Bayesian Bandits

1

Reading

Rensselaer

- Sutton, Richard S., and Barto, Andrew G. Reinforcement learning: An introduction. MIT press, 2018.
	- <http://www.incompleteideas.net/book/the-book-2nd.html>
	- Chapter 2
- Slivkins, Aleksandrs. "Introduction to multi-armed bandits." Foundations and Trends in Machine Learning 12.1-2 (2019): 1- 286.
	- <https://arxiv.org/pdf/1904.07272>
	- Chapters 3

Overview

Rensselaer

- In many cases, we might have a prior guess for each action
	- E.g., suppose you have two slightly biased coins
		- You want to determine which one has a higher likelihood of heads
		- Both are probably close to 0.5, so it makes sense to start from 0.5
- In Bayesian methods, we treat the unknown parameter itself as a random variable
- A very different learning paradigm from the alternative where the unknown parameter is treated as a fixed constant
- We'll see how we can use this paradigm in the case of bandits

Bayesian vs. Frequentist Approach

- One of the classical dichotomies in the learning/statistical communities
- Frequentists approach learning problems without any preconceptions and just let the data speak for itself
	- We are trying to learn some parameter (e.g., a coin bias)
		- choose the estimate that best fits the data we have
- Bayesians claim that we should use our prior knowledge about how the world works
	- E.g., a coin is biased but the probability of H is most likely closer to 0.5 than 1
	- Since the prior is not perfect, it is essentially a probability distribution of the parameter value

Bayesian vs. Frequentist Approach, cont'd

- Apart from the philosophical discussion, there are pragmatic considerations as well
- Ultimately, we care about how well algorithms perform on real data
- My advice is not to be too attached to philosophy but pay close attention to what the data is saying
	- If you think your prior is good, but a Bayesian approach doesn't work so well, try to understand why
		- E.g., you used a wrong distribution class, wrong observation model
	- A frequentist approach sounds less biased but it still requires assumptions about your data
		- Linear, sigmoid, etc.
		- Neural networks are the ultimate frequentist tool

Coin Bias Example

- Suppose I want to estimate the probability of a coin being H
- What is the frequentist approach?
	- $-$ Flip the coin N times
	- Use the proportion of Hs as your unbiased estimate of the probability of H
		- Bonus points: use Hoeffding's inequality the bound the uncertainty around your estimate

Coin Bias Example, cont'd

- Suppose I want to estimate the probability of a coin being H
- What is the Bayesian approach?
- Model the probability of H as a random variable – Denote it by θ
- Suppose I have a prior on θ
	- $-$ For simplicity, my prior says θ can only take on 10 values: $\mathbb{P}[\theta = 0.5] = p_1, ..., \mathbb{P}[\theta = 0.6] = p_{10}$
- Suppose I flip the coin and get a H

– How do I update my prior?

- Recall the definition of conditional probability: $\mathbb{P}[X|Y] =$ $\mathbb{P}[X, Y]$ $\mathbb{P}[Y]$
- Can I write $\mathbb{P}[X|Y]$ as a function of $\mathbb{P}[Y|X]$? $\mathbb{P}[Y|X] =$ $\mathbb{P}[X, Y]$ $\mathbb{P}[X]$

 $-i.e.,$

$$
\mathbb{P}[X,Y] = \mathbb{P}[X]\mathbb{P}[Y|X]
$$

• Plugging in the top equation

$$
\mathbb{P}[X|Y] = \frac{\mathbb{P}[X]\mathbb{P}[Y|X]}{\mathbb{P}[Y]}
$$

• This identity is known as Bayes Rule

- For simplicity, my prior says θ can only take on 10 values: $\mathbb{P}[\theta = 0.5] = p_1, ..., \mathbb{P}[\theta = 0.6] = p_{10}$
- Suppose I flip the coin and get a H
	- How do I update my prior?
		- I want to calculate $\mathbb{P}[\theta = p | R_2 = 1]$ for each $p \in \{0.5, ..., 0.6\}$
		- Suppose $R_2 = 1$ if I get a H (and 0 otherwise)
- Using Bayes Rule:

$$
\mathbb{P}[\theta = p | R_2 = 1] = \frac{\mathbb{P}[\theta = p] \mathbb{P}[R_2 = 1 | \theta = p]}{\mathbb{P}[R_2 = 1]}
$$

- We know $\mathbb{P}[\theta = p]$: it is the prior
- We know $\mathbb{P}[R_2 = 1 | \theta = p] = p$

 $-$ What about $\mathbb{P}[R_2 = 1]$?

Coin Bias Example, cont'd

- We know $\mathbb{P}[\theta = p]$: it is the prior
- We know $\mathbb{P}[R_2 = 1 | \theta = p] = p$
- What about $\mathbb{P}[R_2 = 1]$?
- Using marginalization and conditional probability

$$
\mathbb{P}[R_2 = 1] = \sum_p \mathbb{P}[R_2 = 1, \theta = p]
$$

$$
= \sum_p \mathbb{P}[\theta = p] \mathbb{P}[R_2 = 1 | \theta = p]
$$

- The final Bayesian update becomes $\mathbb{P}[\theta = p | R_2 = 1] =$ $\mathbb{P}[\theta = p] \mathbb{P}[R_2 = 1 | \theta = p]$ $\sum_{p_i} \mathbb{P}[\theta = p_i] \mathbb{P}[R_2 = 1 | \theta = p_i]$
- This is known as the posterior distribution of θ
	- $-$ Prior \rightarrow before receiving data
	- $-$ Posterior \rightarrow after receiving data
- What do I do after the next flip?
	- Use the previous posterior as the next prior
- The Bayesian approach thus has a nice iterative implementation

Coin Bias Example, Beta Approach

- What issues do you see with our approach so far?
	- It is constrained to only 10 possibilities for θ
	- I cannot estimate it with higher precision
- Ideally, I will use a continuous distribution so that all real values of θ are possible
	- Let's try the Beta distribution

Probability Aside: The Beta Distribution

- The Beta distribution models a random parameter that defines the probability of an event (e.g., coin toss)
- It has parameters $\alpha, \beta > 0$, which appear as exponents of the variable and its complement, respectively
- The Beta probability density function (pdf) is $p(x; \alpha, \beta) = const * x^{\alpha-1}(1-x)^{\beta-1}$
	- A pdf is almost like a standard probability function
		- Not a probability function since the probability of a single point is 0
		- It's similar to a probability function since it has to integrate to 1

$$
\int_{-\infty}^{\infty} p(x;\alpha,\beta) dx = 1
$$

Notation $p(x; \alpha, \beta)$ just makes it explicit what the parameters are

Probability Aside: The Beta Distribution

- The Beta distribution models a random parameter that defines the probability of an event
- It has parameters α , $\beta > 0$, which appear as exponents of the variable and its complement, respectively
- The Beta probability density function (pdf) is $p(x; \alpha, \beta) =$ $x^{\alpha-1}(1-x)^{\beta-1}$ \int_0^1 1 $u^{\alpha-1}(1-u)^{\beta-1} du$
	- Note that the mean is as follows

$$
\mathbb{E}[X] = \int_{-\infty}^{\infty} x p(x; \alpha, \beta) dx = \frac{1}{1 + \beta/\alpha}
$$

2 1.5 ą $\mathbf{1}$ 0.5

 $\mathbf{0}$

 0.2

 0.4

 0.6

 0.8

 2.5

Coin Bias Example, Beta Approach, cont'd

- Suppose my prior for θ is a Beta distribution with parameters α_0 , β_0
- Suppose I flip a H as before
- It turns out that Bayes Rule applies to pdfs as well $p[x; \alpha_0, \beta_0|R_2 = 1] =$ = $p[x; \alpha_0, \beta_0] \mathbb{P}[R_2 = 1 | \theta = x]$ $\mathbb{P}[R_2 = 1]$ $= const * x^{\alpha_0-1}(1-x)^{\beta_0-1}\cdot x$ $= const * x^{(\alpha_0+1)-1}(1-x)^{\beta_0-1}$ - where $const =$ 1 \int_0^1 $\frac{1}{2}u^{\alpha-1}(1-u)^{\beta-1}du \cdot \mathbb{P}[R_2=1]$

Coin Bias Example, Beta Approach, cont'd

• It turns out that Bayes Rule applies to pdfs as well $p[x; \alpha_0, \beta_0 | R_2 = 1] = const * x^{(\alpha_0 + 1) - 1} (1 - x)^{\beta_0 - 1}$

$$
- \text{ where } const = \frac{1}{\int_0^1 u^{\alpha - 1} (1 - u)^{\beta - 1} du \cdot \mathbb{P}[R_2 = 1]}
$$

- This is another Beta distribution!
	- with parameters $\alpha_1 = \alpha_0 + 1$, $\beta_1 = \beta_0$
	- $-$ You should make sure $const$ can be simplified to the normalizing constant for the new Beta distribution
- We say the Beta distribution is a conjugate prior for the Bernoulli distribution
	- The posterior and the prior remain in the same probability class, with different parameters

Rensselaer

- Suppose now I have 2 coins and would like to learn which one is more likely to come out as H
	- Can we map this to a bandit problem?
	- Suppose I get a reward of 1 for each H and 0 otherwise
	- Which action brings me a higher reward in expectation?
- In the Bayesian world, each coin's probability of success is a random variable
	- $-$ E.g., the probability of coin 1 being H is denoted by θ_1
- Suppose I have a prior on each θ_i
	- $-$ For simplicity, my prior says θ_i can only take on 10 values: $\mathbb{P}[\theta_i = 0.5] = p_{i,1}, \dots, \mathbb{P}[\theta_i = 0.6] = p_{i,10}$
- Which coin do you flip next?

- Suppose I have a prior on each θ_i
	- $-$ For simplicity, my prior says θ_i can only take on 10 values: $\mathbb{P}[\theta_i = 0.5] = p_{i,1}, \dots, \mathbb{P}[\theta_i = 0.6] = p_{i,10}$
- Which coin do you flip next?
	- Need to calculate which coin is more likely to flip H $\mathbb{P}[\theta_1 \geq \theta_2] =$

$$
=\sum_{p_1>p_2}\mathbb{P}\left[\theta_1=p_1,\theta_2=p_2\right]
$$

- If $\mathbb{P}[\theta_1 \geq \theta_2] > 0.5$, then flip coin 1, else coin 2
- Suppose I flip coin 1 and get a reward of 1
	- $-$ How do I update θ_1 ?
	- -1 want to calculate $\mathbb{P}[\theta_1 = p | R_2 = 1, A_1 = 1]$ for each p

- Using Bayes Rule (same derivation as the 1-coin case): $\mathbb{P}[\theta_1 = p | R_2 = 1, A_1 = 1] =$ = $\mathbb{P}[\theta_1 = p] \mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p]$ $\mathbb{P}[R_2 = 1, A_1 = 1]$
- We know $\mathbb{P}[\theta_1 = p]$
- What about $\mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p]$?

– Using the definition of conditional probability $\mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p] =$

 $= \mathbb{P}[R_2 = 1 | A_1 = 1, \theta_1 = p] \mathbb{P}[A_1 = 1 | \theta_1 = p]$

– We know $\mathbb{P}[R_2 = 1 | A_1 = 1, \theta_1 = p] = p$

- $-$ Also, note that A_1 does not depend on θ_1
	- The action depends only on observed data
	- So $\mathbb{P}[A_1 = 1 | \theta_1 = p] = \mathbb{P}[A_1 = 1]$
	- Finally, $\mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p] = p \mathbb{P}[A_1 = 1]$

- Using Bayes Rule (same derivation as the 1-coin case): $\mathbb{P}[\theta_1 = p | R_2 = 1, A_1 = 1] =$ = $\mathbb{P}[\theta_1 = p] \mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p]$ $\mathbb{P}[R_2 = 1, A_1 = 1]$
- We know $\mathbb{P}[\theta_1 = p]$ and $\mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p]$
- What about $\mathbb{P}[R_2 = 1, A_1 = 1]$?
	- Using marginalization and conditional probability

$$
\mathbb{P}[R_2 = 1, A_1 = 1] = \sum_{p} \mathbb{P}[R_1 = 1, A_1 = 1, \theta_1 = p]
$$

$$
= \sum_{p} \mathbb{P}[\theta_1 = p] \mathbb{P}[R_2 = 1, A_1 = 1 | \theta_1 = p]
$$

$$
= \mathbb{P}[A_1 = 1] \sum_{p} \mathbb{P}[\theta_1 = p] p
$$

- So the final Bayesian update is $\mathbb{P}[\theta_1 = p | R_2 = 1, A_1 = 1] =$ = $\mathbb{P}[\theta_1 = p]p\mathbb{P}[A_1 = 1]$ $\mathbb{P}[A_1 = 1] \sum_{p_i} \mathbb{P}[\theta_1 = p_i] p_i$ = $\mathbb{P}[\theta_1 = p]p$ $\sum_{p_i} \mathbb{P}[\theta_1 = p_i] p_i$
	- So the posterior is independent of the algorithm!
		- As soon as we flip coin 1, we perform a standard Bayesian update
		- Regardless of how many times we flipped other coins in between the coin 1 flips
	- Need to calculate for all $p \in \{0.5, ..., 0.6\}$

Thompson Sampling

- What challenges do you see with the Bayesian approach?
- Calculating the posterior is not trivial when θ is not finite
	- The posterior distribution may be hard to represent mathematically
		- Assuming a beta prior is one way to resolve this, but it may not always be the right prior
- Calculating the probability $\mathbb{P}[\theta_1 > \theta_2]$ may not even be possible in closed form
	- May require heavy computation to approximate, especially if you have more actions
- The Thompson sampling algorithm addresses/alleviates these challenges

- Calculating the probability $\mathbb{P}[\theta_1 > \theta_2]$ may not even be possible in closed form
	- Suppose we know the distribution of each θ_i , call it ${\cal D}_{\theta_i}$, but don't have a closed-form expression for $\mathbb{P}[\theta_1 > \theta_2]$
	- We can sample $t_i \thicksim {\cal D}_{{\theta}_i}$ and then take action corresponding to the largest sampled t_i
- The posterior distribution may be hard to represent mathematically
	- Some distributions have closed-form posteriors, e.g., Gaussian and Beta distributions
		- Often good approximations of many real-life scenarios

- Algorithm summary:
	- $-$ Start with prior distribution for each θ_i , call it ${\cal D}_{{\theta}_i}$
	- $-$ Sample $t_i \thicksim \mathcal{D}_{\theta_i}$ for each i
	- $-$ Take action $a_t = a_{i^*}$, where $i^* = argmax_i$ \boldsymbol{i} t_i
	- $-$ Observe reward r_{t+1}
	- $-$ Update ${\mathcal{D}}_{\boldsymbol{\theta}_{\boldsymbol{l}^*}}$ using Bayes rule
		- E.g., assuming a Beta prior