Finite State Automata and Markov Chains

1

Reading

- E.A. Lee and S.A. Seshia, Introduction to Embedded Systems: CPS Approach, Second Edition, MIT Press, 2017
	- Book:

https://ptolemy.berkeley.edu/books/leeseshia/releases/Lee Seshia_DigitalV2_2.pdf

- Chapter 3
- Not exactly a standard DFA chapter, has a dynamical system bias, but similar to MDPs

- Suppose a car is moving in a straight line at v m/s
- How much will the car have travelled after $T \, s$? $\nu T m$
- Suppose the car's position at time 0 is p_0 and at time T is p_T $p_T = p_0 + vT$
- Suppose every T seconds velocity jumps up by $a m/s$
- How do we adapt the model (for discrete times when velocity is changed)?

$$
p_{kT} = p_{(k-1)T} + v_{(k-1)T}T
$$

$$
v_{kT} = v_{(k-1)T} + a
$$

- where $k = 1,2,...$

Elements of a dynamical system model

- Note: notation will change when we get to RL proper
- System has a state, denoted by $x \in \mathbb{R}^n$
	- Captures position, velocity, acceleration, etc.
- Control inputs are denoted by $u \in \mathbb{R}^p$ – Captures throttle, steering, etc.
- Measurements are denoted by $y \in \mathbb{R}^q$
	- Could measure states directly, e.g., odometry, GPS
	- Could be high-dimensional such as camera, LiDAR

State Evolution

Rensselaer

- As time passes, the system state evolves based on the previous state and the current control inputs
- We typically model the state as a signal: $\boldsymbol{\chi} \colon \mathbb{R}_+ \to \mathbb{R}^n$

- i.e., for a given time t, $x(t)$ returns the state at that time

• If we want to model the evolution of x in continuous time, we describe with ordinary differential equations:

$$
\dot{\boldsymbol{x}} := \frac{\partial \boldsymbol{x}(t)}{\partial t} = f(\boldsymbol{x}(t), \boldsymbol{u}(t))
$$

• Modern systems are digital, so a discrete-time model makes more sense (since controller is sampled at discrete times) $\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k)$

– where k is incremented with the sampling rate (e.g., 10Hz)

• Going back to the position/velocity example:

$$
p_{kT} = p_{(k-1)T} + v_{(k-1)T}T
$$

$$
v_{kT} = v_{(k-1)T} + a
$$

- This is a discrete-time model where $\pmb{x} = [p, v]^T$, $u_k = a$, so $f([x_1, x_2], u) =$ $x_1 + x_2 T$ $x_2 + u$
- In this case, f is linear, so the system can also be written as $x_{k+1} = Ax_k + Bu_k$ – where $A =$ 1 0 1 , $B =$ 0 1
- Note that we implicitly dropped the T in the subscript $-$ It is redundant, since k is chosen for a sampling rate of T

Measurement model

- Measurements are typically modeled as a function of the state: $y_k = g(x_k)$
- In our example, if we can only measure position, then

$$
\mathbf{y}_k = \boldsymbol{C} \boldsymbol{x}_k
$$

- where $\mathcal{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$

- In case of more complex measurements, q may be quite complex or (as is often the case) unknown
	- In the F1/10 case, LiDAR measurements can be modeled as a function of the car state and the hallway dimensions
	- Modeling a camera would be significantly harder

In its most general form, the model can be written as

$$
\boldsymbol{x}_{k+1} = f(\boldsymbol{x}_k, \boldsymbol{u}_k)
$$

$$
\boldsymbol{y}_k = g(\boldsymbol{x}_k)
$$

- This model has the Markov property, i.e., the current state depends only on the previous state and control
	- It doesn't matter how we got to the previous state
- Given f and g, one needs to design a controller $u_k = h(y_k)$
	- E.g., to navigate the track as fast as possible
	- How do we pick the controls u_k ?
	- Minimize a cost function (surprise, surprise), e.g.,

$$
J = x_{k+H}^T Q x_{k+H} + \sum_{j=0}^{H-1} x_{k+j}^T Q x_{k+j} + u_{k+j}^T R u_{k+j} + x_{k+j}^T N u_{k+j}
$$

– where H is a time horizon, Q, R and N are user-defined matrices

• The cost function

$$
J = \mathbf{x}_{k+H}^T \mathbf{Q} \mathbf{x}_{k+H} + \sum_{j=0}^{H-1} \mathbf{x}_{k+j}^T \mathbf{Q} \mathbf{x}_{k+j} + \mathbf{u}_{k+j}^T \mathbf{R} \mathbf{u}_{k+j} + \mathbf{x}_{k+j}^T \mathbf{N} \mathbf{u}_{k+j}
$$

– is known as the linear quadratic regulator (LQR)

- Can be solved iteratively for linear systems
- Matrices Q, R and N chosen to satisfy control requirements – e.g., reach a target, minimize fuel consumption
- Having a horizon allows to plan more complex strategies
	- E.g., mountain car is easily solved
- Optimal control is extremely well studied
	- Strong theory and optimality guarantees for linear systems
	- However, non-linear systems have no general solutions

Reinforcement learning modeling and cost function

- Historically, RL theory has been based on finite state models
	- $-$ The f and g formulation is infinite-state
	- However, deep RL is increasingly (and surprisingly) able to work in infinite-state settings
	- RL models also have the Markov property
- Unlike optimal control, RL doesn't minimize a cost function
	- It maximizes a reward function
	- Mathematically, there is no difference
	- Maybe RL researchers are young and optimistic O.o

Finite State Machines

- One of the fundamental models in computer science
- Also known as deterministic finite automata (DFA)
- Historically used to model computer programs
	- DFAs are not a perfect model but have served us well

Finite State Machines Formalization

- A DFA is a tuple (A, S, S_0, δ, F) , where
	- Λ is the input alphabet
	- \overline{S} is the finite set of states
	- S_0 is the initial state
	- $\delta: S \times A \rightarrow S$ is the transition function
	- F is the (possibly empty) set of final (accepting) states
- For each state and input pair S and A, $\delta(S, A)$ outputs exactly one state
	- Hence the deterministic in the name

$$
-e.g., \delta(S_1, a) = S_2
$$

- In a non-deterministic FA (NFA), δ can output 0 or more values
	- Every NFA can be converted to an equivalent DFA

- DFAs are one of the simplest models of computation
	- E.g., simpler than pushdown automata, Turing machines
- At the same time, many problems are just extremely large DFAs
	- E.g., games are for the most part (very large) DFAs
	- E.g., in chess, every position is a state and every input (move/action) causes a transition to exactly one state
- Classical RL was actually developed for stochastic models, not deterministic
	- More expressive than DFAs
- To get there, we need to talk about Markov chains first

Markov Chains

- Markov chains are effectively probabilistic automata
	- Formulation can be made more general, but we'll only need the finite-state version

- Each transition has an associated probability
	- $-$ E.g., probability of going from S_1 to S_2 is 0.7

Workday Example

• Markov chain describing my workday

Formalization

- A Markov Chain is a tuple (S, P, η) , where
	- \bullet S is the finite set of states
	- $P: S \times S \rightarrow \mathbb{R}$ is the probabilistic transition function
	- $\eta: S \to \mathbb{R}$ is the initial state distribution
- Called Markov chain because the probability of the current state is determined only by the previous state $\mathbb{P}[S_t | S_{t-1}, S_{t-2}, \dots, S_0] = \mathbb{P}[S_t | S_{t-1}] = P(S_{t-1}, S_t)$
	- where S_t denote the state after t steps
	- Examples:

$$
\mathbb{P}[S_0 = Teach] = \eta(Teach)
$$

$$
\mathbb{P}[S_t = Pub|S_{t-1} = Office Hour, S_0 = Teach] =
$$

$$
\mathbb{P}[S_t = Pub|S_{t-1} = Office Hour] =
$$

$$
= 0.2
$$

- What is the probability that I am at Pub two steps after $Teach$? – Need to look at all possible ways to get to Pub in two steps
- Formally:

$$
\mathbb{P}[S_2 = Pub|S_0 = Teach] =
$$

\n
$$
\mathbb{P}[S_1 = Pub, S_2 = Pub|S_0 = Tech] +
$$

\n
$$
\mathbb{P}[S_1 = Office Hour, S_2 = Pub|S_0 = Tech] +
$$

\n
$$
\mathbb{P}[S_1 = Fix Lecture Errors, S_2 = Pub|S_0 = Tech] +
$$

\n
$$
\mathbb{P}[S_1 = Make Lecture Slides, S_2 = Pub|S_0 = Tech]
$$

- Summing through all possibilities is called marginalization
- Recall the definition of conditional probability:

$$
\mathbb{P}[A|B] = \frac{\mathbb{P}[A,B]}{\mathbb{P}[B]}
$$

- What is the probability that I am at Pub two steps after $Teach$? – Need to look at all possible ways to get to Pub in two steps
- Formally:

$$
\mathbb{P}[S_2 = Pub|S_0 = Teach] =
$$

\n
$$
\mathbb{P}[S_1 = Pub, S_2 = Pub|S_0 = Tech] +
$$

\n
$$
\mathbb{P}[S_1 = Office Hour, S_2 = Pub|S_0 = Tech] +
$$

\n
$$
\mathbb{P}[S_1 = Fix Lecture Errors, S_2 = Pub|S_0 = Tech] +
$$

\n
$$
\mathbb{P}[S_1 = Make Lecture Slides, S_2 = Pub|S_0 = Tech]
$$

- Summing through all possibilities is called marginalization
- Probabilities are:

$$
\mathbb{P}[S_1 = Pub, S_2 = Pub|S_0 = Teach] =
$$

\n
$$
\mathbb{P}[S_2 = Pub|S_1 = Pub, S_0 = Tech] \mathbb{P}[S_1 = Pub|S_0 = Tech] =
$$

\n
$$
\mathbb{P}[S_2 = Pub|S_1 = Pub] \mathbb{P}[S_1 = Pub|S_0 = Tech] = 0.1
$$

Rensselaer

- What is the probability that I am at Pub two steps after $Teach$? – Need to look at all possible ways to get to Pub in two steps
- All possible paths
	- $-Pub, Pub$
	- $-$ Of fice Hour, Pub
	- $-Fix$ Lecture Errors, Pub
	- Make Lecture Slides, Pub
- Probabilities are:

 $\mathbb{P}[S_1 = 0 \text{ f} \text{ f} \text{ ice } \text{H} \text{ our}, S_2 = \text{Pub} | S_0 = \text{Teach}] = 0.06$ $\mathbb{P}[S_1 = Fix$ Lecture Errors, $S_2 = Pub \, |S_0 = Teach] = 0.06$ $\mathbb{P}[S_1 = Make \: Lecture \: Slides, S_2 = Pub \: |S_0 = Teach] = 0.09$

• Total probability is $0.1 + 0.06 + 0.06 + 0.09 = 0.31$

Linear Algebra Aside

- Suppose we are given a square matrix $A \in \mathbb{R}^{n \times n}$
- A vector v is said to be an eigenvector of A if $Av = \lambda v$

– Where $\lambda \in \mathbb{R}$ is a corresponding eigenvalue

• The matrix A has n eigenvectors, v_i

 $-$ And *n* corresponding eigenvalues, λ_i

- If eigenvalues are distinct, the eigenvectors form a basis in \mathbb{R}^n $-$ i.e., any $\pmb{x}\in\mathbb{R}^n$ can be written as a linear combination $\mathbf{x} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n$
- There may be repeated eigenvalues
- A is full rank iff $\lambda_i \neq 0$ for all i

Transition Matrix

- We can store all transition probabilities in a matrix P
- Entry P_{ij} denotes the probability of going from state *i* to *j*
- E.g., let states be ordered: Teach, Office Hour, MLS, FLE, Pub
- The transition matrix becomes:

$$
P = \begin{bmatrix} 0 & 0.3 & 0.3 & 0.3 & 0.1 \\ 0 & 0 & 0.4 & 0.4 & 0.2 \\ 0 & 0.5 & 0 & 0.2 & 0.3 \\ 0 & 0.3 & 0 & 0.5 & 0.2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}
$$

• What properties does P have?

- Each row must sum up to 1
	- $-W$ hy?
	- For each state, transition probabilities mush sum up to 1
- Has an eigenvalue of 1
	- Why? What is the corresponding eigenvector?
	- Pick any row, p_{j}^T
	- $-\text{Let } \mathbf{1} \in \mathbb{R}^{|S|}$ be a vector of all ones
	- What is $p_j^T\mathbf{1}$?
		- 1! So 1 is an eigenvector

• Let $\boldsymbol{\eta}_t$ represent the probabilities the system is in any given state at time t

 $-$ E.g., $\boldsymbol{\eta}_t = [1 \quad 0 \quad 0 \quad 0 \quad 0]^T$ means the state is $Teach$

• What happens if we multiply $\boldsymbol{\eta}_t^T\boldsymbol{P}$?

1 0 0 0 0 0 0.3 0.3 0.3 0.1 0 0 0.4 0.4 0.2 0 0.5 0 0.2 0.3 0 0.3 0 0.5 0.2 0 0 0 0 1 = $=[0 \ 0.3 \ 0.3 \ 0.3 \ 0.1]$

• We get the distribution of states after one step, i.e., $\boldsymbol{\eta}_{t+1}^T$ — What happens if we multiply $\boldsymbol{\eta}_t^T\boldsymbol{P}\boldsymbol{P}$?

- What happens if we multiply $\boldsymbol{\eta}_t^T\boldsymbol{P}\boldsymbol{P}$? $\boldsymbol{\eta}_t^T\boldsymbol{P}\boldsymbol{P} = \boldsymbol{\eta}_{t+1}^T\boldsymbol{P} = \boldsymbol{\eta}_{t+2}^T$
- Now suppose you are given $\boldsymbol{\eta}_0$

– The distribution at time 0

• How do you express $\boldsymbol{\eta}_t$ as a function of $\boldsymbol{\eta}_0$ and \boldsymbol{P} ? $\boldsymbol{\eta}_t^T = \boldsymbol{\eta}_0^T \boldsymbol{P}^t$

– Can quickly compute state distributions over time

• What does this expression remind you of?

– It's a linear system!

$$
\mathbf{x}_{k+1} = A\mathbf{x}_k
$$

\n
$$
\mathbf{\eta}_{t+1} = \mathbf{P}^T \mathbf{\eta}_t
$$

\n
$$
= (\mathbf{P}^T)^{t+1} \mathbf{\eta}_0
$$

- Suppose a square matrix A has eigenvalues $\lambda_1, ..., \lambda_n$
- What are the eigenvalues of A^2 ? $\lambda_1^2, \ldots, \lambda_n^2$
- Take any eigenvalue λ_i and corresponding eigenvector v_i $AAv_i = A\lambda_i v_i$ $= \lambda_i^2 \boldsymbol{v}_i$
- In general, the eigenvalues of A^k are λ_1^k , ... , λ_n^k

 $-$ The eigenvectors are the same as those of \bm{A}

- Consider a general discrete-time linear system $x_k = A^k x_0$
- Suppose A has distinct eigenvalues for simplicity
- Recall that the eigenvectors of A form a basis in \mathbb{R}^n , so $\mathbf{x}_0 = a_1 \mathbf{v}_1 + \cdots + a_n \mathbf{v}_n$
- Then

$$
A^k x_0 = a_1 \lambda_1^k v_1 + \dots + a_n \lambda_n^k v_n
$$

• Under what conditions does x_k converge to 0? $|\lambda_i|$ < 1, for all i

- Consider the transition matrix linear system $\boldsymbol{\eta}_{t+1} = \left(\boldsymbol{P}^T\right)^{t+1}$ $\boldsymbol{\eta}_0$
- We know that 1 is an eigenvector of P
	- Also known as a right eigenvector
	- However, we are now interested in left eigenvectors
		- AKA eigenvectors of \boldsymbol{P}^T

$$
\boldsymbol{v}^T\boldsymbol{P}=\left(\boldsymbol{P}^T\boldsymbol{v}\right)^T
$$

- It turns out that P also has a left eigenvalue of 1
	- Left and right eigenvalues are the same for square matrices
		- Eigenvectors may be different
- This means the system never converges to 0
	- $-$ But what does it converge to?

- Consider a row vector μ such that $\mu P = \mu$
- Then μ is an eigenvector corresponding to eigenvalue 1 – There could be more than 1 such vectors
- What graph property determines whether there is a unique μ ?
	- $-$ There is one μ per closed communication class
		- i.e., loop in the graph that cannot be left
	- Formally, having one such class is known as irreducibility
- Another requirement is aperiodicity
	- If you have a periodic graph, you will never converge

- If you have an aperiodic, irreducible Markov chain, then there is a unique μ such that
- This is known as the stationary distribution
	- $-$ Each element of μ denotes the *proportion* of time spent in that state in the long run
	- What is μ for the workday example?
		- $-$ It is $[0 \ 0 \ 0 \ 0 \ 1]$
		- $-Pub$ is an absorbing state
		- $-$ Every trace eventually gets to Pub
	- $Teach$ is a transient state
		- You cannot go back to it

$$
\mu P = \mu
$$

Workday Example, revisited

• Suppose I add a new transition from Pub to Teach

Stationary Distribution for Revisited Workday Example

- Stationary distribution is hard to derive by simply looking at the graph anymore
- Two ways of finding μ
	- Can either find left eigenvalues and eigenvectors of P
		- Which eigenvalue does μ correspond to?

1

- Might need to normalize eigenvector
- $-$ Or just compute \bm{P}^t for a big t and then compute $\bm{\eta}_0\bm{P}^t$
	- Recall μ is the same for any initial η_0
- For the revisited example

 $\mu = [0.067 \quad 0.086 \quad 0.054 \quad 0.13 \quad 0.66]$

• Still spending most time in Pub , but other states are also visited infinitely often