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I. INTRODUCTION

Cyber-Physical Systems (CPS) define a rich class of systems
at the intersection of several domains: safety-critical, embed-
ded, real-time, wireless, control, hybrid systems. Multiple CPS
crashes and security vulnerabilities over the last few years have
exposed the fact that we do not have fail-proof mechanisms for
ensuring the safety and security of systems of such complexity.
In particular, systems have failed due to different sensor faults
(e.g., the recent Tesla crash [2]), actuator faults (e.g., Da
Vinci Surgical Systems actuator accidents [1]), and imperfect
human-machine interaction (e.g., the crash of Air France Flight
447 off the coast of Brazil [4]). Furthermore, systems have
been compromised through sensor attacks [13], [14], commu-
nication channel attacks [3] or software vulnerabilities [5].

Due to the complexity of CPS, developing approaches to
ensure and verify their safety and security has proven chal-
lenging. Standard model-based techniques to verification [12]
or anomaly detection [15] cannot be applied because CPS
models are rarely known and might often change (e.g., a
patient’s blood sugar model changes depending on the type
of consumed food). At best, limited information is available
about the system, e.g., parameterized physiological models
(with parameters varying across patients), redundant sensor
data, coarse contextual information. In such cases, system de-
signers can develop a combination of techniques utilizing such
limited information in order to monitor the system during its
operation. In prior work, we developed several such monitor-
ing approaches, namely parameter-invariant (PAIN) anomaly
detectors [11], [16] as well as sensor fusion techniques for
detecting when the system might be in an unsafe state [9].

In this paper, we provide a brief discussion on using context
as a new class of information that can be used to aid estima-
tion/detection approaches to ensuring the safety and security of
modern CPS. These systems typically have access to multiple
information sources that cannot be directly related to the
system state (e.g., mapping oxygen saturation measurements
to the overall blood oxygen content is challenging). At the
same time, this information is correlated with the system’s
state (e.g., if the saturation is below a certain threshold, then
so is the overall oxygen content). Thus, if formalized properly,
context can be used in a way similar to standard measurements.

Although context might provide more coarse information
than standard measurements, it can be beneficial from a CPS
monitoring point of view, especially in scenarios that are

Fig. 1. Most of the oxygen in the blood is bound to hemoglobin. If the
hemoglobin-oxygen saturation is below a certain threshold (e.g., 90%), then
so is the overall content (e.g., 18 mL oxygen per liter blood).

not captured by formal models. Specifically, if the system
has access to context that is correlated with unsafe modes
of operation, it might be possible to detect such modes and
take corrective actions. Thus, context can be used as an
extra layer of information in addition to any standard CPS
monitoring/testing techniques. The next section provides some
intuition as to how to use context, while Sections III and IV
present approaches we have developed for using context in
estimation [7] and detection [10], respectively.

II. WHAT IS CONTEXT?

As mentioned in the introduction, context is intuitively
defined as information that cannot be directly (function-
ally) mapped to the system state but that is still correlated
with it. An example context measurement can be extracted
from hemoglobin-oxygen saturation measurements (available
through a pulse oximeter). As illustrated in Figure 1, most of
the oxygen in the blood is bound to hemoglobin, so if the
hemoglobin-oxygen saturation is below a certain threshold,
then the overall blood oxygen content is also below a certain
threshold. Thus, the fact that the saturation is below a certain
level is a binary context measurement that indicates the state
(overall content) is also below a certain level.

A second example of a context measurement is illustrated in
Figure 2, which shows data from a typical surgery case at the
Children’s Hospital of Philadelphia (CHOP). As shown in the
figure, missing positive end-expiratory pressure (PEEP) data
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Fig. 2. Typical missing/bad data patterns over time in a surgery case at CHOP.
Vt denotes tidal volume (measured in milliliters), RR denotes respiratory rate
(measurement in beats per minute, BPM), and PEEP denotes positive end-
expiratory pressure (measured in centimeters of water). Missing measurements
are set to -1, i.e., they lie on the lower border of each graph.

(an input set by clinicians) are correlated with great noise in
the actual measurements. Since all these values are provided
by the same machine, one can conclude that the machine is not
functioning properly when PEEP is missing (e.g., clinicians
have disconnected the machine to check for leaks), i.e., the
measurements are meaningless. Thus, missing PEEP can be
treated as a context measurement that indicates that available
measurements should be treated with caution.

Example context measurements can be found in other do-
mains as well. In an automotive setting, a humidity sensor can
be used to detect a fog (i.e., provide a context measurement)
such that the system can conclude the camera’s measurements
might be meaningless. Furthermore, a vehicle can detect
nearby buildings using image processing; such a detection
(i.e., a context measurement) can be mapped to the vehicle’s
location since buildings have known positions on the map.

More generally, context can be thought of as discrete data
that maps to sets of the state or to system modes (e.g., high-
vs. low-variance measurement modes). Context can be given as
input (e.g., the patient can indicate their meal type), but it can
also be extracted from low-level data using domain expertise
(as in Figure 1) or through machine learning techniques (e.g.,
image processing). Given this intuition, we can use context to
aid both estimation and detection problems, as shown next.

III. CONTEXT-AWARE ESTIMATION

We can see from Figure 1 that some context provides
rough information about the system state; thus, it can be used
for estimation purposes similar to standard measurements.
To capture this intuition, in prior work we modeled context
probabilistically given the system state: each binary context
measurement has a known probability of being 1 or -1
given the state (e.g., there is a high probability of observing
saturation below 90% if the overall oxygen concentration is
below 18 mL of oxygen per liter blood). Using this definition,
we developed a context-aware filter and provided conditions
under which context measurements are sufficient for good
estimation [6], [7]. We used the context-aware filter for non-
invasive estimation of the patient’s blood oxygen content

(which cannot be measured non-invasively) and achieved about
20% lower estimation error than prior work [8].

IV. CONTEXT-AWARE DETECTION

In addition to estimation, context can also be used to
aid detection approaches. In particular, the intuition from
Figure 2 can be used to prevent detectors from making wrong
decisions during bad-data scenarios. Thus, upon receipt of a
context measurement, we treat the actual measurements at that
time as having a larger (but unknown) variance. This setting
is naturally suited for the PAIN detector mentioned in the
introduction [11] as it does not require knowledge of patient-
specific parameters, including measurement noise variance.
Thus, we developed a context-aware PAIN (CA-PAIN) detec-
tor [10] that silences the original PAIN detector during bad-
data scenarios, thereby avoiding unnecessary false alarms. The
CA-PAIN detector was evaluated both in simulation and on
real data, and in both evaluations detected about 5% additional
life-critical events without increasing the false alarm rate.
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[4] B. d’Enquêtes et d’Analyses. Final report on the accident on 1st June
2009 to the Airbus A330-203 registered F-GZCP operated by Air France
flight AF 447 Rio de Janeiro–Paris. Paris: BEA, 2012.

[5] N. Falliere, L. O. Murchu, and E. Chien. W32. stuxnet dossier. White
paper, Symantec Corp., Security Response, 2011.

[6] R. Ivanov, N. Atanasov, M. Pajic, G. Pappas, and I. Lee. Robust
estimation using context-aware filtering. In 53rd Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
pages 590–597, 2015.

[7] R. Ivanov, N. Atanasov, M. Pajic, J. Weimer, G. Pappas, and I. Lee.
Continuous estimation using context-dependent discrete measurements.
In IEEE Transactions on Automatic Control. Accepted.

[8] R. Ivanov, N. Atanasov, J. Weimer, M. Pajic, A. Simpao, M. Rehman,
G. J. Pappas, and I. Lee. Estimation of blood oxygen content using
context-aware filtering. In Proceedings of the 7th International Confer-
ence on Cyber-Physical Systems, page 28. IEEE Press, 2016.

[9] R. Ivanov, M. Pajic, and I. Lee. Attack-resilient sensor fusion for safety-
critical cyber-physical systems. ACM Trans. Embed. Comput. Syst.,
15(1):21:1–21:24, Feb. 2016.

[10] R. Ivanov, J. Weimer, and I. Lee. Context-aware detection in medical
cyber-physical systems. In Proceedings of the ACM/IEEE Ninth Interna-
tional Conference on Cyber-Physical Systems (ICCPS), 2018. Accepted.

[11] R. Ivanov, J. Weimer, A. F. Simpao, M. A. Rehman, and I. Lee.
Prediction of critical pulmonary shunts in infants. IEEE Transactions
on Control Systems Technology, 24(6):1936–1952, Nov 2016.

[12] M. Pajic, R. Mangharam, O. Sokolsky, D. Arney, J. Goldman, and I. Lee.
Model-driven safety analysis of closed-loop medical systems. IEEE
Transactions on Industrial Informatics, 10(1):3–16, 2014.

[13] S. Peterson and P. Faramarzi. Iran hijacked US drone, says Iranian
engineer. Christian Science Monitor, December, 15, 2011.

[14] A. H. Rutkin. ‘Spoofers’ Use Fake GPS Signals to Knock a Yacht Off
Course. MIT Technology Review, August 2013.

[15] A. Wald. Sequential analysis. Courier Corporation, 1973.
[16] J. Weimer, R. Ivanov, S. Chen, A. Roederer, O. Sokolsky, and I. Lee.

Parameter-invariant monitor design for cyber physical systems. Proceed-
ings of the IEEE, PP(99):1–22, 2017.


