Learning From Data Lecture 10 Nonlinear Transforms

The Z-space

Polynomial transforms
Be careful

M. Magdon-Ismail

CSCI 4100/6100

recap: The Linear Model

linear in \mathbf{x} : gives the line/hyperplane separator
 \downarrow
 $$
s=\mathbf{W}^{\mathrm{T}} \mathbf{x}
$$
 \uparrow

linear in \mathbf{w} : makes the algorithms work

The Linear Model has its Limits

(a) Linear with outliers

(b) Essentially nonlinear

To address (b) we need something more than linear.

Change Your Features

Years in Residence, Y

$Y \gg 3$ years

no additional effect beyond $Y=3$;
$Y \ll 0.3$ years
no additional effect below $Y=0.3$.

Change Your Features Using a Transform

Mechanics of the Feature Transform I

Transform the data to a \mathcal{Z}-space in which the data is separable.

$$
\mathbf{x}=\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right]
$$

$$
\longrightarrow \quad \mathbf{z}=\mathbf{\Phi}(\mathbf{x})=\left[\begin{array}{c}
1 \\
x_{1}^{2} \\
x_{2}^{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
\Phi_{1}(\mathbf{x}) \\
\Phi_{2}(\mathbf{x})
\end{array}\right]
$$

Mechanics of the Feature Transform II

Separate the data in the \mathcal{Z}-space with $\tilde{\mathbf{w}}$:

$$
\tilde{g}(\mathbf{z})=\operatorname{sign}\left(\tilde{\mathbf{w}}^{\mathrm{T}} \mathbf{z}\right)
$$

Mechanics of the Feature Transform III

To classify a new \mathbf{x}, first transform \mathbf{x} to $\boldsymbol{\Phi}(\mathbf{x}) \in \mathcal{Z}$-space and classify there with \tilde{g}.

$$
\begin{aligned}
g(\mathbf{x}) & =\tilde{g}(\mathbf{\Phi}(\mathbf{x})) \\
& =\operatorname{sign}\left(\tilde{\mathbf{w}}^{\mathrm{T}} \boldsymbol{\Phi}(\mathbf{x})\right)
\end{aligned}
$$

$$
\tilde{g}(\mathbf{z})=\operatorname{sign}\left(\tilde{\mathbf{w}}^{\mathrm{T}} \mathbf{z}\right)
$$

The General Feature Transform

$\underline{\mathcal{X}}$-space is \mathbb{R}^{d}
$\mathbf{x}=\left[\begin{array}{c}1 \\ x_{1} \\ \vdots \\ x_{d}\end{array}\right]$
$\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$

$$
\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{N}
$$

$y_{1}, y_{2}, \ldots, y_{N}$
no weights

$$
\mathbf{z}=\mathbf{\Phi}(\mathbf{x})=\left[\begin{array}{c}
1 \\
\Phi_{1}(\mathbf{x}) \\
\vdots \\
\Phi_{\tilde{d}}(\mathbf{x})
\end{array}\right]=\left[\begin{array}{c}
1 \\
z_{1} \\
\vdots \\
z_{\tilde{d}}
\end{array}\right]
$$

$$
y_{1}, y_{2}, \ldots, y_{N}
$$

$$
\tilde{\mathbf{w}}=\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{\tilde{d}}
\end{array}\right]
$$

$$
g(\mathbf{x})=\operatorname{sign}\left(\tilde{\mathbf{w}}^{\mathrm{T}} \boldsymbol{\Phi}(\mathbf{x})\right)
$$

Generalization

$$
\begin{array}{ccc}
d_{\mathrm{VC}} \\
\\
d+1 & \longrightarrow & \tilde{d}_{\mathrm{VC}} \\
\\
\tilde{\boldsymbol{d}}+1
\end{array}
$$

Choose the feature transform with smallest \tilde{d}

Many Nonlinear Features May Work

Many Nonlinear Features May Work

A rat! A rat!

This is called data snooping: looking at your data and tailoring your \mathcal{H}.

Must Choose Φ BEFORE Your Look at the Data

After constructing features carefully, before seeing the data ...
... if you think linear is not enough, try the 2 nd order polynomial transform.

The General Polynomial Transform $\mathbf{\Phi}_{k}$

We can get even fancier: degree- k polynomial transform:

$$
\begin{aligned}
& \mathbf{\Phi}_{1}(\mathbf{x})=\left(1, x_{1}, x_{2}\right) \\
& \boldsymbol{\Phi}_{2}(\mathbf{x})=\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right) \\
& \boldsymbol{\Phi}_{3}(\mathbf{x})=\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3}\right) \\
& \mathbf{\Phi}_{4}(\mathbf{x})=\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3}, x_{1}^{4}, x_{1}^{3} x_{2}, x_{1}^{2} x_{2}^{2}, x_{1} x_{2}^{3}, x_{2}^{4}\right)
\end{aligned}
$$

- Dimensionality of the feature space increases rapidly $\left(d_{\mathrm{VC}}\right)$!
- Similar transforms for d-dimensional original space.
- Approximation-generalization tradeoff

Higher degree gives lower (even zero) $E_{\text {in }}$ but worse generalization.

Be Careful with Feature Transforms

Be Careful with Feature Transforms

High order polynomial transform leads to "nonsense".

Digits Data " 1 " Versus "All"

Linear model

$$
\begin{gathered}
E_{\text {in }}=2.13 \% \\
E_{\text {out }}=2.38 \%
\end{gathered}
$$

3rd order polynomial model

$$
\begin{gathered}
E_{\text {in }}=1.75 \% \\
E_{\text {out }}=1.87 \%
\end{gathered}
$$

Use the Linear Model!

- First try a linear model - simple, robust and works.
- Algorithms can tolerate error plus you have nonlinear feature transforms.
- Choose a feature transform before seeing the data. Stay simple.

Data snooping is hazardous to your $E_{\text {out }}$.

- Linear models are fundamental in their own right; they are also the building blocks of many more complex models like support vector machines.
- Nonlinear transforms also apply to regression and logistic regression.

