
Cloud-based Secure Logger For Medical Devices
Hung Nguyen∗, Bipeen Acharya∗, Radoslav Ivanov∗, Andreas Haeberlen∗, Linh T.X. Phan∗,

Oleg Sokolsky∗, Jesse Walker†, James Weimer∗, William Hanson‡, and Insup Lee∗
∗Dept. of Computer and Information Science, University of Pennsylvania, PA, U.S.A.
Email: {hungng,acharyab,rivanov,ahae,linhphan,sokolsky,weimerj,lee}@cis.upenn.edu

†Intel Labs, Intel Corporation
Email: jesse.walker@intel.com

‡Hospital of the University of Pennsylvania, PA, U.S.A.
Email: bill.hanson@uphs.upenn.edu

Abstract—A logger in the cloud capable of keeping a secure,
time-synchronized and tamper-evident log of medical device and
patient information allows efficient forensic analysis in cases of
adverse events or attacks on interoperable medical devices. A
secure logger as such must meet requirements of confidentiality
and integrity of message logs and provide tamper-detection and
tamper-evidence. In this paper, we propose a design for such
a cloud-based secure logger using the Intel Software Guard
Extensions (SGX) and the Trusted Platform Module (TPM).
The proposed logger receives medical device information from a
dongle attached to a medical device. The logger relies on SGX,
TPM and standard encryption to maintain a secure commu-
nication channel even on an untrusted network and operating
system. We also show that the logger is resilient against different
kinds of attacks such as Replay attacks, Injection attacks and
Eavesdropping attacks.

I. INTRODUCTION

Medical devices today are becoming increasingly sophisti-
cated and capable of handling more functionality, storing more
information and interacting with patients better. In addition,
medical device interoperability offers numerous advantages
in terms of usability, patient safety and treatment efficacy.
For instance, a number of interconnected medical devices can
provide a more comprehensive picture of patient information
that reduces medical errors and health care costs for patients.

While there are a number of benefits to medical device
interoperability, it exposes medical devices to a new attack
surface through the communication network. Recent research
has shown that a vehicle can be hijacked through vulnera-
bilities in a vehicle’s communication system [1] or through
sensor spoofing [2]. Medical devices are now vulnerable to
similar attacks since they are starting to join local to global
networks and storing information in the network cloud. In
addition to disrupting medical devices, such attacks have the
potential of stealing confidential patient information and even
affecting patient safety (e.g., an attacker could cause a medical
device to diagnose a diabetic patient with excess glucose
causing a life threatening situation called hyperglycemia).
Therefore, interoperable medical systems need to be integrated
with proper security and safety measures to prevent threats
to patient safety and information. The need is so high that
the U.S. Food and Drug Administration has recently unveiled
a draft guidance for interoperable medical devices [3] with

the intention to provide a reasonable assurance of safety and
effectiveness for these devices.

A cloud-based data logger capable of keeping a complete
record of medical device information from multiple network-
integrated devices would be effective in adverse event analysis.
Such a data logger operating in an adverse environment must
be able to provide: confidentiality and integrity of stored
data, tamper-detection and tamper-evidence. We focus on these
security properties as they are sufficient for forensic analysis
in case of attack happens.

There has been much work done on developing tamper-
proof loggers. Some designs rely on published commitments
to provide tamper-proofness and require a gosship protocol
for distribution [4]–[7]. Others require some form of trusted
hardware such as monotonic counter or secure memory. For
instance, Sarmenta et al. [8] and Sinha et al. [9] use Trusted
Platform Module (TPM) as a trusted computing base to
guarantee tamper-proofness. However, they either assume an
adversary who cannot perform sophisticated hardward attacks
(e.g., proping memory or launching side-channel attack) or
assume features that do not exist on current TPMs.

There has also been work on logging for medical devices.
A prominent example is OpenICE, which provides a recording
application on top of a framework for integrating healthcare
devices and clinical applications [10]. It is, however, important
to point out that OpenICE was not built with security features
in consideration. To the best of our knowledge, our design is
the first cloud-based secure logger applied for medical device.

In this paper, we address the problem of designing such a
logger by making use of the Intel Software Guard Extensions
(SGX) [11] and the TPM [12] whose use with the logger would
help to prevent tampering of stored logs. SGX enables the
creation of a secure container (called an enclave) that protects
the integrity and privacy of the data inside it by isolating it
from privileged software [13]. TPM is a cryptographic chip
that provides shielded storage for authentication of stored
information. We propose a design that leverages the guarantees
provided by the SGX and the TPM to provide tamper-evidence
to our system. Being an SGX enclave process that is protected
from unauthorized access, our logger attempts to defend
against most kinds of attacks discussed above. Additionally,
our design is implementable today, using existing machines.



The remainder of this paper is organized as follows. In
Section II, we formulate a problem statement and explore
the attack space that a secure logger operates in. Section III
then discusses the design architecture of the secure logger
and provides a background on various components of the
design. Section IV provides details of the logger’s operation.
In Section V, we discuss the guarantees and limitations of our
design. In Section VI, we summarise our work and provide
avenues for future research.

II. PROBLEM STATEMENT

As discussed in the previous section, our goal is to design
a secure logger in the cloud for medical devices. In particular,
we aim to develop a centralized logger that gets medical device
and patient information from a dongle attached to each medical
device. The data that it receives is stored as secure logs and can
be later retrieved by an auditor for verification and analysis
of tamper. Figure 1 illustrates a high-level overview of the
logger’s environment.

A secure logger in the cloud must satisfy certain security
properties; specifically, it guarantees:

• Confidentiality: The system ensures that sensitive infor-
mation is prevented from being illegitimately accessed by
an unauthorized party.

• Integrity: The system ensures that data collected from
medical devices is consistent, upon later retrieval.

• Tamper-detection: The system is able to detect any unau-
thorized access to the protected data.

• Tamper-evidence: Upon detection of tamper, the system
also provides evidence to identify the attack.

We now explore the attack scenarios that a cloud based
logger needs to defend against to meet these requirements. We
illustrate the possible attack scenarios for our work in Figure 2
using the three dimensional attack space proposed by Teixeira
et al. [14] that comprises of the adversary’s system model
knowledge, its disruption resources and disclosure resources.
Disruption resources are resources that enable an attacker
to affect system operation and availability while disclosure
resources can be defined as resources that allow an attacker
to obtain confidential information. System model knowledge
often provides an attacker insider knowledge of the system
to perform more complex attacks. In our case, an attacker
would gain unauthorized knowledge of the secure logger. A

Fig. 1: A high-level overview of the logger.

combination of these resources would give the attacker power
to cause more severe damage.

We follow these attack dimensions and discuss three attack
scenarios under the system model introduced earlier and their
potential impact. Even though the attack space is bigger, we
limit this work to these three scenarios as we believe these are
the most relevant for a logger operating in the cloud. Section
III explains how our system defends against each attack.

1) Eavesdropping Attack. In an eavesdropping attack, the
adversary utilizes the disclosure resources to gain unauthorized
access to confidential data. In general, the attack relies on
monitoring communication channels and gaining unauthorized
information. An eavesdropping attack does not affect normal
system operation. Obtained data from the attack can be patient
data, medical device and logger technical information, which
are potential system knowledge. An eavesdropping attack also
allows the attacker to perform an unauthorized read on the
disk.

2) Injection Attack. This particular scenario is where the
attacker’s goal is to inject false data or wipe evidence from
the logger. By combining system knowledge and disruptive
resources, he may try to tamper with the communication chan-
nels. The attack can be an injection of new messages, changes
in the message content, re-ordering of message sequence, or
a Denial of Service (DoS). Furthermore, it is also possible for
the content in the storage to be altered.

3) Replay Attack. A replay attack scenario can be consid-
ered as a combination of eavesdropping attack and injection
attack. The attacker first intercepts the transmission of data
with the purpose of capturing a valid sequence of data, and
then retransmits that valid data to the receiver. In this manner,
an attacker with malicious intent could feed legitimate looking
data while carrying out an attack on the device. The system
would have no idea of the attack and the attacker would
successfully carry out a man-in-the-middle attack.

III. DESIGN OF THE CLOUD-BASED SECURE LOGGER

This section describes the design of the proposed secure
logger. A dongle, with a corresponding driver, will be used
as an attached module to a medical device. Being able to

Fig. 2: Secure logger attack space.



communicate directly with the medical device, it will acquire
the necessary information, use a monotonically increasing
counter to stamp the data, and use SSL/TLS protocol to
encrypt, provide integrity and transfer its contents to our
logger, which is an SGX-enabled software application. This
ensures that the logs received by our logger preserve integrity
and confidentiality. The counter ensures that the information
preserves freshness. When our logger receives medical device
data, the logger first encrypts the content, and then generates
and signs the hash of the entry. It then sends the log entry and
corresponding signed hash to storage. It also keeps a copy of
the latest signed hash in a TPM. With efficient hash chaining
of stored logs, the latest hash stored in the TPM is sufficient
to detect tamper because any kind of change or deletion of a
hash value in a hash chain would make tamper evident. Upon
detection of any attacks, the logger is able to sound an alarm
on the system and raise alarm message on the User Interface.
We discuss this design in detail in the following two sections.

In our design, we assume that the Intel SGX, the TPM and
the dongle are implemented correctly and not compromised.
We also make the usual assumptions that RSA and AES
encryption are safe, an attacker cannot forge digital signatures
and that the hash function is pre-image resistant, second pre-
image resistant, and collision resistant with pseudo-random
compression function.

In the remaining part of this section, we first describe
various components of our design presented in Figure 3
and discuss the functionality of each component. We then
propose proper usage of these components to establish secure
communication channels to defend against the attack scenarios
previously discussed.

A. Component Descriptions

1) Dongle: As a part of the system model, we have a dongle
attached to the medical device to get information from the
device and send to the logger. After establishing a connection
with the logger, the dongle keeps sending messages to it
without waiting for an acknowledgement for message receipt.
The dongle also maintains a monotonically increasing counter
that is used as a sequence number for the message before
it is sent to the logger. Besides the counter, the dongle also
maintains a queue of recently sent messages with the unique
ID of the counter. If the logger has a missing sequence ID,

Fig. 3: Design architecture of the logger.

it can ask the dongle again and raises an alarm if the dongle
does not reply within allocated time. If it receives messages
with duplicate ID, the logger immediately raises an alarm.

Before deployment, each dongle is assigned a private/public
key pair with a corresponding digital certificate. The certificate
includes information about the public key and the dongle
identity and can be verified using the digital signature of the
deployment team.

2) Intel Software Guard Extensions (SGX): SGX is the
attempt by Intel at solving the problem of executing software
applications in a remote computer owned by an untrusted
party, with integrity and privacy guarantees [13]. SGX, a set
of new instructions and memory access changes in the Intel
Architecture, attempts to solve this problem by trusting a
hardware at the remote computer to instantiate an enclave
which is used for computation and information exchange.
Enclave code and data are contained in the Enclave Page
Cache (EPC), which is a subset of the Processor Reserved
Memory (RPM) protected by the CPU from non-enclave
memory accesses. Each enclave designates an area called the
Enclave linear Address Range (ELRANGE) which can be used
to map the code and sensitive data stored in the enclave’s
EPC. Special CPU instructions, such as EENTER (to execute
code) and EEXIT (to quit execution), must be used by the
enclave’s host process to interact with the enclave, and it
happens in protected mode. Exceptions are raised when a non-
enclave access to a memory is attempted by a software, and
also when a code fetch is attempted from inside an enclave
to an address range outside that enclave. Before initiating
communication with an enclave, a remote application performs
software attestation to make sure that it is communicating with
the correct enclave.

3) Trusted Platform Module (TPM): TPM is a crypto-
graphic chip that is available on many motherboards today.
The TPM is primarily a cryptographic engine that can perform
encryption and hashing, and store the state of the internal
software [15]. However, we are mostly interested in the small
amount of non-volatile memory (NVRAM) provided by TPM
to shield data. Since protected data in NVRAM can only be
accessed via specific commands within an authorized session,
it will be sufficient for us to store the latest hash value obtained
from our logger application to help with forensic analysis.

To prove that it is genuine and complies with TPM spec-
ification, each TPM is embed with an unique Endorsement
Certificate (EC), which contains manufacturer name, model
number, version and most importantly, the TPM public key.
EC is, in essence, a digital certificate stating that TPM identity
has been properly created and embedded.

B. Secure Communication Between Components

The logger is an SGX process operating in the cloud, which
we assume to be untrusted. Our assumption that the network is
untrusted makes it imperative that the communication channels
between the dongle and the SGX process as well as the logger
and the TPM are secure. Next, we discuss how we make these
channels secure to defend against attacks.



1) Dongle-SGX: To create a secure communication channel
between the dongle and the SGX, we use the SSL/TLS
protocol. Note that the dongle and the SGX process are
themselves trusted, and assumed behaving correctly. Since it
is infeasible to do I/O operations (other than memory stores
and fetches) from within an SGX enclave, not all the SSL/TLS
protocol will be implemented inside the enclave. However, we
can guarantee the security by ensuring the data sent out from
the enclave is encrypted and protected following the protocol.

To establish a connection, firstly, a handshake protocol is
initiated between the dongle and the SGX where, messages
are exchanged between the two parties to agree on the cipher
suite - a combination of key exchange protocol, authentication
algorithm and encryption algorithm to be used for the SSL ses-
sion. Each of them use software attestation to verify that they
are communicating with a trusted process. In particular, the
dongle’s certificate is used by the SGX to verify the dongle’s
identity and vice-versa. After this exchange, a session key is
agreed upon to be used for encryption in all communication
henceforth. This ensures that message transmission between
them is encrypted and authenticated.

2) SGX-TPM: In order to protect the confidentiality of
a shielded object, TPM defines each object as a pair of
(authV alue, data). Access to protected data requires uses of a
Protected Capability, which is a set of commands with exclu-
sive permission to access shielded storage, where authV alue
is used by the caller to authorize the action [12]. Upon running
the first time, the SGX process generates the authV alue,
encrypts and stores it in the logger storage. The process
also sends command to the TPM to create the corresponding
protected object. As a result, both SGX and TPM share the
same authV alue.

To establish a trusted channel with TPM, the SGX process
sends a TPM2 StartAuthSession() command including an ini-
tial nonceSGX, a value to generate the session key and location
of protected object in TPM. After executing successfully, TPM
returns a session key and the initial nonceTPM. The primary
use of a nonce is to prevent a message being sent multiple
times: for each message, sender includes the last received
nonce and a newly generated nonce so that the receiver
can verify if the message follows correct sequence. All the
commands and responses are sent with an HMAC value to
provide assurance that the message was not modified and came
from the trusted entity with access to the HMAC key, which
is defined as the concatenation of session key and authValue.

IV. OPERATION OF THE CLOUD-BASED SECURE LOGGER

In this section, we discuss, in detail, the operations of
the secure logger. In particular, we describe how the log is
generated, how the SGX process operates to maintain secure
logs and the auditor operates to verify log correctness and
detect tamper.

A. Tamper-Evident Log

The logger keeps a secure record of outputs from medical
devices that is used for adverse events analysis. Based on the

proposal of PeerReview [6] with some modifications in the
way the hash chain is stored, a tamper-evident log is defined
as an append-only linear list with each log entry ek = (sk, ck)
where sk is a strictly increasing, contiguous sequence number
and ck is the entry content. Additionally, each log also includes
a hash value hk = hash(hk−1||sk||hash(ck)), which is the
hash of the concatenation of the previous hash, the sequence
number and the hash of the content. The base hash h−1 is pre-
defined. In addition, hk is signed by the SGX process using
the private key and results in the corresponding shk. The final
hash chain contains all the signed hash values shk.

Algorithm 1 Hash chain implementation
Variables:

e← list of log entries
sh← list of signed hash values
k ← current iteration number
sk ← current sequence number
hk−1 ← previous hash value
m← chunk constant

1: procedure ADDENTRY(content c)
2: hk ← hash(hk−1||sk||hash(c))
3: ek ← (sk, c), shk ← sign(hk)
4: if k − 1 mod m 6= 0 then
5: sh.delete(shk−1)
6: k ← k + 1, sk ← sk.next()
7: return shk−1

1: procedure TRUNCATE
2: shi ← sh.start()
3: sh.delete(shi)
4: for j =← i+ 1 to i+m do
5: e.delete(ej)

In practice, storing all the signed hash values is not re-
quired: given shi, shj where i < j, the hash chain from i
to j can be re-computed to verify the integrity of the log.
Therefore, we maintain a constant m indicating that the logger
only stores signed hash value shi for every m log entries
(ei+1, ei+2, ..., ei+m). When the log storage is full and there
is a need for log truncation to prevent log overflow, we can
safely remove shi and all the log entries from ei+1 to ei+m.
Given shi+m, we are still able to re-compute the hash chain
from ei+m+1 to the latest log entry as illustrated in Figure 4.

The log is the most important part of our design because
the entire design relies on the logger being able to maintain
a secure, untampered log of medical device information. The
use of strictly increasing sequence numbers (line 6) and signed
hash values (line 3) are important to ensure that logging is
tamper-evident. We will discuss this process in detail in the
next section when we present Auditor operation.

B. Logger Operation

Our logger has three stages: start-up, logging and shutdown.
We explain each stage briefly and provide pseudocode of
how to implement each stage. The algorithms below describe



(a) Hash chain (b) Storage content

Fig. 4: A sample hash chain and content in logger storage.
Hash shi can be used to recompute hash chain from ei + 1.

the operations between a single logger and a single dongle.
However, this can easily be extended to multiple dongles as
the logger can maintain connections with multiple dongles
simultaneously.

Start-up: At logger start-up, the logger queries the latest
log entry ek, its signed hash shk from the File System service,
the latest signed hash and the latest system status from the
TPM. If the stored sighed hash is different from the one
of TPM or any of the verifications during start-up fails, the
logger will raise alarm. Otherwise, the logger stores the current
sequence number sk and the message sequence number n.
Then, it attempts to establish a connection with the dongle as
mentioned above. If the dongle does not respond, the logger
stands by and waits for incoming connection from the dongle.
If there are no errors, it is ready to go into the logging stage.

Logging: Upon receiving messages from the dongle, the
logger first encrypts the content using its key, and generates
and signs the hash of the new entry. It then sends the log
entry and corresponding signed hash to storage. After that, the
logger writes the signed hash in the TPM1, which is where it
keeps a copy of the latest signed hash. It also checks if the
previous signed hash should be kept based on m and deletes
if needed.

Shutdown: Upon receiving shutdown signal, the logger
simply finishes storing all the received events and writing latest
hash to TPM before exit.

C. Auditor Operation

The auditor is a software application that is responsible
for auditing the logs and detecting tamper. It is a trusted
SGX process that shares the logger’s encryption key. By
recomputing the entire hash chain from the first signed hash
and the log entries, the auditor can compare with the last
signed hash from TPM and verify the digital signature. If any
of the verification steps failed, the auditor raises an alarm. If
an attacker attempts to change a log entry in storage, it would

1Each TPM flash location can accept only a finite number of writes before
it wears out. We can overcome the limitation by having the SGX process keep
track of the number of write and move to another location after a pre-defined
number of times.

result into a completely different hash value, and a different
hash chain, and thus the attacker would be detected.

V. DISCUSSION OF SECURITY GUARANTEES

We described the requirements for a secure logger in the
cloud as: confidentiality and integrity of transmitted and stored
data, tamper-detection and tamper-evidence. In this section, we
discuss how we ensure that the design meets the requirements
under each attack scenarios.

A. Eavesdropping Attack

Since the goal of an eavesdropping attack is gainning unau-
thorized access to confidential data, it only affects the con-
fidentiality property of the system. To prove the preservation
of confidentiality under this kind of attack, first consider the
information exchanged between the dongle and the logger. To
elaborate, in the event that an adversary intercepts information
exchange between the dongle and the logger, he is not able
to obtain information from that interception. The SSL/TLS
exchange protocol has been proven to be secure [16] and is
widely used in information exchange over the internet. We
encrypt messages between the dongle and the logger using
the SSL/TLS exchange protocol and hence, an eavesdropping
attacker cannot cause damage.

Similarly, the secure logger also ensures that an eavesdrop-
ping attacker cannot learn log contents from the logger SGX
process and logger storage. As a part of the trusted SGX
enclave process, the logger is protected from unauthorized
access. As a result, an eavesdropper cannot get information
from the logger process. Further, the SGX process encrypts
log entries before sending them to storage. Hence, even if
an attacker attempts to attack the data storage, the encryption
ensures that the stored data does not lose confidentiality.

Note that the communication between SGX and TPM is not
encrypted. However, since the transfer data is not confidential,
the confidentiality property still holds.

B. Injection Attack

An injection attack affects all the security properties of
the logger. Beside preserving the confidentiality similarly
under eavesdropping attack, the secure logger guarantees the
integrity of the data via ensuring tamper-detection and tamper-
evident properties. Any unauthorized access and message
altering will cause data inconsistency and will be detected
with detailed evidence.

Particularly, messages from the dongle to the logger are
stamped with a monotonically increasing counter and sent
over SSL/TLS secure communication channel. The integrity
of the message is provided by the SSL/TLS protocol and the
counter such that any changes in the message content will
cause a failure in hash verification and any changes in message
sequence will also cause a failure in counter verification of the
receiver. Such failure is the evidence provided by the system
to the auditor that an attempted attack has happened.

Additionally, the communication between SGX and TPM
relies on the HMAC function, whose secret key is only known



by the SGX and the TPM. Together with random nonce value
for each message, the logger ensures the integrity of this
channel.

Finally, as mentioned above, we generate and sign hash to
store log contents to the file system and storage. Since each
hash value depends on its previous hash, any kind of alteration
of the stored content creates a completely different hash chain
branching off at the affected sequence number and an auditor
is able to detect tampering [6]. The sequence ID of the affected
log entry can be used as a tamper-evidence.

For the specific attack such as DoS attack, when the
attacker’s goal is making the logger unavailable, it won’t affect
the operation of the dongle or logger. Because the dongle
keeps sending messages to the logger without waiting for
acknowledgement, all the lost messages during attack can be
retrieved after the logger detects missing message sequence
IDs and queries the dongle again. However, such defense
depends on the size of message queue that the dongle keeps.

C. Replay Attack

Consider a replay attack as the combination of eaves-
dropping attack and injection attack, it also affects all the
security properties. Since the injected messages are authentic,
to preserve security properties, the logger must be able to
detect any duplicate messages. This can be achieved by the
monotonically increasing counters as described in the injection
attack.

The logger is also able to detect storage replay attack
where the attacker clones a version of logger storage and later
on restores it. Although the data is authentic, it is an older
version. By comparing with the latest hash value protected in
the TPM, the logger or the auditor can identify the attack.

Limitations: Our logging system is designed to make
tampering of data detectable and thus, it detects and raises
alarms when messages are altered. However, any behaviour
that does not lead to altering of messages is not detected. For
instance, when the logger does not get a reply from the dongle,
it does not know if the dongle is under attack or just under
normal shut-down. In addition, we protect the integrity of the
information received by the dongle, but cannot guarantee the
correctness of what it receives. Addressing these limitations
are outside the scope of this paper. However, we do plan to
explore and address these limitations in the future.

VI. CONCLUSION

In this paper, we have described a secure logging system
that provides tamper-evidence to message logs that it receives
from medical devices on a network. We leverage the use of
trusted hardware in an untrusted network to design such a
secure logger. The design guarantees that attacks attempting
to modify or delete logs are detected.

This project is a first attempt at mitigating cyber threats
to medical devices with their imminent increase in interoper-
ability with other devices on a hospital network. This is an
ongoing project and the next step is to implement our design

on a simulated ICE environment. Then, we will experiment
on a small part of the local hospital network. Furthermore, we
also aim to extend the attack space by looking at attacks like
Denial of Service in more detail. Finally, we plan to explore
the Data Distribution Service (DDS) middleware for efficient
data delivery and security guarantees for our logger.

ACKNOWLEDGMENT

This work was supported in part by NSF CNS-1505799 and
the Intel-NSF Partnership for Cyber-Physical Systems Security
and Privacy, NSF CNS-1035715, and the DGIST Research and
Development Program of the Ministry of Science, ICT and
Future Planning of Korea (CPS Global Center).

REFERENCES

[1] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in USENIX Security Symposium. San Francisco, 2011.

[2] A. Rutkin, “spoofers use fake GPS signals to knock a yacht off course,”
MIT Technology Review, 2013.

[3] The Food and Drug Administration, “Design Considerations and Pre-
market Submission Recommendations for Interoperable Medical De-
vices - Draft Guidance for Industry and Food and Drug Administration
Staff,” 2016.

[4] B. Schneier and J. Kelsey, “Cryptographic support for secure logs on
untrusted machines.” in USENIX Security, 1998.

[5] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G.
Stubblebine, “A general model for authenticated data structures,” Algo-
rithmica, vol. 39, no. 1, pp. 21–41, 2004.

[6] A. Haeberlen, P. Kouznetsov, and P. Druschel, “PeerReview: Practical
accountability for distributed systems,” in ACM SIGOPS operating
systems review, vol. 41, no. 6. ACM, 2007, pp. 175–188.

[7] S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-
evident logging.” in USENIX Security Symposium, 2009, pp. 317–334.

[8] L. F. Sarmenta, M. Van Dijk, C. W. O’Donnell, J. Rhodes, and
S. Devadas, “Virtual monotonic counters and count-limited objects using
a tpm without a trusted os,” in Proceedings of the first ACM workshop
on Scalable trusted computing. ACM, 2006, pp. 27–42.

[9] A. Sinha, L. Jia, P. England, and J. R. Lorch, “Continuous tamper-proof
logging using tpm 2.0,” in Trust and Trustworthy Computing. Springer,
2014, pp. 19–36.

[10] J. Plourde, D. Arney, and J. M. Goldman, “Openice: An open, interop-
erable platform for medical cyber-physical systems,” in Cyber-Physical
Systems (ICCPS), 2014 ACM/IEEE International Conference on. IEEE,
2014, pp. 221–221.

[11] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative Technology
for CPU based attestation and sealing,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, vol. 13, 2013.

[12] Trusted Computing Group, “TPM 2.0 Library Specification,” accessed:
2016-03-04. [Online]. Available: http://www.trustedcomputinggroup.
org/resources/tpm library specification

[13] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint
Archive, Report 2016/086. http://eprint.iacr.org, Tech. Rep., 2016.

[14] A. Teixeira, D. Prez, H. Sandberg, and K. H. Johansson, “Attack
models and scenarios for networked control systems,” Proceedings of
the 1st international conference on High Confidence Networked Systems
- HiCoNS ’12, pp. 55–64, 2012.

[15] J. D. Osborn and D. C. Challener, “Trusted platform Module evolution,”
Johns Hopkins APL Technical Digest (Applied Physics Laboratory),
vol. 32, no. 2, pp. 536–543, 2013.

[16] H. Krawczyk, K. G. Paterson, and H. Wee, “On the security of the TLS
protocol: A systematic analysis,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 8042 LNCS, no. PART 1, pp. 429–448,
2013.


