the span of C, X¢ .
> Compute the SVDy of

Xox = UcpXer Ve

Z = XcxVek

Each feature in 7 is a mixture of only the few original r feature dimensions in C.

| X = ZZ7X| < |X = ZVEi ] = [ X = Xex | < (1+06H) [ X =X,

[BDM, FOCS 2011]
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Sparse PCA

Dense PCA

Sparse PCA, r = 2k

Theorem. One can construct, in o(SVD), sparse features that are as good as exact
dense PCA-features.
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Feature Subset Selection: K-Means

Choose a few features

Cluster the data using these features
PCA - dense features.
Sparse features: feature subset selection.

Compare the clusterings on all the dimensions.
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Feature Subset Selection: K-Means
Full PCA, k=20 Sparse, r = 2k

3 clusters

4 Clusters

Theorem. There is a subset of features of size O(#clusters) which produces nearly
the optimal partition (within a constant factor). One can quickly produce features with
a log-approximation factor.

[BDM,2013]
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Feature Subset Selection: Regression
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Feature Subset Selection: Regression

PCA Sparse, r = 2k

L 1_f g

I
L £

Theorem. There are O(k) pure features which performs as well regressing on PCAy
features (to within small additive error).

[BDM,2013]
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The Proofs

All the algorithms use the sparsifier of V, in [BDM,FOCS2011].

1. Choose columns of V. to preserve its singular values.

2. Ensure that the selected columns preserve the structural properties of the objective
with respect to the columns of X that are sampled.

(In all cases, the objective is a squared (Frobenius) error.)
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THANKS!

Focussed on columns of V; to “sparsify” dimensions.
Can quickly approximate V.

Can efficiently use it to obtain
sparse PCA

small subset of features for k-means, which results in near optimal clustering.

small subset of features for regression, which results regression comparable to PCAj.

Sparse solutions: easy to interpret; better generalizers; faster computations.

Using Uy, instead of V,; one can “sparsify” data points to get coresets. [BDM,2013]



