Multi-Armed Bandits

Reading

Rensselaer

- Sutton, Richard S., and Barto, Andrew G. Reinforcement learning: An introduction. MIT press, 2018.
 - <u>http://www.incompleteideas.net/book/the-book-2nd.html</u>
 Chapter 2
- Slivkins, Aleksandrs. "Introduction to multi-armed bandits." Foundations and Trends[®] in Machine Learning 12.1-2 (2019)
 - https://arxiv.org/pdf/1904.07272
 - Chapter 1
- Agarwal, Alekh, et al. "Reinforcement learning: Theory and algorithms." CS Dept., UW, WA, USA, Tech. Rep 32 (2019): 96.
 - –<u>https://rltheorybook.github.io/rltheorybook_AJKS.pdf</u>
 - Chapter 6 (will consider a modified version of their proof)

Overview

- Multi-armed bandits have many applications
 - Dynamic advertising on websites
 - Dynamic pricing
 - Investment
 - –etc.
- It's a sequential decision-making problem
 - Simpler than the general RL setting since there is no state
 - Pick one out of k actions at each step
- Agenda
 - formalize the standard multi-armed bandit setting
 - derive the popular confidence upper bound algorithm

- Suppose you are in a casino all by yourself
 - There are k slot machines, each with a different probability of success
 - At any given time, you can only be on one slot machine
 - You would like to learn which slot machine is the best
- Suppose you are a doctor
 - You are presented with a sick patient with a rare condition
 - There are a number of experimental treatments, but you don't know their probability of success
 - You would like to learn which treatment is the best

- At each time, you can select 1 out of k actions
- Each action has an unknown expected reward
 - E.g., slot machine payout rate/treatment success rate
- Your goal is to learn the expected rewards over time
 Then you select the action with highest expected reward
- Bonus points if you can minimize the number of attempts
 - At the beginning, you are in *exploration* phase
 - Trying different actions randomly and seeing the rewards
 - Eventually, you switch to the *exploitation* phase
 - When you have a good estimate of rewards, you pick actions to maximize the rewards
 - Balancing the 2 is one of the fundamental challenges in RL

Multi-armed Bandits Formalization, cont'd

- The agent has K possible actions, i.e., $A = \{a_1, \dots, a_K\}$
- Each action a has an unknown reward function is $R_e(a) = \mathbb{E}[R_{t+1}|A_t = a]$
 - where A_t is the random variable for the action at time step t
 - where R_{t+1} is the random variable for the reward at time step t + 1
 - By convention, the reward is received one step after the action is taken
- At each round t, you taken an action A_t and observe a reward R_{t+1}
- Goal: estimate $R_e(a)$ for all actions a and learn the best action $a^* = \arg \max_a R_e(a)$

- How do we estimate the expected reward of each action?
 Hint: what probabilistic tools did we discuss?
- Try each action N number of times and collect the rewards
 - Calculate the average reward per action
 - $As N \rightarrow \infty$, the average will converge to the true expected reward (law of large numbers)
- What can we say about a specific finite *N*?
 - For any N, can construct a confidence interval around your current estimate
 - E.g., using a concentration bound like Hoeffding's inequality

Probability Aside: Hoeffding's Inequality

- Let $X_1, ..., X_n$ be n independent random variables — Each bounded by $a_i \le X_i \le b_i$
- Let $S_n = X_1 + \dots + X_n$
- Hoeffding's Theorem:

$$\mathbb{P}[S_n - \mathbb{E}[S_n] \ge t] \le \exp\left\{-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right\}$$

- A type of concentration bound
- -Given a sample S_n , bound its deviation from the true mean
- —The larger t is, the higher the probability the mean is within t of the sample
- The smaller the bounds $(b_i a_i)$, the tighter the bound on S_n

Rensselaer

Probability Aside: Hoeffding's Inequality, cont'd (Rensselaer

• Hoeffding's Theorem:

$$\mathbb{P}[S_n - \mathbb{E}[S_n] \ge t] \le \exp\left\{-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right\}$$

• Two-tailed version:

$$\mathbb{P}[|S_n - \mathbb{E}[S_n]| \ge t] \le 2\exp\left\{-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right\}$$

- Essentially applying bound twice
 - Once for the case \geq and once for the case \leq

Probability Aside: Hoeffding's Inequality, cont'd (Rensselaer

- Suppose we know the reward varies by at most some B > 0
 For simplicity, suppose B = 1
- The bound simplifies to:

$$\mathbb{P}[S_n - \mathbb{E}[S_n] \ge t] \le \exp\left\{-\frac{2t^2}{n}\right\}$$

• Furthermore, suppose we are interested in bounding the mean $\mathbb{P}\left[\frac{1}{n}(S_n - \mathbb{E}[S_n]) \ge t\right] =$ $= \mathbb{P}[S_n - \mathbb{E}[S_n] \ge nt] \le \exp\{-2t^2n\}$ Probability Aside: Hoeffding's Inequality, cont'd (1) Rensselaer

$$\mathbb{P}\left[\frac{1}{n}|S_n - \mathbb{E}[S_n]| \ge t\right] \le 2\exp\{-2t^2n\}$$

• How do we construct a 95%-confidence interval around $\frac{S_n}{n}$?

$$2\exp\{-2t^2n\}=0.05$$

i.e.,
$$t = c \sqrt{\frac{1}{n}}$$

- where $c = \sqrt{-0.5 * \log(0.05/2)} = \sqrt{0.5 * \log(2/0.05)}$

• In general, for any confidence $1 - \delta$:

$$c = \sqrt{0.5 * \log(2/\delta)}$$

Probability Aside: Hoeffding's Inequality, cont'd (Rensselaer

$$\mathbb{P}\left[\frac{1}{n}|S_n - \mathbb{E}[S_n]| \ge t\right] \le 2\exp\{-2t^2n\}$$

• How do we construct a $1 - \delta$ -confidence interval around $\frac{S_n}{n}$?

-Set
$$t = c \sqrt{\frac{1}{n}}$$

• where $c = \sqrt{0.5 * \log(2/\delta)}$

• So finally:

$$\mathbb{P}\left[\frac{1}{n}|S_n - \mathbb{E}[S_n]| \geq c \sqrt{\frac{1}{n}}\right] \leq \delta$$

Probability Aside: Hoeffding's Inequality, cont'd (2) Rensselaer

• So finally,

$$\mathbb{P}\left[\frac{1}{n}|S_n - \mathbb{E}[S_n]| \geq c \sqrt{\frac{1}{n}}\right] \leq \delta$$

• The $1 - \delta$ confidence interval is thus

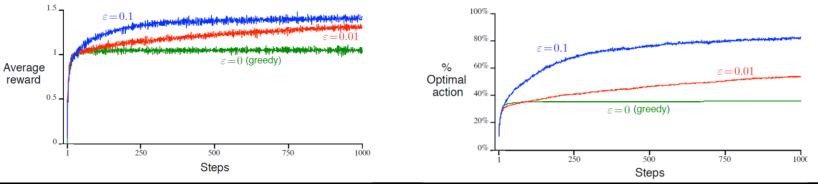
$$\left[\frac{S_n}{n} - c_n \sqrt{\frac{1}{n}}, \frac{S_n}{n} + c_n \sqrt{\frac{1}{n}}\right]$$

- The previous bound only works for a single action — Why?
 - Each action has a 95% probability of being within its confidence interval
 - What is the probability that all K actions are all within their confidence intervals?
 - Assuming actions are independent, then it is 0.95^{K}

- In practice, we have to choose an action every time
 - Can't pre-collect N datapoints for each action
- So how do we choose that action?
 - Keep a running average of each action
 - At each step, choose the action with the highest average
- This is OK, but has a major limitation
 - Some actions may get very few points if they get a few bad samples
 - You are not guaranteed to find the best action in the limit
 - How do we fix this issue?

16

- ϵ -greedy action selection
- At each step, choose the action with the highest average
 - But with probability 1ϵ , for small $\epsilon > 0$
 - With probability ϵ , pick another action at random
 - k-1 other actions, so other actions get $\frac{\epsilon}{k-1}$ probability each
- 10-armed example from the book
 - The $\epsilon = 0.1$ case converges fastest in this example
 - The $\epsilon = 0$ case eventually plateaus



Multi-armed Bandits, RL Approach Implementation

Rensselaer

- When computing the running average, we don't need to add up all past rewards every time
 - -E.g., suppose average at time t is $q^t(a) = \frac{1}{t} \sum_{i=1}^{t} R_i$
 - -When we receive R_{t+1} , what is the new average, in terms of $q^t(a)$?

$$q^{t+1}(a) = \frac{R_1 + R_2 + \dots + R_{t+1}}{t+1}$$

= $\frac{1}{t+1}(R_1 + \dots + R_t) + \frac{1}{t+1}R_{t+1}$
= $\frac{t}{t+1}\frac{(R_1 + \dots + R_t)}{t} + \frac{1}{t+1}R_{t+1}$
= $\frac{t}{t+1}q^t(a) + \frac{1}{t+1}R_{t+1}$
= $q^t(a) + \frac{1}{t+1}(R_{t+1} - q^t(a))$

Multi-armed Bandits, RL Approach Implementation, cont'd

Rensselaer

- When computing the running average, we don't need to add up all past rewards every time
 - -E.g., suppose average at time t is $q^t(a) = \frac{1}{t} \sum_{i=1}^{t} R_i$
 - -When we receive R_{t+1} , what is the new average, in terms of $q^t(a)$?

$$q^{t+1}(a) = q^{t}(a) + \frac{1}{t+1} \left(R_{t+1} - q^{t}(a) \right)$$

- Compute the difference between the new reward and the running average
 - This is a simple example of temporal difference learning (more later)

Successive Elimination Algorithm

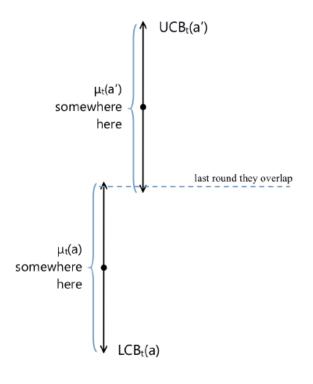
- Can you design an algorithm that declares victory with high probability?
 - i.e., it keeps trying actions until it is 95%-confident that it has identified the best action
- For simplicity, suppose we have 2 actions

- Suppose we keep running 95%-confidence intervals for each $[LCB(a_1), UCB(a_1)], [LCB(a_2), UCB(a_2)]$

 Can terminate algorithm when one interval is entirely larger than the other, e.g.,:

 $LCB(a_2) > UCB(a_1)$

- What about more actions?
 - Successively eliminate actions whose upper bound is lower then the best action's lower bound



- Can't directly apply Hoeffding's inequality to calculate the confidence intervals
 - -Why?
 - The rewards R_t are not necessarily independent!
 - Consider the following algorithm:
 - sample action a_1 two times and then only sample a_1 a 3rd time if $R_1 = R_2 = 0$
 - Clearly R_3 only exists when $R_1 = R_2 = 0$
 - How do we get around this issue?

- Suppose we are allowed to make a total of *T* actions
- Each action a gets a total of $0 < n(a) \le T$ actions
 - Note that n(a) is random and depends on the algorithm
 - Let $S_{n,a}$ be the sample average for the rewards received when taking action a
- The following bound holds for any algorithm

$$\mathbb{P}\left[\frac{1}{n(a)}\left|S_{n,a} - \mathbb{E}[S_{n,a}]\right| \ge \frac{\sqrt{2T\log(1/\delta)}}{n(a)}\right] \le \delta$$

- Proof requires theory of martingales
 - Shown at the end of this deck

- The following bound holds for any algorithm $\mathbb{P}\left[\frac{1}{n(a)}\left|S_{n,a} - \mathbb{E}[S_{n,a}]\right| \ge \frac{\sqrt{2T\log(1/\delta)}}{n(a)}\right] \le \delta$
- Very similar to the original Hoeffding bound

- If we assume $T \approx n(a)$, we get

$$\mathbb{P}\left[\frac{1}{n(a)}\left|S_{n,a} - \mathbb{E}\left[S_{n,a}\right]\right| \ge \sqrt{\frac{2\log\left(\frac{1}{\delta}\right)}{n(a)}}\right] \le \delta$$

- Similar to original Hoeffding bound except n(a) is random

• Ultimately the bounds are the same: T is fixed, so the choice of δ will determine the confidence interval size

- We know that without exploration we are almost certainly going to converge to a suboptimal action
- On the other hand, too much exploration may take a long time to converge
 - So far, we've seen
 e-greedy exploration, which indiscriminately selects the next action randomly
- Is there a way to perform targeted exploration?
- Pick the action with the highest UCB!
 - Why is this a good idea?
 - Either the highest-UCB action is already the best
 - or the highest-UCB action has a large confidence interval, which means it could benefit from more exploration
 - In both cases it makes sense to select that action

Upper-Confidence-Bound Algorithm, cont'd

- Suppose we have a choice of *K* actions
- For $t \in [1, K]$:
 - Take each action once and observe the reward
- For t > K:
 - Calculate running reward averages $q^t(a_i)$ for each action a_i

-Take action
$$a_t = a_{i^*}$$
, where $i^* = \arg\max_i q^t(a_i) + \sqrt{\frac{c}{n(a_i)}}$

• where $c = 2 \log\left(\frac{1}{\delta}\right)$

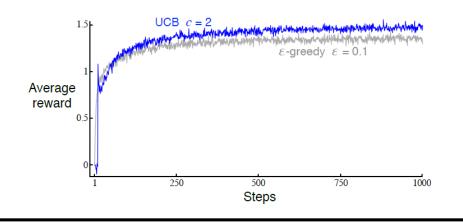
Book uses a different c (no time to prove)

» Tighter confidence bounds can be derived specific to UCB

- Observe corresponding reward r_t
 - Update $q^t(a_i)$ and increment $n(a_{i^*})$

Upper-Confidence-Bound Algorithm, cont'd

- UCB algorithm generally outperforms ϵ -greedy
- UCB is not widely used in the general RL setting, however
 - May introduce a lot of variance in a high-dimensional action space
 - If we have many actions, we will require a lot of data in order to try all actions enough times and get good confidence intervals



Conclusion

Rensselaer

- Multi-armed bandits is a well-studied setting with a number of strong theoretical results
- It can be considered as a simplified RL setting where the environment has no state
- In this lecture, we considered the case where we made no assumptions about rewards

Except that they are bounded

 Next time, we'll look at Bayesian bandits where we assume a prior about the reward distribution

- Suppose we are allowed to make a total of *T* actions
- Each action a gets a total of $0 < n(a) \le T$ actions
 - Note that n(a) is random and depends on the algorithm
 - Let $S_{n,a}$ be the sample average for the rewards received when taking action a
- The following bound holds for any algorithm

$$\mathbb{P}\left[\frac{1}{n(a)}\left|S_{n,a} - \mathbb{E}[S_{n,a}]\right| \ge \frac{\sqrt{2T\log(1/\delta)}}{n(a)}\right] \le \delta$$

• Sutton book uses a slightly different bound but

Probability Aside: Hoeffding-Azuma Inequality

Definition: A sequence of random variables X_0, \ldots, X_T is a martingale difference sequence if

$$\mathbb{E}[X_t] < \infty$$
$$\mathbb{E}[X_t | X_0, \dots, X_{t-1}] = 0$$

• Theorem [Hoeffding-Azuma Inequality]: Let $X_0, ..., X_T$ be a martingale difference sequence and suppose $|X_t - X_{t-1}| \le c_t$. Then, for all $\varepsilon > 0, T > 0$:

$$\mathbb{P}\left[\sum_{i=0}^{T} X_i \ge \epsilon\right] \le \exp\left(\frac{-\epsilon^2}{2\sum_{i=1}^{T} c_i^2}\right)$$

Rensselaer

- Consider a fixed action a and fixed algorithm $\mathcal A$
 - -Let $\hat{\mu}_a^t = \frac{S_{n_t,a}}{n_t(a)}$ be the running average at time step t
 - Let $\mu_a = \mathbb{E}[R_{t+1}|A_t = a]$ be the true expected reward for action a
 - Assume each action a is tried once initially, with random reward R_a
- Define the following random variables $X_0 = R_a - \mu_a, X_1 = \mathbf{1}\{A_1 = a\}(R_2 - \mu_a), \dots, X_T = \mathbf{1}\{A_T = a\}(R_{T+1} - \mu_a)$
 - Each X_t is 0 when action a is not taken at time t and r_t otherwise (normalized to be 0-mean by subtracting μ_a)

- Define the following random variables $X_0 = R_a - \mu_a, X_1 = \mathbf{1}\{A_1 = a\}(R_2 - \mu_a), \dots, X_T = \mathbf{1}\{A_T = a\}(R_{T+1} - \mu_a)$
 - Each X_t is 0 when action a is not taken at time t and r_t otherwise (normalized to be 0-mean by subtracting μ_a)
- Notice that $\mathbb{E}[X_t | X_1, \dots, X_{t-1}] = 0$
 - Given all history, $\mathbf{1}\{A_1 = a\}$ is deterministic
 - Decided by the algorithm $\ensuremath{\mathcal{A}}$
 - Either $\mathbf{1}{A_1 = a} = 0$ (in which case expectation is 0)
 - Or $\mathbf{1}{A_1 = a} = 1$, in which case $\mathbb{E}[X_t | X_1, \dots, X_{t-1}] = \mathbb{E}[R_t \mu_a] = 0$
- Thus, X_1, \ldots, X_T is a martingale difference sequence

- Define the following random variables $X_0 = R_a - \mu_a, X_1 = \mathbf{1}\{A_1 = a\}(R_2 - \mu_a), \dots, X_T = \mathbf{1}\{A_T = a\}(R_{T+1} - \mu_a)$
 - Each X_t is 0 when action a is not taken at time t and r_t otherwise (normalized to be 0-mean by subtracting μ_a)
- Also notice that $|X_t X_{t-1}| \le 1$ for all t
 - Recall $R_t \in [0,1]$, which means $\mu_a \in [0,1]$ and hence $R_t - \mu_a \in [0,1]$ and $X_t \in [0,1]$
- By the Hoeffding-Azuma inequality, for any t

$$\mathbb{P}\left[\sum_{i=0}^{t} X_i \ge \epsilon\right] \le \exp\left(\frac{-\epsilon^2}{2\sum_{i=1}^{t} 1^2}\right) \le \exp\left(\frac{-\epsilon^2}{2t}\right)$$

Define the following random variables

$$\begin{split} X_0 &= R_a - \mu_a, X_1 = \mathbf{1} \{ A_1 = a \} (R_2 - \mu_a), \dots, X_T \\ &= \mathbf{1} \{ A_T = a \} (R_{T+1} - \mu_a) \end{split}$$

• By the Hoeffding-Azuma inequality, for any fixed t

$$\mathbb{P}\left[\sum_{i=0}^{t} X_i \ge \epsilon\right] \le \exp\left(\frac{-\epsilon^2}{2\sum_{i=0}^{t} 1^2}\right) \le \exp\left(\frac{-\epsilon^2}{2t}\right)$$

• Notice that

$$\sum_{i=0}^{t} X_{i} = \sum_{i=0}^{t} \mathbf{1} \{A_{i} = a\} R_{i+1} - \sum_{i=0}^{t} \mathbf{1} \{A_{i} = a\} \mu_{a}$$
$$= S_{n_{t},a} - n_{t}(a) \mu_{a}$$
$$= n_{t}(a) \hat{\mu}_{a}^{t} - n_{t}(a) \mu_{a}$$

Define the following random variables

$$\begin{split} X_0 &= R_a - \mu_a, X_1 = \mathbf{1}\{A_1 = a\}(R_2 - \mu_a), \dots, X_T \\ &= \mathbf{1}\{A_T = a\}(R_{T+1} - \mu_a) \end{split}$$

• By the Hoeffding-Azuma inequality, for any fixed t

$$\mathbb{P}\left[\sum_{i=0}^{t} X_i \ge \epsilon\right] \le \exp\left(\frac{-\epsilon^2}{2\sum_{i=0}^{t} 1^2}\right) \le \exp\left(\frac{-\epsilon^2}{2t}\right)$$

• Finally,

$$\begin{bmatrix} t \\ \sum_{i=0}^{t} X_i \ge \epsilon \end{bmatrix} = \mathbb{P}[n_t(a)\hat{\mu}_a^t - n_t(a)\mu_a \ge \epsilon]$$
$$= \mathbb{P}\left[\hat{\mu}_a^t - \mu_a \ge \frac{\epsilon}{n_t(a)}\right] \le \exp\left(\frac{-\epsilon^2}{2t}\right)$$

$$\mathbb{P}\left[\hat{\mu}_{a}^{t} - \mu_{a} \geq \frac{\epsilon}{n_{t}(a)}\right] \leq \exp\left(\frac{-\epsilon^{2}}{2t}\right)$$

• Solving for
$$\delta = \exp\left(\frac{-\epsilon^2}{2t}\right)$$
, we get
 $\epsilon = \sqrt{-2t\log(\delta)} = \sqrt{2t\log(1/\delta)}$

• Thus, for $1 - \delta$ confidence:

$$\mathbb{P}\left[\hat{\mu}_{a}^{t} - \mu_{a} \geq \frac{\sqrt{2t\log(1/\delta)}}{n_{t}(a)}\right] \leq \delta$$

- Plugging in T = t, we get the final result