Finite State Automata and Markov Chains




Reading @ Rensselaer

 E.A. Lee and S.A. Seshia, Introduction to Embedded Systems:
CPS Approach, Second Edition, MIT Press, 2017

— Book:
https://ptolemy.berkeley.edu/books/leeseshia/releases/Lee
Seshia_DigitalvV2_2.pdf

— Chapter 3

* Not exactly a standard DFA chapter, has a dynamical system
bias, but similar to MDPs




A Simple Dynamics Model @®) Rensselaer

e Suppose a car is moving in a straight lineat v m/s

e How much will the car have travelled after T s?
vl m

Suppose the car’s position at time 0 is py and attime T is pr
pr = po +vT

* Suppose every T seconds velocity jumps up by a m/s
 How do we adapt the model (for discrete times when velocity
is changed)?

Prr = Pe-1)T t Vge—1)rT
Vkr = V(k-1)T T @

—wherek = 1,2, ...




Elements of a dynamical system model @) Rensselaer

Note: notation will change when we get to RL proper

System has a state, denoted by x € R"
— Captures position, velocity, acceleration, etc.

* Control inputs are denoted by u € RP
— Captures throttle, steering, etc.

* Measurements are denoted by y € R4
— Could measure states directly, e.g., odometry, GPS
— Could be high-dimensional such as camera, LiDAR




State Evolution @) Rensselaer

* As time passes, the system state evolves based on the previous
state and the current control inputs

* We typically model the state as a signal:
x:R, - R"
—i.e., for a given time t, x(t) returns the state at that time

* If we want to model the evolution of x in continuous time, we
describe with ordinary differential equations:

0
x(t) = F(x(D), u(®)

* Modern systems are digital, so a discrete-time model makes
more sense (since controller is sampled at discrete times)

X1 = f (0, uy)
—where k is incremented with the sampling rate (e.g., 10Hz)




State Evolution Example

* Going back to the position/velocity example:
Prr = P(k-1)T T V1)1 T
Vkr = V(k-1)T T @

e This is a discrete-time model where x = [p, v]’, u;, = a, so
X1+ x,T
Fllaaxalw = |72

X9 + Uu
* In this case, f is linear, so the system can also be written as
Xik+1 — Axk + Buk

Tl .0
_Where‘q_lo 1]’3_[1]

* Note that we implicitly dropped the T in the subscript
— It is redundant, since k is chosen for a sampling rate of T

® Rensselaer




Measurement model

® Rensselaer

* Measurements are typically modeled as a function of the state:

Yr = 9(Xx)
* |In our example, if we can only measure position, then
Vi = Cx;

—whereC =[1 0]
* In case of more complex measurements, g may be quite
complex or (as is often the case) unknown

—In the F1/10 case, LiDAR measurements can be modeled as
a function of the car state and the hallway dimensions

— Modeling a camera would be significantly harder




General Model Form @©@ Rensselaer

* In its most general form, the model can be written as
X1 = f o, wy)
Vi = g(xy)
—This model has the Markov property, i.e., the current state
depends only on the previous state and control

* It doesn’t matter how we got to the previous state
* Given f and g, one needs to design a controller u;, = h(yy)
—E.g., to navigate the track as fast as possible

—How do we pick the controls u;,?

—Minimize a cost function (surprise, surprise), e.g.,
H-1
AT T T T
J = X4y QXp4y + z Xiey jQXptj + Uy jRU s j + Xpy jNUy
j=0
— where H is a time horizon, Q, R and N are user-defined matrices




Cost Function Considerations @ Rensselaer

 The cost function
H-1

_ AT T T T
J = X4y QXp4y + Z Xiy jQXptj + Uy jRUy j + X3y jNUy
j=0

—is known as the linear quadratic regulator (LQR)
— Can be solved iteratively for linear systems

* Matrices Q, R and N chosen to satisfy control requirements
—e.g., reach a target, minimize fuel consumption

* Having a horizon allows to plan more complex strategies
—E.g., mountain car is easily solved

e Optimal control is extremely well studied
— Strong theory and optimality guarantees for linear systems
— However, non-linear systems have no general solutions




Reinforcement learning modeling and cost
function

® Rensselaer

 Historically, RL theory has been based on finite state models
—The f and g formulation is infinite-state

—However, deep RL is increasingly (and surprisingly) able to
work in infinite-state settings

— RL models also have the Markov property

* Unlike optimal control, RL doesn’t minimize a cost function
— It maximizes a reward function
— Mathematically, there is no difference
— Maybe RL researchers are young and optimistic O.o




Finite State Machines

® Rensselaer

* One of the fundamental models in computer science
e Also known as deterministic finite automata (DFA)

e Historically used to model computer programs
— DFAs are not a perfect model but have served us well
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Finite State Machines Formalization @) Rensselaer

« ADFAisatuple (4,S,S,,6,F), where
 Aistheinput alphabet
* Sis the finite set of states
* Sy is the initial state
* §:5 X A — Sisthe transition function
* Fisthe (possibly empty) set of final (accepting) states

* For each state and input pair S and A4, (S, A) outputs exactly
one state

—Hence the deterministic in the name
—e.g.,0(5,a)=3S5,

* In a non-deterministic FA (NFA), § can output O or more values
— Every NFA can be converted to an equivalent DFA




DFA Expressivity @) Rensselaer

* DFAs are one of the simplest models of computation
—E.g., simpler than pushdown automata, Turing machines
e At the same time, many problems are just extremely large
DFAs
—E.g., games are for the most part (very large) DFAs
—E.g., in chess, every position is a state and every input
(move/action) causes a transition to exactly one state
 Classical RL was actually developed for stochastic models, not
deterministic
— More expressive than DFAs

* To get there, we need to talk about Markov chains first




Markov Chains

® Rensselaer

* Markov chains are effectively probabilistic automata

— Formulation can be made more general, but we’ll only need
the finite-state version

0.85

e Each transition has an associated probability
—E.g., probability of going from §; to S, is 0.7




Workday Example @ Rensselaer

* Markov chain describing my workday

0.3
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Formalization @) Rensselaer

* A Markov Chain is a tuple (S, P,n), where
* Sis the finite set of states
e P:S XS — Risthe probabilistic transition function
* 11:S = Ris the initial state distribution

e Called Markov chain because the probability of the current
state is determined only by the previous state
P[S¢[St-1,St—25 s Sol = P[S¢]St-1] = P(S¢-1,5¢)

—where S; denote the state after t steps

— Examples:
P|Sy = Teach] = n(Teach)
P[S, = Pub|S,_; = Of fice Hour,S, = Teach] =
P[S; = Pub|S;_; = Of fice Hour] =
= 0.2




® Rensselaer

Examples

 What is the probability that | am at Pub two steps after Teach?
—Need to look at all possible ways to get to Pub in two steps

* Formally:
P[S, = Pub|S, = Teach] =
P[S; = Pub,S, = Pub|S, = Teach] +
P[S; = Of fice Hour,S, = Pub|S, = Teach] +
P[S; = Fix Lecture Errors,S, = Pub|S, = Teach] +
P[S; = Make Lecture Slides, S, = Pub|S, = Teach]

* Summing through all possibilities is called marginalization

» Recall the definition of conditional probability:

P[A|B] = PIL'?;];]




® Rensselaer

Examples

 What is the probability that | am at Pub two steps after Teach?
—Need to look at all possible ways to get to Pub in two steps

* Formally:
P[S, = Pub|S, = Teach] =
P[S; = Pub,S, = Pub|S, = Teach] +
P[S; = Of fice Hour,S, = Pub|S, = Teach] +
P[S; = Fix Lecture Errors,S, = Pub|S, = Teach] +
P[S; = Make Lecture Slides, S, = Pub|S, = Teach]

* Summing through all possibilities is called marginalization

* Probabilities are:
P[S; = Pub,S, = Pub|S, = Teach] =
P[S, = Pub|S; = Pub,Sy, = Teach]P|S; = Pub|S, = Teach| =
P[S, = Pub|S; = Pub]P[S; = Pub|Sy = Teach] = 0.1




Examples, cont’d @ Rensselaer

 What is the probability that | am at Pub two steps after Teach?
—Need to look at all possible ways to get to Pub in two steps

* All possible paths
— Pub, Pub
—Office Hour, Pub
—Fix Lecture Errors, Pub
—Make Lecture Slides, Pub

* Probabilities are:
P[S; = Of fice Hour,S, = Pub|S, = Teach] = 0.06
P[S; = Fix Lecture Errors,S, = Pub|S, = Teach] = 0.06
P[S; = Make Lecture Slides, S, = Pub|S, = Teach] = 0.09

 Total probability is 0.1 + 0.06 + 0.06 4+ 0.09 = 0.31




Linear Algebra Aside @) Rensselaer

e Suppose we are given a square matrix A € R™*"

* Avector v is said to be an eigenvector of A if
Av = Av

—Where A € R is a corresponding eigenvalue

* The matrix A has n eigenvectors, v;
—And n corresponding eigenvalues, A;

* If eigenvalues are distinct, the eigenvectors form a basis in R"

—i.e., any x € R" can be written as a linear combination

* There may be repeated eigenvalues

e Aisfull rankiff A; # 0 forall i




Transition Matrix

® Rensselaer

* We can store all transition probabilities in a matrix P

* Entry P;; denotes the probability of going from state i to j

* E.g., let states be ordered:
Teach,Of fice Hour,MLS, FLE, Pub

 The transition matrix becomes:
0 0.3 0.3 0.3

0O 0 04 04
P=]0 05 0 0.2
0 03 0 05
0 O 0 0

 What properties does P have?

0.17
0.2
0.3
0.2

22




Transition Matrix Properties @ Rensselaer

* Each row mustsumuptol

—Why?

— For each state, transition probabilities mush sumup to 1
* Has an eigenvalue of 1

—Why? What is the corresponding eigenvector?

— Pick any row, pJT

—Let 1 € R¥! be a vector of all ones

—What is pjTl?

 1!So 1 is an eigenvector
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Transition Matrix Properties, cont’d ® Rensselaer

* Let n, represent the probabilities the system is in any given
state at time ¢

—Eg,m;=[1 0 0 0 0]" meansthe stateis Teach

« What happens if we multiply i P?
0 0.3 0.3 0.3 0.17
O O 04 04 0.2
O 05 0 0.2 03|=
0O 03 0 05 0.2
0 0 0 0 1 4

[1 0 0 0 O]

=[0 03 03 03 0.1]

* We get the distribution of states after one step, i.e., N}, 4
—What happens if we multiply nf PP?




Transition Matrix Properties, cont’d ® Rensselaer

* What happens if we multlply nt 'pp?
ne PP =n, P =1,
* Now suppose you are given n,
—The distribution at time 0

* How do you express n; as a function of no and P?
ne =Pt
— Can quickly compute state distributions over time

What does this expression remind you of?
—It’s a linear system!
Xp+1 = Axg
Nesr = Py
_ (PT)t+11]0




Linear Algebra Aside, cont’d @) Rensselaer

* Suppose a square matrix A has eigenvalues 44, ..., 1,

« What are the eigenvalues of A%?
yE: N2
) ey AT

* Take any eigenvalue A; and corresponding eigenvector v;
AAv,; = A}livi
= A{v;

* In general, the eigenvalues of A% are
Kk Kk
A2k

—The eigenvectors are the same as those of A
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Linear System Solution @) Rensselaer

e Consider a general discrete-time linear system
x;, = A*x,

» Suppose A has distinct eigenvalues for simplicity

* Recall that the eigenvectors of 4 form a basis in R, so
xO —_ a1v1 + .-+ anvn

* Then
Akxo — al;l’fvl + e + anlﬁvn

* Under what conditions does x;, converge to 07?
|4;| < 1, foralli
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Transition Matrix Linear Systems @ Rensselaer

* Consider the transition matrix linear system
t+1
_ (pT
Neer = (PT) 1o
* We know that 1 is an eigenvector of P

— Also known as a right eigenvector

— However, we are now interested in left eigenvectors
 AKA eigenvectors of PT

T
vI'P = (PTv)
* |t turns out that P also has a left eigenvalue of 1
— Left and right eigenvalues are the same for square matrices
* Eigenvectors may be different

* This means the system never converges to 0
— But what does it converge to?




Transition Matrix Linear Systems, cont’d @ Rensselaer

* Consider a row vector p such that
pP =p
* Then u is an eigenvector corresponding to eigenvalue 1
—There could be more than 1 such vectors

* What graph property determines whether there is a unique u?

—There is one u per closed communication class
* i.e., loopin the graph that cannot be left

— Formally, having one such class is known as irreducibility

* Another requirement is aperiodicity

—If you have a periodic graph,
you will never converge




Stationary Distribution @) Rensselaer

* If you have an aperiodic, irreducible Markov chain, then there
is a unique u such that

pP =p

* This is known as the stationary distribution

— Each element of u denotes the *proportion* of time spent

in that state in the long run

 What is u for the workday example?

—Itis[0 0 0 0 1]

— Pub is an absorbing state

— Every trace eventually gets to Pub

e Teach is a transient state
—You cannot go back to it
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Workday Example, revisited @) Rensselaer

e Suppose | add a new transition from Pub to Teach

Make
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Stationary Distribution for Revisited Workday
Example

® Rensselaer

 Stationary distribution is hard to derive by simply looking at
the graph anymore

* Two ways of finding u

— Can either find left eigenvalues and eigenvectors of P

* Which eigenvalue does u correspond to?
1
* Might need to normalize eigenvector

—Or just compute P! for a big t and then compute n,P*
* Recall uis the same for any initial n,

* For the revisited example
u=1[0.067 0.086 0.054 0.13 0.66]

* Still spending most time in Pub, but other states are also
visited infinitely often
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