Sparsity in Machine Learning

Sparsifiers SVD Linear Regression K-means

M. Magdon-Ismail

Rensselaer Polytechnic Institute

(Joint work with C. Boutsidis and P. Drineas)

June 20, 2013.

Out-of-Sample Prediction

$$f = ?$$

- A **pattern** exists (f)
- We don't know it
- We have data to learn it (\mathcal{D})

Data

viewers \times movie ratings credit applicants \times credit features

 $y = \pm 1$ (approve or not)

Data

 $\mathbf{Y} \in \mathbb{R}^{231 \times 166}$

 $\mathbf{X} \in \mathbb{R}^{231 \times 174}$

© Rensselaer Magdon-Ismail.

Sparsity

Represent your solution using **only a few** ...

Sparsity

Represent your solution using **only a few** ...

Example: linear regression

 \mathbf{y} is an optimal linear combination of the columns in X.

© Rensseher Magdon-Ismail.

Sparsity

Represent your solution using **only a few** ...

Example: linear regression

y is an optimal linear combination of **only a few** columns in X. (sparse regression; regularization ($||\mathbf{w}||_0 \le k$); feature subset selection; ...)

© Rensseher Magdon-Ismail.

Sparsity is Good

Sparse solutions generalize to out-of-sample better.Sparse solutions are easier to interpret.Computations are more efficient.

Problem: sparsity is a combinatorial constraint.

Singular Value Decomposition (SVD)

$$X = \begin{bmatrix} U_k & U_{d-k} \end{bmatrix} \begin{bmatrix} \Sigma_k & 0 \\ 0 & \Sigma_{d-k} \end{bmatrix} \begin{bmatrix} V_k^T \\ V_{d-k}^T \end{bmatrix} \qquad O(nd^2)$$
$$U \qquad \Sigma \qquad V^T$$
$$(n \times d) \qquad (d \times d) \qquad (d \times d)$$

$$\begin{array}{rcl} \mathbf{X}_k &=& \mathbf{U}_k \boldsymbol{\Sigma}_k \mathbf{V}_k^{\mathrm{T}} \\ &=& \mathbf{X} \mathbf{V}_k \mathbf{V}_k^{\mathrm{T}} \end{array}$$

 X_k is the best rank-k approximation to X. Reconstruction of X using **only a few** *features*.

 V_k is an orthonormal basis for the best k-dimensional subspace of the row space of X.

V_k and Sparsity

Principal Components Analysis (PCA):

 $\begin{array}{rcl} \mathbf{Z} &= & \mathbf{X} \mathbf{V}_k \\ & & \\ & & \\ & & \\ & & \\ & & \end{array}$

Feature subset selection: Important "dimensions" of V_k^T are important for X

The sampled r columns are "good" if

 $\mathbf{I} = \mathbf{V}_k^{\mathrm{T}} \mathbf{V}_k \approx \hat{\mathbf{V}}_k^{\mathrm{T}} \hat{\mathbf{V}}_k.$

Sampling schemes: Largest norm (Jollife, 1972); Randomized norm sampling (Rudelson, 1999; RudelsonVershynin, 2007); Greedy (Batson et al, 2009; **BDM**, **2011**).

Approximate SVD

Let $\hat{\mathbf{V}}_k$ be an approximate \mathbf{V}_k

 $\mathbf{X} = \mathbf{X} \hat{\mathbf{V}}_k \hat{\mathbf{V}}_k^{\mathrm{T}} + \hat{\mathbf{E}}$

 $\hat{\mathbf{V}}_k$ is good if

 $\| \widehat{\mathbf{E}} \| \leq (1+\epsilon) \| \mathbf{E} \|.$

Sparsity in Machine Learning: Slide 11 /23

Approximate SVD

1: Z = XR2: Q = QR.FACTORIZE(Z)3: $\hat{V}_k \leftarrow SVD_k(Q^TX)$ $R \sim \mathcal{N}(d \times r), \ Z \in \mathbb{R}^{n \times r}$

Theorem. Let
$$r = \left\lceil k(1 + \frac{1}{\epsilon}) \right\rceil$$
 and $\mathbf{E} = \mathbf{X} - \mathbf{X} \hat{\mathbf{V}}_k \hat{\mathbf{V}}_k^{\mathrm{T}}$. Then,
 $\mathbb{E}\left[\|\mathbf{E}\| \right] \le (1 + \epsilon) \|\mathbf{X} - \mathbf{X}_k\|$

running time is O(ndk) = o(SVD)

[BDM, FOCS 2011]

Approximate SVD

A principal component is a "dense" combination of the feature dimensions. A sparse principal component is a combination of a few feature dimensions. Want V_k to have a few non-zeros in each column

- ^{1:} Choose a few columns C of X; $C \in \mathbb{R}^{n \times r}$.
- ² Find the best rank-k approximation of X in the span of C, $X_{C,k}$.
- ^{3:} Compute the SVD_k of $X_{C,k}$:

$$\mathbf{X}_{\mathbf{C},k} = \mathbf{U}_{\mathbf{C},k} \boldsymbol{\Sigma}_{\mathbf{C},k} \mathbf{V}_{\mathbf{C},k}^{\mathrm{T}}.$$

4:

$$\mathbf{Z} = \mathbf{X}_{\mathbf{C},k} \mathbf{V}_{\mathbf{C},k} = \mathbf{U}_{\mathbf{C},k} \boldsymbol{\Sigma}_{\mathbf{C},k}.$$

Each feature in Z is a mixture of **only the few** original r feature dimensions in C.

$$\|X - ZZ^{\dagger}X\| \le \|X - ZV_{C,k}^{T}\| = \|X - X_{C,k}\|.$$

- ^{1:} Choose a few columns C of X; $C \in \mathbb{R}^{n \times r}$.
- ² Find the best rank-k approximation of X in the span of C, $X_{C,k}$.
- ^{3:} Compute the SVD_k of

$$\mathbf{X}_{\mathbf{C},k} = \mathbf{U}_{\mathbf{C},k} \boldsymbol{\Sigma}_{\mathbf{C},k} \mathbf{V}_{\mathbf{C},k}^{\mathrm{T}}$$

$$\mathbf{Z} = \mathbf{X}_{\mathbf{C},k} \mathbf{V}_{\mathbf{C},k}.$$

Each feature in Z is a mixture of **only the few** original r feature dimensions in C.

$$\|X - ZZ^{\dagger}X\| \le \|X - ZV_{C,k}^{T}\| = \|X - X_{C,k}\| \le \left(1 + O(\frac{2k}{r})\right) \|X - X_{k}\|.$$

[BDM, FOCS 2011]

4:

Theorem. One can construct, in o(SVD), sparse features that are as good as exact dense PCA-features.

Feature Subset Selection: K-Means

Choose a few features Cluster the data using these features PCA - dense features. Sparse features: feature subset selection.

Compare the clusterings on all the dimensions.

Theorem. There is a subset of features of size O(#clusters) which produces nearly the optimal partition (within a constant factor). One can quickly produce features with a log-approximation factor.

[BDM,2013]

Feature Subset Selection: Regression

Feature Subset Selection: Regression

Theorem. There are O(k) pure features which performs as well regressing on PCA_k features (to within small additive error).

[BDM,2013]

The Proofs

All the algorithms use the sparsifier of V_k^T in [BDM,FOCS2011].

1. Choose columns of V_k^T to preserve its singular values.

2. Ensure that the selected columns preserve the structural properties of the objective with respect to the columns of X that are sampled.

(In all cases, the objective is a squared (Frobenius) error.)

THANKS!

Focussed on columns of $\mathbf{V}_k^{\scriptscriptstyle\mathrm{T}}$ to "sparsify" dimensions.

Can quickly approximate V_k .

Can efficiently use it to obtain

sparse PCA

small subset of features for k-means, which results in near optimal clustering.

small subset of features for regression, which results regression comparable to PCA_k .

Sparse solutions: easy to interpret; better generalizers; faster computations.

Using U_k instead of V_k^T one can "sparsify" data points to get coresets. [BDM,2013]