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ABSTRACT

We present an updated artifact-free seafloor surface recon-
struction scheme which preserves more terrain features than
our previous attempt using overdetermined Laplacian Par-
tial Differential Equation (ODETLAP) and automates the
adjustment of smoothing parameter. The high resolution
version of such a surface fitting problem remains a challenge
since we are still confined to extremely unevenly distributed
depth samples collected along and near the ships, in which
case numerous generic reconstruction algorithms generate
unacceptable surfaces featuring abnormal depth fluctuations
which are correlated with the trackline locations. Previously
we reported the use a modified ODETLAP scheme, which
integrates data-density-dependent smoothing into the recon-
struction process, to generate surfaces which are free from
such acquisition footprint. However, that scheme still suffers
from terrain feature loss due to smoothing, and the reliance
of human to decide appropriate smoothing factor. This paper
aims to fix these two problems with a two-step ODETLAP
procedure. The procedure first applies an accuracy-biased
ODETLAP to complete the missing depth data from the
given samples. After that, the vigorous depth fluctuations
along the tracklines are removed by applying a smoothing-
biased ODETLAP on the completed depth grid. To decide
the optimal smoothing factor automatically, the procedure
computes the areas of the individual bumps on the recon-
structed surface. A surface suffering heavily from the artifacts
has many small bumps but few big ones. Smoothing reduces
such skewness. We find that for many datasets, the artifact
is mostly gone when the coefficient of variation of the areas
drops to around 1.3. Using that value to gauge the smoothing
factor, the automated scheme successfully generates artifact-
free seafloor surfaces within a limited error budget.
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1. INTRODUCTION

A bathymetric chart, the underwater equivalent of a to-
pographic map, represents the depth and features of the
ocean floor. This data helps solve not only applications such
as tsunami hazard assessment, communications cable and
pipeline route planning, resource exploration, habitat man-
agement, and territorial claims under the Law of the Sea,
but also fundamental Earth science questions, such as what
controls seafloor shape and how seafloor shape influences
global climate [12].

While wide-area, high-resolution ground heights can now be
measured quickly with aerial electromagnetic survey tech-
nologies such as standard photogrammetry and LIDAR [10],
the same is not true with seafloor depths. Good discussions
on this issue are available at [12, 13]. In short, the problem
lies in the 3000-5000 meters of salty water which masks the
penetration of electromagnetic waves.

The altimeter method is an attempt for wide-area coverage.
The method exploits the fact that the ocean surface has
broad bumps and dips that mimic the topography of the
ocean floor. By surveying the shape of the water surface
instead, we avoid the need of shooting electromagnetic waves
into the water, yet allowing us to deduce how the underlying
seafloor looks like. However, features on the ocean floor that
are narrower than the average ocean depth of 3-5 kilometers
do not produce measurable bumps on the ocean surface.

To obtain high-resolution data, we have no choice but to sail
across the ocean, and on the way send out acoustic pulses
to the seafloor. From the time it takes the pulses to leave
the ship, be reflected by the seafloor and eventually get back
the ship again, the ocean depths can be estimated. However,
since ships travel slowly, the ocean remains largely uncharted.
It has been estimated that 300 years are needed to cover
the whole ocean area. With the most popular multibeam
bathymetry technique [15], we can collect many data points
with 10m resolution in a swath up to 10km wide along a ship’s
trackline. However, between the tracklines there is no data.
In the southern oceans, these survey lines can sometimes be
close together, but more often they are hundreds of kilometers
apart [14]. Figure 1 demonstrates the spatial distribution of
such shipboard data samples in a few 10 x 10 degree regions.



Figure 1: Locations with available depth samples.
(Top left) Region 1: 30S-40S, 90E-100E. (Top right)
Region 2: 40S-50S, 80E-90E. (Bottom) Region 3:
40S-50S, 90E-100E.

Since a full data grid is assumed for many terrain analyses,
we need a surface reconstruction. The problem is defined
over a spatial domain of dimensions n X n. Available are the
measured depth values of k < n? positions (x1,%1), (22, y2),

.oy (zk, yx), denoted as hay,y1, Rag,ysy - - - Rag,y,- The task
is to predict the depths for all the n X n positions in the
domain, including those of the k known positions and those
of the remaining n? — k unknown positions. This assumes
for each possible location (i, ), the corresponding predicted
depth z; ; is single-valued; caves or overhangs are not allowed.

Acquisition footprint is the major problem of using general
reconstruction schemes on those extremely unevenly dis-
tributed depth data, even with a few current bathymetry
charts such as the one published by National Oceanic and
Atmospheric Administration (NOAA) [9]. It refers to the
artifact which makes the tracklines visible. The artifact is
especially obvious under shaded relief, a graphic technique
which is often used to highlight terrain surface variations [17].
Figure 2 shows how the reconstructed seafloor surfaces look
like under a few such schemes such as Kriging [4] and natural
neighbor [16]. While both come up with a surface of a similar
general shape, we observe abnormal high-frequency depth
fluctuations which are correlated with the few trackline loca-
tions. We aim at a surface from which we cannot deduce the
trackline locations. Meanwhile, its general shape as portrayed
by relatively low frequencies should be preserved.

To remove the artifact, a typical routine is to smooth the
reconstructed surface. The difficulty lies in the fact that it
is not a simple high-frequency removal problem. Each local
region has its unique smoothing requirement. We may not
need to smooth certain noisy trackline locations, as long as
their neighborhood is equally noisy. In contrast, we cannot
accept even small fluctuations along the tracklines if they

are surrounded by relatively calm surfaces which make the
tracklines stand out. One known attempt, CleanTOPO2 [11],
involves post-processing, manually removing the artifacts
with repeated applications of a morphological averaging fil-
ter. Though easy for humans to decide where filtering should
be done and when to stop, the process is subjective and
time-consuming. As we are obtaining new trackline depth
data from time to time, it may become impractical to do such
a manual process every time the database expands. This mo-
tivates the automation of artifact-free surface reconstruction.

Figure 2: Region 1 reconstructions with (Left) Krig-
ing, (Right) natural neighbor.

Our previous work proposed Overdetermined Laplacian Par-
tial Differential Equation (ODETLAP) as a partial solution.
Its original version was designed with smoothing considered
right in the reconstruction process, and yields much bet-
ter reconstruction accuracy than conventional algorithm. At
that time, we further improved its accuracy by allowing the
smoothing factor to vary according to local smoothing need.
Section 2 will give information about this solution.

This paper aims to improve that ODETLAP implementation
in two ways. First, we find that quite a few terrain features
have been lost in the above variable-smoothing ODETLAP.
We fix it by a two-step approach which reconstructs a pre-
liminary surface with ODETLAP of a high-accuracy setting,
and then applying a smoothing-biased ODETLAP over that
preliminary surface. Second, our previously-reported imple-
mentation relied on human to set smoothing parameters. We
automate the process based on the bump area distribution.
Details will be given in Section 3, before we conclude the
paper in Section 4.

2. ODETLAP

We first presented Overdetermined Laplacian Partial Differ-
ential Equation (ODETLAP) as a superior above-ground
terrain reconstruction and lossy terrain compression [2, 20,
21], since it predicts neighboring terrain heights better than
other conventional prediction schemes. Besides, it can work
with contour lines (continuous or intermittently broken), infer
mountain tops inside a ring of contours, and enforce continu-
ity of slope across contours. All these are favorable features
of natural-looking terrains.

Its formulation sets up an overdetermined system Az = b, as
shown in Figure 3, to solve for the depths of the whole seafloor
depth grid z in the bathymetry case presented here. The
system includes an exact equation for each of the k known-
depth positions. That equation aims to set the depth value
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Figure 3: ODETLAP.

of the respective position to its known value. The system
also contains an averaging equation for all n? positions. That
equation attempts to regularize the respective depth to the
average of its immediate four neighbors. Through adjusting
the weights r; ; of averaging equations, we can change how
the errors are distributed over the equations and hence obtain
terrain surfaces of the desired accuracy-smoothness tradeoff.

If the r values are low (e.g. 1), the system is accuracy-centric.
The reconstructed values of the known-depth locations will
be close to the measured values. However, acquisition foot-
print appears extensively as vigorous fluctuations along the
tracklines, as shown in Figure 4, top left. Note that in areas
with no data, the surface is relatively plain. This is superior
to the surfaces done with a few conventional reconstruction
schemes mentioned earlier, in which the artifact also affects
those regions. To alleviate such artifact, we can use the
smoothing-centric version in which the r values are high (e.g.
50). Accuracy at known-depth locations (especially those
with exceptional values) are sacrificed for a smooth surface
as implied by the averaging equations, as shown in Figure 4,
middle left.

In the original version of ODETLAP, we set all 7; ; to the
same value. In our previous paper [5], we demonstrated how
unnecessary error budget could be saved by adjusting the r; ;
values for individual locations. We observed that the trackline
locations were usually of high data density and hence required
relatively higher smoothing. We asked the users to specify
the smoothing factors for locations with lowest local sample
density and locations with highest sample density, and then
allowed locations with intermediate data density to vary
between these two values. As a result, we achieved a surface
of similar smoothness with a smaller error budget. Figure 4,
bottom left, shows a typical reconstruction results with such
a variable-smoothing ODETLAP system.

The time complexity of ODETLAP is O(n® + k). In practice,
we transform the system to ATAz = ATb before solving for
z. In this equivalent system A’z = b’ where A’ = ATA and
b’ = ATb, A’ is symmetric positive definite. We can then
take advantage of the fast Cholesky factorization to keep the
actual solving time to within seconds even for large datasets
[7]. Note that the matrix A is indeed a n® x n? sparse matrix
because the number of non-zero entries in each row is upper
bounded by the number of possible immediate neighbors,
which is 4. With the recent advances of graphical display
units (GPU) in solving sparse linear systems [1, 6, 8], this

Figure 4: [Left] Region 1 reconstructions with
ODETLAP: (Top) accuracy-centric. (Middle)
smoothing-centric. (Bottom) variable smoothness
factors. [Right] Region 1 reconstructed seafloor sur-
faces with mean error around 130m. (Top) a mean
filter with a square structure element of length 10,
(Middle) variable-smoothness ODETLAP, (Bottom)
two-step ODETLAP.

approach may offer even faster and more efficient solutions
to large data grids.

3. AUTOMATED TWO-STEP ODETLAP
Figure 5 gives the flow diagram of the two-step ODETLAP
as our solution of the automated artifact-free seafloor surface
reconstruction problem. Below we will describe the algorithm
in terms of its two feature characteristics: terrain feature
preservation and automated smooth factor determination.

3.1 Terrain feature preservation

Our new algorithm first reconstructs a highly-accurate pre-
liminary surface from the available depth data, and then
smoothes that preliminary surface.

In the first step which reconstructs a preliminary seafloor sur-
face, we choose ODETLAP since this reconstruction scheme
works best in deducing the missing seafloor depth data, as
described in Section 2. In case the resultant surface needs no
further smoothing, we are likely to have obtained the most
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Figure 5: Two-step ODETLAP workflow.

SRTM1 Natural neighbor ODETLAP
1201:%38}1@3?:1600 31m (413m) 24m (292m)
2800:\;‘;5?),11;(:)?:1200 20m (309m) 18m (242m)
320126102&1\11?(’)81:800 17m (299m) 15m (164m)

40\17‘:]810101,1\11?:’4100 4m (93m) 3m (79m)
401}78\]0101712)311:800 14m (173m) 11m (120m)
401:?(])5,1181:)?:11200 5m (134m) 4m (134m)

Table 1: Mean errors and maximum errors (in paren-
theses) of the terrain surfaces reconstructed using
height samples on the tracklines of Region 1.

accurate surface. We set the weighting between the exact
equations and the averaging equations to 1:1. Beyond that
point, increasing the weightings of the exact equations does
not change the accuracy of the preliminary terrain too much.

To investigate the effect of switching the terrain reconstruc-
tion scheme in the first step from ODETLAP to the others,
we first remove the height values of a few full terrains except
those falling on the tracklines shown in Figure 1. (Note we
do not use seafloor surfaces as no ground truth is available
for error comparison.) Then we reconstruct the terrain with
different techniques and compute the errors with respect to
the ground truth. ODETLAP does the best in guessing the
missing heights, as reflected by the generally lower mean
errors and maximum errors shown in Table 1. This result
supports our choice of ODETLAP even if we are now working
on extremely unevenly distributed depth samples.

In the second step which smoothes the preliminary surface,
we once again pick ODETLAP since this scheme provides
better smoothing of the artifacts than others under the same
error budget. Figure 4, right, compares the smoothing results
with a mean filter (similar to the one used in CleanTOPO2
mentioned in Section 2) and ODETLAP under similar error
budget. While the acquisition artifact is almost gone with
ODETLAP smoothing, it is not the case with the mean filter.
Table 2 shows the respective mean error budgets needed
by the sample seafloors to achieve the respective optimal
smoothing levels (using the metric defined in the next sub-
section). Our ODETLAP smoothing scheme just needs half
of the error budget as the average filter counterpart. The
results above demonstrate the capability of our scheme in

Region | ODETLAP Mean filter

Region 1 130m 297m
Region 2 75m 178m
Region 3 214m 360m

Table 2: Mean error budgets to reach optimal
smoothing levels.

distributing the limited error budget to smoothing locations.

The only variable of this algorithm is the smoothing factor
in the second step. Figures 6-8, left, show how the surface
varies as smoothing increases. A higher smoothing factor
means a higher mean error but at the same time better
smoothing-out of the small bumps along the tracklines. When
compared with our original implementation which requires
the specification of the lower and upper smoothing factors, we
now have one fewer degree of freedom, make it easier to adjust.
Also note that on raising the error budget, the high-frequency
acquisition footprint is gone before those lower-frequency
terrain features which account for the general terrain shape.
Such a smoothing priority makes the scheme superior over our
previously-proposed variable-smoothing ODETLAP. In the
surface reconstructed with variable-smoothing ODETLAP
such as the one in Figure 4 middle right, even though the
acquisition footprint is also almost gone, we also lose quite a
few terrain features.

3.2 Automated smoothing determination

The above two-step procedure features a single parameter
controlling the smoothing of the final reconstructed seafloor
surface. To allow automated determination of the optimal
smoothing level, first we need to convert the acquisition
footprint to a form that is recognizable by computers. After
several experiments, we find that the graph of Gaussian
curvature may be used. As shown on the right hand side of
Figures 6-8, the artifact appears as relatively small patches
of positive Gaussian curvature concentrated at the trackline
locations. In fact, patches of Gaussian curvature is regarded
as a view-independent indicator of regions with potential
shaded relief in a few other research [3].

As observed from the same set of figures, smoothing helps
enlarge those patches or simply remove them. With a small
smoothing factor, along the tracklines we have a huge number
of small such patches. This is in contrast with regions with no
data where there are few, much bigger patches. On increasing
smoothing, mean error at known-height location increases.
Meanwhile, the bumps along the tracklines become fewer
and bigger, while those in no-data regions hardly change in
terms of both size and quantity. This leads to a drop of the
variations among the patch areas.

To utilize the above phenomenon in automated smoothing
factor determination, we first apply a morphological erosion
[19] with a 3-pixel-width square component on the positive
Gaussian curvature graph to help discriminate the patches.
We then compute the coefficient of variation c¢,, which is a
normalized measure of dispersion of a probability distribution
[18], of the patch areas. The acquisition footprint is found
to be almost gone when that coefficient drops to around 1.3.
Figures 6-8, bottom, correspond to a smoothing level with
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Figure 6: (Left) Region 1 reconstructed seafloor sur-
faces. (Right) Respective positive Gaussian curva-
ture locations. The mean errors, from top to bottom,
are around 44m, 78m and 130m respectively.

around that coefficient value. Note that different datasets
may need different error budgets to remove the artifacts. For
example, while Region 3 requires a mean error budget as
high as 214m to have the artifact removed, Region 2 needs
75m only. Using that coefficient as a gauge helps reduce
unnecessary smoothing and hence reduce the errors needed
to achieve an artifact-free surface.

4. CONCLUSION

We have presented an improved ODETLAP procedure for
the automated reconstruction of artifact-free seafloor sur-
faces within a limited error budget. It has the smoothing
factor as its only parameter, making it easier to adjust than
our previous attempt which requires two parameter inputs.
By smoothing an accurate reconstruction with ODETLAP,
we allow terrain features to be better preserved than our
previously-reported scheme that reconstructs from the given
measured values directly. To automate the adjustment of the
smoothness parameter, we analyze the Gaussian curvature
of the reconstructed surfaces. Areas of positive Gaussian
curvatures highly resemble the locations of the bumps that
we observe on the shaded reconstructed surface. Increasing
smoothing enlarges the small bumps and reduces their num-
bers along the tracklines, thus alleviating the acquisition
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Figure 7: (Left) Region 2 reconstructed seafloor sur-
faces. (Right) Respective positive Gaussian curva-
ture locations. The mean errors, from top to bottom,
are around 43m, 55m and 75m respectively.

footprint. When the coefficient of variation of such areas is
around 1.3, the artifact is almost gone. We use this observa-
tion to determine the minimum smoothing needed for the
artifact-free surface.

In the future, we will look into the automatic stopping crite-
rion further. More tests will be done on a variety of trackline
depth samples. Even more accurate stopping criteria will
be investigated. Our current work embraces data from the
tracklines but not the altimeter. It is interesting to see how
data from different sources could combine.

This research was partially supported by NSF grants CMMI-
0835762 and IIS-1117277.

5. REFERENCES

[1] N. Bell and M. Garland. Implementing sparse
matrix-vector multiplication on throughput-oriented
processors. In Proceedings of the Conference on High
Performance Computing Networking, Storage and
Analysis, SC ’09, pages 18:1-18:11, New York, NY,
USA, 2009. ACM.

[2] M. B. Gousie and W. R. Franklin. Augmenting
grid-based contours to improve thin plate DEM



r

W

A T
.‘nf‘ﬁ‘.‘o"""" ’ .

3H 0k, Peey .. %
e 4 .:“; o

200 300 400 500
PosCurv: exactR1 =1 exactR2 =0.010925 err =214.4168

-

Figure 8: (Left) Region 3 reconstructed seafloor sur-
faces. (Right) Respective positive Gaussian curva-
ture locations. The mean errors, from top to bottom,
are around 43m, 86m and 214m respectively.

generation. Photogrammetric Engineering & Remote
Sensing, 71(1):69-79, 2005.

Y. Iwahori, S. Fukui, C. Fujitani, Y. Adachi, and R. J.
Woodham. Relative magnitude of gaussian curvature
from shading images using neural network. In
Proceedings of the 9th international conference on
Knowledge-Based Intelligent Information and
Engineering Systems - Volume Part I, KES’05, pages
813-819, Berlin, Heidelberg, 2005. Springer-Verlag.

D. G. Krige. A statistical approach to some mine
valuations and allied problems at the Witwatersrand.
Master’s thesis, University of Witwatersrand, 1951.
T.-Y. Lau, Y. Li, Z. Xie, and W. R. Franklin. Sea floor
bathymetry trackline surface fitting without visible
artifacts using ODETLAP. In Proceedings of the 17th
ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, GIS 09,
pages 508-511, New York, NY, USA, 2009. ACM.

Y. Li. CUDA-accelerated HD-ODETLAP: o High
Dimensional Geospatial Data Compression Framework.
PhD thesis, Rensselaer Polytechnic Institute, 2011.

Y. Li, T. Y. Lau, C. S. Stuetzle, P. Fox, and W. R.
Franklin. 3D oceanographic data compression using
3D-ODETLAP. In 18th ACM SIGSPATIAL

8

9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

International Conference on Advances in Geographic
Information Systems, 2010.

D. Luebke, M. Harris, N. Govindaraju, A. Lefohn,

M. Houston, J. Owens, M. Segal, M. Papakipos, and
I. Buck. GPGPU: general-purpose computation on
graphics hardware. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, SC ’06,
New York, NY, USA, 2006. ACM.

National Oceanic and Atmospheric Administration.
Bathymetry data viewer.
http://maps.ngdc.noaa.gov/viewers/bathymetry/,
(retrieved 7/2/2012), 2012.

National Oceanic and Atmospheric Administration
Coastal Services Center. LIDAR 101: An introduction
to LIDAR technology, data, and applications.
http://www.csc.noaa.gov/digitalcoast/data/
coastallidar/_pdf/What_is_Lidar.pdf, (retrieved
2/18/2011), 2008.

T. Patterson. CleanTOPO2: Edited SRTM30 plus
World Elevation Data.
http://wuw.shadedrelief.com/cleantopo2/,
(retrieved 7/2/2012), 2007.

D. T. Sandwell. Ocean Bumps and Dips. The World &
1, 3:252-255, 1992.

W. H. Smith and D. T. Sandwell. Global sea floor
topography from satellite altimetry and ship depth
soundings. Science Magazine, 277, issue 5334, 1997.
W. H. Smith and D. T. Sandwell. Predicted seafloor
topography: NGDC data announcement number:
94-MGG-04. http:
//www.ngdc.noaa.gov/mgg/fliers/94mgg04 . .html,
(retrieved 6/8/2009), July 2008.

University of Rhode Island, Office of Marine Programs.
Discovery of sound in the sea: Echo sounder-multibeam.
http:
//wuw.dosits.org/gallery/tech/osf/esml.html,
(retrieved 6/8/2009), Mar. 2008.

Wikipedia. Natural neighbor.
http://en.wikipedia.org/wiki/Natural_neighbor,
(retrieved Dec 1, 2010), 2010.

Wikipedia. Cartographic relief depiction.
http://en.wikipedia.org/wiki/Cartographic_
relief_depiction, (retrieved 7/2/2012), 2012.
Wikipedia. Coefficient of variation. http://en.
wikipedia.org/wiki/Coefficient_of _variation,
(retrieved 7/2/2012), 2012.

Wikipedia. Erosion (morphology). http://en.
wikipedia.org/wiki/Erosion_%28morphology’29,
(retrieved 7/2/2012), 2012.

Z. Xie, M. A. Andrade, W. R. Franklin, B. Cutler,

M. Inanc, D. M. Tracy, and J. Muckell. Approximating
terrain with over-determined Laplacian PDEs. In 17th
Fall Workshop on Computational Geometry, 2—3 Nov
2007. poster session, no formal proceedings.

Z. Xie, W. R. Franklin, B. Cutler, M. A. Andrade,

M. Inanc, and D. M. Tracy. Surface compression using
over-determined Laplacian approximation. In
Proceedings of SPIE Vol. 6697 Advanced Signal
Processing Algorithms, Architectures, and
Implementations X VII, San Diego CA, 27 August 2007.
International Society for Optical Engineering. paper
6697-15.



