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recap: The Linear Model

linear in x: gives the line/hyperplane separator

↓

s = wtx

↑
linear in w: makes the algorithms work
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The Linear Model has its Limits

(a) Linear with outliers (b) Essentially nonlinear

To address (b) we need something more than linear.
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Change Your Features

Years in Residence, Y

In
co
m
e

Y ≫ 3 years
no additional effect beyond Y = 3;

Y ≪ 0.3 years
no additional effect below Y = 0.3.
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Change Your Features Using a Transform

Years in Residence, Y

In
co
m
e

z1
In
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z1

Y
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Mechanics of the Feature Transform I

Transform the data to a Z-space in which the data is separable.
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Mechanics of the Feature Transform II

Separate the data in the Z-space with w̃:

g̃(z) = sign(w̃tz)

−→
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Mechanics of the Feature Transform III

To classify a new x, first transform x to Φ(x) ∈ Z-space and classify there with g̃.

g(x) = g̃(Φ(x))

= sign(w̃tΦ(x))
g̃(z) = sign(w̃tz)

←−
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The General Feature Transform

X -space is Rd Z-space is Rd̃
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g(x) = sign(w̃tΦ(x))
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Generalization

dvc d̃vc

d + 1 −→ d̃+ 1

Choose the feature transform with smallest d̃
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Many Nonlinear Features May Work
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z1 = x21 + x22 − 0.6

A rat! A rat!

This is called data snooping: looking at your data and tailoring your H.
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Many Nonlinear Features May Work
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z1 = x21 + x22 − 0.6

A rat! A rat!

This is called data snooping: looking at your data and tailoring your H.
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Must Choose Φ BEFORE Your Look at the Data

After constructing features carefully, before seeing the data . . .

. . . if you think linear is not enough, try the 2nd order polynomial transform.
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The General Polynomial Transform Φk

We can get even fancier: degree-k polynomial transform:
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– Dimensionality of the feature space increases rapidly (dvc)!

– Similar transforms for d-dimensional original space.

– Approximation-generalization tradeoff
Higher degree gives lower (even zero) Ein but worse generalization.
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Be Careful with Feature Transforms
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Be Careful with Feature Transforms

High order polynomial transform leads to “nonsense”.
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Digits Data “1” Versus “All”

Average Intensity
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Linear model

Ein = 2.13%
Eout = 2.38%

3rd order polynomial model

Ein = 1.75%
Eout = 1.87%
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Use the Linear Model!

• First try a linear model – simple, robust and works.

• Algorithms can tolerate error plus you have nonlinear feature transforms.

• Choose a feature transform before seeing the data. Stay simple.
Data snooping is hazardous to your Eout.

• Linear models are fundamental in their own right; they are also the building blocks
of many more complex models like support vector machines.

• Nonlinear transforms also apply to regression and logistic regression.
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