
Finite State Automata and Markov Chains
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Reading

• E.A. Lee and S.A. Seshia, Introduction to Embedded Systems: 
CPS Approach, Second Edition, MIT Press, 2017

– Book: 
https://ptolemy.berkeley.edu/books/leeseshia/releases/Lee
Seshia_DigitalV2_2.pdf

– Chapter 3

• Not exactly a standard DFA chapter , has a dynamical system 
bias, but similar to MDPs
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A Simple Dynamics Model

• Suppose a car is moving in a straight line at 𝑣 𝑚/𝑠

• How much will the car have travelled after 𝑇 𝑠?
𝑣𝑇 𝑚

• Suppose the car’s position at time 0 is 𝑝0 and at time 𝑇 is 𝑝𝑇

𝑝𝑇 = 𝑝0 + 𝑣𝑇

• Suppose every 𝑇 seconds velocity jumps up by 𝑎 𝑚/𝑠 

• How do we adapt the model (for discrete times when velocity 
is changed)?

𝑝𝑘𝑇 = 𝑝 𝑘−1 𝑇 + 𝑣(𝑘−1)𝑇𝑇

𝑣𝑘𝑇 = 𝑣 𝑘−1 𝑇 + 𝑎 

–where 𝑘 = 1,2, …
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Elements of a dynamical system model

• Note: notation will change when we get to RL proper

• System has a state, denoted by 𝒙 ∈ ℝ𝑛

– Captures position, velocity, acceleration, etc.

• Control inputs are denoted by 𝒖 ∈ ℝ𝑝

– Captures throttle, steering, etc.

• Measurements are denoted by 𝒚 ∈ ℝ𝑞

– Could measure states directly, e.g., odometry, GPS

– Could be high-dimensional such as camera, LiDAR
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State Evolution

• As time passes, the system state evolves based on the previous 
state and the current control inputs

• We typically model the state as a signal:
𝒙: ℝ+ → ℝ𝑛

– i.e., for a given time 𝑡, 𝒙(𝑡) returns the state at that time

• If we want to model the evolution of 𝒙 in continuous time, we 
describe with ordinary differential equations:

ሶ𝒙 ≔
𝜕𝒙(𝑡)

𝜕𝑡
= 𝑓 𝒙 𝑡 , 𝒖 𝑡

• Modern systems are digital, so a discrete-time model makes 
more sense (since controller is sampled at discrete times)

𝒙𝑘+1 = 𝑓 𝒙𝑘 , 𝒖𝑘

–where 𝑘 is incremented with the sampling rate (e.g., 10Hz)
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State Evolution Example

• Going back to the position/velocity example:
𝑝𝑘𝑇 = 𝑝 𝑘−1 𝑇 + 𝑣(𝑘−1)𝑇𝑇

𝑣𝑘𝑇 = 𝑣 𝑘−1 𝑇 + 𝑎 

• This is a discrete-time model where 𝒙 = 𝑝, 𝑣 𝑇, 𝑢𝑘 = 𝑎, so

𝑓 𝑥1, 𝑥2 , 𝑢 =
𝑥1 + 𝑥2𝑇

𝑥2 + 𝑢

• In this case, 𝑓 is linear, so the system can also be written as
𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝑢𝑘

–where 𝑨 =
1 𝑇
0 1

, 𝑩 =
0
1

• Note that we implicitly dropped the 𝑇 in the subscript

– It is redundant, since 𝑘 is chosen for a sampling rate of 𝑇
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Measurement model

• Measurements are typically modeled as a function of the state:
𝒚𝑘 = 𝑔(𝒙𝑘)

• In our example, if we can only measure position, then
𝒚𝑘 = 𝑪𝒙𝑘

–where 𝑪 = 1 0

• In case of more complex measurements, 𝑔 may be quite 
complex or (as is often the case) unknown

– In the F1/10 case, LiDAR measurements can be modeled as 
a function of the car state and the hallway dimensions

–Modeling a camera would be significantly harder
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General Model Form

• In its most general form, the model can be written as
𝒙𝑘+1 = 𝑓 𝒙𝑘 , 𝒖𝑘

𝒚𝑘 = 𝑔 𝒙𝑘  

– This model has the Markov property, i.e., the current state 
depends only on the previous state and control
• It doesn’t matter how we got to the previous state

• Given 𝑓 and 𝑔, one needs to design a controller 𝒖𝑘 = ℎ(𝒚𝑘)

– E.g., to navigate the track as fast as possible

–How do we pick the controls 𝒖𝑘?

–Minimize a cost function (surprise, surprise), e.g.,

𝐽 = 𝒙𝑘+𝐻
𝑇 𝑸𝒙𝑘+𝐻 + ෍

𝑗=0

𝐻−1

𝒙𝑘+𝑗
𝑇 𝑸𝒙𝑘+𝑗 + 𝒖𝑘+𝑗

𝑇 𝑹𝒖𝑘+𝑗 + 𝒙𝑘+𝑗
𝑇 𝑵𝒖𝑘+𝑗 

– where 𝐻 is a time horizon, 𝑸, 𝑹 and 𝑵 are user-defined matrices 9
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Cost Function Considerations

• The cost function

𝐽 = 𝒙𝑘+𝐻
𝑇 𝑸𝒙𝑘+𝐻 + ෍

𝑗=0

𝐻−1

𝒙𝑘+𝑗
𝑇 𝑸𝒙𝑘+𝑗 + 𝒖𝑘+𝑗

𝑇 𝑹𝒖𝑘+𝑗 + 𝒙𝑘+𝑗
𝑇 𝑵𝒖𝑘+𝑗 

– is known as the linear quadratic regulator (LQR)

– Can be solved iteratively for linear systems

• Matrices 𝑸, 𝑹 and 𝑵 chosen to satisfy control requirements

– e.g., reach a target, minimize fuel consumption

• Having a horizon allows to plan more complex strategies

– E.g., mountain car is easily solved

• Optimal control is extremely well studied

– Strong theory and optimality guarantees for linear systems

–However, non-linear systems have no general solutions



Reinforcement learning modeling and cost 

function

• Historically, RL theory has been based on finite state models

– The 𝑓 and 𝑔 formulation is infinite-state

–However, deep RL is increasingly (and surprisingly) able to 
work in infinite-state settings

– RL models also have the Markov property

• Unlike optimal control, RL doesn’t minimize a cost function

– It maximizes a reward function

–Mathematically, there is no difference

–Maybe RL researchers are young and optimistic O.o
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Finite State Machines

• One of the fundamental models in computer science

• Also known as deterministic finite automata (DFA)

• Historically used to model computer programs

–DFAs are not a perfect model but have served us well
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Finite State Machines Formalization

• A DFA is a tuple 𝐴, 𝑆, 𝑆0, 𝛿, 𝐹 , where
• 𝐴 is the input alphabet

• 𝑆 is the finite set of states

• 𝑆0 is the initial state

• 𝛿: 𝑆 × 𝐴 → 𝑆 is the transition function

• 𝐹 is the (possibly empty) set of final (accepting) states

• For each state and input pair 𝑆 and 𝐴, 𝛿(𝑆, 𝐴) outputs exactly 
one state

–Hence the deterministic in the name

– e.g., 𝛿 𝑆1, 𝑎 = 𝑆2

• In a non-deterministic FA (NFA), 𝛿 can output 0 or more values

– Every NFA can be converted to an equivalent DFA
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DFA Expressivity

• DFAs are one of the simplest models of computation

– E.g., simpler than pushdown automata, Turing machines

• At the same time, many problems are just extremely large 
DFAs

– E.g., games are for the most part (very large) DFAs

– E.g., in chess, every position is a state and every input 
(move/action) causes a transition to exactly one state

• Classical RL was actually developed for stochastic models, not 
deterministic

–More expressive than DFAs

• To get there, we need to talk about Markov chains first
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Markov Chains

• Markov chains are effectively probabilistic automata

– Formulation can be made more general, but we’ll only need 
the finite-state version

• Each transition has an associated probability

– E.g., probability of going from 𝑆1 to 𝑆2 is 0.7
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𝑂𝑓𝑓𝑖𝑐𝑒 
𝐻𝑜𝑢𝑟

𝐹𝑖𝑥
𝐿𝑒𝑐𝑡𝑢𝑟𝑒 
𝐸𝑟𝑟𝑜𝑟𝑠

𝑀𝑎𝑘𝑒
𝐿𝑒𝑐𝑡𝑢𝑟𝑒 
𝑆𝑙𝑖𝑑𝑒𝑠

𝑇𝑒𝑎𝑐ℎ

Workday Example

• Markov chain describing my workday
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Formalization

• A Markov Chain is a tuple 𝑆, 𝑃, 𝜂 , where
• 𝑆 is the finite set of states

• 𝑃: 𝑆 × 𝑆 → ℝ is the probabilistic transition function

• 𝜂: 𝑆 → ℝ is the initial state distribution

• Called Markov chain because the probability of the current 
state is determined only by the previous state

ℙ 𝑆𝑡 𝑆𝑡−1, 𝑆𝑡−2, … , 𝑆0 = ℙ 𝑆𝑡 𝑆𝑡−1 = 𝑃 𝑆𝑡−1, 𝑆𝑡

–where 𝑆𝑡 denote the state after 𝑡 steps

– Examples:
ℙ 𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 𝜂(𝑇𝑒𝑎𝑐ℎ)

ℙ 𝑆𝑡 = 𝑃𝑢𝑏 𝑆𝑡−1 = 𝑂𝑓𝑓𝑖𝑐𝑒 𝐻𝑜𝑢𝑟, 𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 
 ℙ 𝑆𝑡 = 𝑃𝑢𝑏 𝑆𝑡−1 = 𝑂𝑓𝑓𝑖𝑐𝑒 𝐻𝑜𝑢𝑟 =

 = 0.2
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Examples

• What is the probability that I am at 𝑃𝑢𝑏 two steps after 𝑇𝑒𝑎𝑐ℎ?

–Need to look at all possible ways to get to 𝑃𝑢𝑏 in two steps

• Formally:
ℙ 𝑆2 = 𝑃𝑢𝑏 𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 

ℙ 𝑆1 = 𝑃𝑢𝑏, 𝑆2 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ + 
 ℙ 𝑆1 = 𝑂𝑓𝑓𝑖𝑐𝑒 𝐻𝑜𝑢𝑟, 𝑆2 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ +

 ℙ 𝑆1 = 𝐹𝑖𝑥 𝐿𝑒𝑐𝑡𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟𝑠, 𝑆2 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ +
 ℙ 𝑆1 = 𝑀𝑎𝑘𝑒 𝐿𝑒𝑐𝑡𝑢𝑟𝑒 𝑆𝑙𝑖𝑑𝑒𝑠, 𝑆2 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ  

• Summing through all possibilities is called marginalization

• Recall the definition of conditional probability:

ℙ 𝐴 𝐵 =
ℙ[𝐴, 𝐵]

ℙ[𝐵]
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Examples

• What is the probability that I am at 𝑃𝑢𝑏 two steps after 𝑇𝑒𝑎𝑐ℎ?

–Need to look at all possible ways to get to 𝑃𝑢𝑏 in two steps

• Formally:
ℙ 𝑆2 = 𝑃𝑢𝑏 𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 

ℙ 𝑆1 = 𝑃𝑢𝑏, 𝑆2 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ + 
 ℙ 𝑆1 = 𝑂𝑓𝑓𝑖𝑐𝑒 𝐻𝑜𝑢𝑟, 𝑆2 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ +

 ℙ 𝑆1 = 𝐹𝑖𝑥 𝐿𝑒𝑐𝑡𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟𝑠, 𝑆2 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ +
 ℙ 𝑆1 = 𝑀𝑎𝑘𝑒 𝐿𝑒𝑐𝑡𝑢𝑟𝑒 𝑆𝑙𝑖𝑑𝑒𝑠, 𝑆2 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ  

• Summing through all possibilities is called marginalization

• Probabilities are: 
ℙ 𝑆1 = 𝑃𝑢𝑏, 𝑆2 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 
ℙ 𝑆2 = 𝑃𝑢𝑏 𝑆1 = 𝑃𝑢𝑏, 𝑆0 = 𝑇𝑒𝑎𝑐ℎ]ℙ 𝑆1 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ =
ℙ 𝑆2 = 𝑃𝑢𝑏 𝑆1 = 𝑃𝑢𝑏]ℙ 𝑆1 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ =  0.1 
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Examples, cont’d

• What is the probability that I am at 𝑃𝑢𝑏 two steps after 𝑇𝑒𝑎𝑐ℎ?

–Need to look at all possible ways to get to 𝑃𝑢𝑏 in two steps

• All possible paths

–𝑃𝑢𝑏, 𝑃𝑢𝑏

–𝑂𝑓𝑓𝑖𝑐𝑒 𝐻𝑜𝑢𝑟, 𝑃𝑢𝑏

–𝐹𝑖𝑥 𝐿𝑒𝑐𝑡𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟𝑠, 𝑃𝑢𝑏

–𝑀𝑎𝑘𝑒 𝐿𝑒𝑐𝑡𝑢𝑟𝑒 𝑆𝑙𝑖𝑑𝑒𝑠, 𝑃𝑢𝑏

• Probabilities are: 
 ℙ 𝑆1 = 𝑂𝑓𝑓𝑖𝑐𝑒 𝐻𝑜𝑢𝑟, 𝑆2 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 0.06
ℙ 𝑆1 = 𝐹𝑖𝑥 𝐿𝑒𝑐𝑡𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟𝑠, 𝑆2 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 0.06

ℙ 𝑆1 = 𝑀𝑎𝑘𝑒 𝐿𝑒𝑐𝑡𝑢𝑟𝑒 𝑆𝑙𝑖𝑑𝑒𝑠, 𝑆2 = 𝑃𝑢𝑏|𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 0.09 

• Total probability is 0.1 + 0.06 + 0.06 + 0.09 = 0.31
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Linear Algebra Aside

• Suppose we are given a square matrix 𝑨 ∈ ℝ𝑛×𝑛

• A vector 𝒗 is said to be an eigenvector of 𝑨 if
𝑨𝒗 = 𝜆𝒗

–Where 𝜆 ∈ ℝ is a corresponding eigenvalue

• The matrix 𝑨 has 𝑛 eigenvectors, 𝒗𝑖

–And 𝑛 corresponding eigenvalues, 𝜆𝑖

• If eigenvalues are distinct, the eigenvectors form a basis in ℝ𝑛

– i.e., any 𝒙 ∈ ℝ𝑛 can be written as a linear combination
𝒙 = 𝑐1𝒗1 + ⋯ + 𝑐𝑛𝒗𝑛

• There may be repeated eigenvalues

• 𝑨 is full rank iff 𝜆𝑖 ≠ 0 for all 𝑖
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Transition Matrix

• We can store all transition probabilities in a matrix 𝑷

• Entry 𝑃𝑖𝑗 denotes the probability of going from state 𝑖 to 𝑗

• E.g., let states be ordered: 
𝑇𝑒𝑎𝑐ℎ, 𝑂𝑓𝑓𝑖𝑐𝑒 𝐻𝑜𝑢𝑟, 𝑀𝐿𝑆, 𝐹𝐿𝐸, 𝑃𝑢𝑏

• The transition matrix becomes:

𝑷 =

0 0.3 0.3 0.3 0.1
0 0 0.4 0.4 0.2
0 0.5 0 0.2 0.3
0 0.3 0 0.5 0.2
0 0 0 0 1

• What properties does 𝑷 have?
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Transition Matrix Properties

• Each row must sum up to 1

–Why?

– For each state, transition probabilities mush sum up to 1

• Has an eigenvalue of 1

–Why? What is the corresponding eigenvector?

– Pick any row, 𝑝𝑗
𝑇

– Let 𝟏 ∈ ℝ|𝑆| be a vector of all ones

–What is 𝑝𝑗
𝑇𝟏?

• 1! So 𝟏 is an eigenvector
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Transition Matrix Properties, cont’d

• Let 𝜼𝑡  represent the probabilities the system is in any given 
state at time 𝑡

– E.g., 𝜼𝑡 = 1 0 0 0 0 𝑇 means the state is 𝑇𝑒𝑎𝑐ℎ

• What happens if we multiply 𝜼𝑡
𝑇𝑷?

1 0 0 0 0

0 0.3 0.3 0.3 0.1
0 0 0.4 0.4 0.2
0 0.5 0 0.2 0.3
0 0.3 0 0.5 0.2
0 0 0 0 1

= 

 = 0 0.3 0.3 0.3 0.1

• We get the distribution of states after one step, i.e., 𝜼𝑡+1
𝑇

–What happens if we multiply 𝜼𝑡
𝑇𝑷𝑷?
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Transition Matrix Properties, cont’d

• What happens if we multiply 𝜼𝑡
𝑇𝑷𝑷?

𝜼𝑡
𝑇𝑷𝑷 = 𝜼𝑡+1

𝑇 𝑷 = 𝜼𝑡+2
𝑇

• Now suppose you are given 𝜼0

– The distribution at time 0

• How do you express 𝜼𝑡  as a function of 𝜼0 and 𝑷?
𝜼𝑡

𝑇 = 𝜼0
𝑇𝑷𝑡

– Can quickly compute state distributions over time

• What does this expression remind you of?

– It’s a linear system!
𝒙𝑘+1 = 𝑨𝒙𝑘

 𝜼𝑡+1 = 𝑷𝑇𝜼𝑡

 = 𝑷𝑇 𝑡+1
𝜼0
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Linear Algebra Aside, cont’d

• Suppose a square matrix 𝑨 has eigenvalues 𝜆1, … , 𝜆𝑛

• What are the eigenvalues of 𝑨2?
𝜆1

2, … , 𝜆𝑛
2

• Take any eigenvalue 𝜆𝑖 and corresponding eigenvector 𝒗𝑖

𝑨𝑨𝒗𝑖 = 𝑨𝜆𝑖𝒗𝑖

 = 𝜆𝑖
2𝒗𝑖

• In general, the eigenvalues of 𝑨𝑘 are
𝜆1

𝑘, … , 𝜆𝑛
𝑘

– The eigenvectors are the same as those of 𝑨

26



Linear System Solution

• Consider a general discrete-time linear system
𝒙𝑘 = 𝑨𝑘𝒙0

• Suppose 𝑨 has distinct eigenvalues for simplicity

• Recall that the eigenvectors of 𝑨 form a basis in ℝ𝑛, so
𝒙0 = 𝑎1𝒗1 + ⋯ + 𝑎𝑛𝒗𝑛

• Then

𝑨𝑘𝒙0 = 𝑎1𝜆1
𝑘𝒗1 + ⋯ + 𝑎𝑛𝜆𝑛

𝑘 𝒗𝑛

• Under what conditions does 𝒙𝑘  converge to 𝟎?

𝜆𝑖 < 1, for all 𝑖

27



Transition Matrix Linear Systems

• Consider the transition matrix linear system

𝜼𝑡+1 = 𝑷𝑇 𝑡+1
𝜼0

• We know that 𝟏 is an eigenvector of 𝑷

–Also known as a right eigenvector

–However, we are now interested in left eigenvectors
• AKA eigenvectors of 𝑷𝑇

𝒗𝑇𝑷 = 𝑷𝑇𝒗
𝑇

• It turns out that 𝑷 also has a left eigenvalue of 1

– Left and right eigenvalues are the same for square matrices
• Eigenvectors may be different

• This means the system never converges to 0

– But what does it converge to? 28



Transition Matrix Linear Systems, cont’d

• Consider a row vector 𝝁 such that
𝝁𝑷 = 𝝁

• Then 𝝁 is an eigenvector corresponding to eigenvalue 1

– There could be more than 1 such vectors

• What graph property determines whether there is a unique 𝝁?

– There is one 𝝁 per closed communication class
• i.e., loop in the graph that cannot be left

– Formally, having one such class is known as irreducibility

• Another requirement is aperiodicity

– If you have a periodic graph,
you will never converge
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Stationary Distribution

• If you have an aperiodic, irreducible Markov chain, then there 
is a unique 𝝁 such that

𝝁𝑷 = 𝝁

• This is known as the stationary distribution

– Each element of 𝝁 denotes the *proportion* of time spent 
in that state in the long run

• What is 𝝁 for the workday example?

– It is 0 0 0 0 1

–𝑃𝑢𝑏 is an absorbing state

– Every trace eventually gets to 𝑃𝑢𝑏

• 𝑇𝑒𝑎𝑐ℎ is a transient state

– You cannot go back to it
30



𝑂𝑓𝑓𝑖𝑐𝑒 
𝐻𝑜𝑢𝑟

𝐹𝑖𝑥
𝐿𝑒𝑐𝑡𝑢𝑟𝑒 
𝐸𝑟𝑟𝑜𝑟𝑠

𝑀𝑎𝑘𝑒
𝐿𝑒𝑐𝑡𝑢𝑟𝑒 
𝑆𝑙𝑖𝑑𝑒𝑠

𝑇𝑒𝑎𝑐ℎ

Workday Example, revisited

• Suppose I add a new transition from 𝑃𝑢𝑏 to 𝑇𝑒𝑎𝑐ℎ
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Stationary Distribution for Revisited Workday 

Example

• Stationary distribution is hard to derive by simply looking at 
the graph anymore

• Two ways of finding 𝝁

– Can either find left eigenvalues and eigenvectors of 𝑷
• Which eigenvalue does 𝝁 correspond to?

1

• Might need to normalize eigenvector

–Or just compute 𝑷𝑡 for a big 𝑡 and then compute 𝜼0𝑷𝑡

• Recall 𝝁 is the same for any initial 𝜼0

• For the revisited example
𝝁 = 0.067 0.086 0.054 0.13 0.66

• Still spending most time in 𝑃𝑢𝑏, but other states are also 
visited infinitely often
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