Multi-Armed Bandits




Reading @ Rensselaer

e Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

— http://www.incompleteideas.net/book/the-book-2nd.html
— Chapter 2

 Slivkins, Aleksandrs. "Introduction to multi-armed bandits."
Foundations and Trends® in Machine Learning 12.1-2 (2019)

— https://arxiv.org/pdf/1904.07272
— Chapter 1

e Agarwal, Alekh, et al. "Reinforcement learning: Theory and
algorithms." CS Dept., UW, WA, USA, Tech. Rep 32 (2019): 96.

— https://rltheorybook.github.io/rltheorybook AJKS.pdf
— Chapter 6 (will consider a modified version of their proof)



http://www.incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/pdf/1904.07272
https://rltheorybook.github.io/rltheorybook_AJKS.pdf

Overview @©@ Rensselaer

 Multi-armed bandits have many applications
— Dynamic advertising on websites
— Dynamic pricing
—Investment
—etc.

* It’s a sequential decision-making problem
—Simpler than the general RL setting since there is no state
— Pick one out of k actions at each step

* Agenda
—formalize the standard multi-armed bandit setting
—derive the popular confidence upper bound algorithm




Other Applications @) Rensselaer

e Suppose you are in a casino all by yourself

—There are k slot machines, each with a different probability
of success

— At any given time, you can only be on one slot machine
—You would like to learn which slot machine is the best

e Suppose you are a doctor
—You are presented with a sick patient with a rare condition

—There are a number of experimental treatments, but you
don’t know their probability of success

—You would like to learn which treatment is the best




Multi-armed Bandits Formalization

e At each time, you can select 1 out of k actions

e Each action has an unknown expected reward
—E.g., slot machine payout rate/treatment success rate

* Your goal is to learn the expected rewards over time
—Then you select the action with highest expected reward

* Bonus points if you can minimize the number of attempts
— At the beginning, you are in exploration phase
* Trying different actions randomly and seeing the rewards

— Eventually, you switch to the exploitation phase

 When you have a good estimate of rewards, you pick actions to
maximize the rewards

— Balancing the 2 is one of the fundamental challenges in RL

® Rensselaer




Multi-armed Bandits Formalization, cont’d @ Rensselaer

* The agent has K possible actions, i.e., A = {a4, ..., ag}

* Each action a has an unknown reward function is
Re(a) = E[R¢41|A; = a]
—where A; is the random variable for the action at time step t

—where R;, 1 is the random variable for the reward at time
stept + 1

* By convention, the reward is received one step after the action is
taken

* At each round t, you taken an action A; and observe a reward
Riy1

* Goal: estimate R, (a) for all actions a and learn the best action
a* = argmaxR,(a)
a




Naive Approach @) Rensselaer

 How do we estimate the expected reward of each action?
— Hint: what probabilistic tools did we discuss?

* Try each action N number of times and collect the rewards
— Calculate the average reward per action
—As N — oo, the average will converge to the true expected
reward (law of large numbers)
* What can we say about a specific finite N?

—For any N, can construct a confidence interval around your
current estimate

e E.g., using a concentration bound like Hoeffding’s inequality




® Rensselaer

Probability Aside: Hoeffding’s Inequality

* Let Xy, ..., X;;, be nindependent random variables
—Each bounded by a; < X; < b;

. LetS, = X; + - + X,

* Hoeffding’s Theorem:

PS5, — E[S,] = t] < 2t
[ n - [ n] = t] = exp {_ ?:1(191' _ai)z}

— A type of concentration bound
—Given a sample S,,, bound its deviation from the true mean

—The larger t is, the higher the probability the mean is within
t of the sample

—The smaller the bounds (b; — a;), the tighter the bound on
Sn




Probability Aside: Hoeffding’s Inequality, cont’d @ Rensselaer

» Hoeffding’s Theorem:

) ) o 2t2
[Sn — E[Sh] = t] < exp {_ ™ (b — ai)z}

 Two-tailed version:

2t2
P[|S,, — E[S., ]| = t] < 2expi—
1157 S]] = t] p{ (b, —ai)z}

— Essentially applying bound twice
 Once for the case = and once for the case <




Probability Aside: Hoeffding’s Inequality, cont’d @ Rensselaer

* Suppose we know the reward varies by at most some B > 0
— For simplicity, suppose B = 1

* The bound simplifies to:

P[S,, — E[S,,] = t] < exp {— 2%2}

* Furthermore, suppose we are interested in bounding the mean

1
P E(Sn _ E[Sn]) =t

= P[S,, — E[S,] = nt] < exp{—2t?n}
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Probability Aside: Hoeffding’s Inequality, cont’d @ Rensselaer

1
P lg 1S, —E[Sp]l = ¢t < ZeXp{—Zth}

2ny
n

* How do we construct a 95%-confidence interval around

—Solve for t such that

2exp{—2t?n} = 0.05
e, t = c\/E
n

—where ¢ = \/—0.5 x10g(0.05/2) = /0.5 * log(2/0.05)

* In general, for any confidence 1 — ¢:
c = \/0.5 * log(2/96)
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Probability Aside: Hoeffding’s Inequality, cont’d @) Rensselaer

1
P lg 1S, —E[Sp]l = ¢t < ZeXp{—Zth}

2np
n

* How do we construct a 1 — d-confidence interval around

—Sett=c\/1
n

* wherec = \/0.5 * log(2/9)

* So finally:

12




Probability Aside: Hoeffding’s Inequality, cont’d @) Rensselaer

* So finally,

1 1
P|=[S, —E[Sp]l=c |=| <6
n V’I’l

* The 1 — § confidence interval is thus

+ C
N N

g
S| =]

Sn
,—
n

S
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Naive Approach, cont’d @ Rensselaer

* The previous bound only works for a single action
—Why?

— Each action has a 95% probability of being within its
confidence interval

—What is the probability that all K actions are all within their
confidence intervals?
 Assuming actions are independent, then it is 0.95%

14




Multi-armed Bandits, the RL Approach ® Rensselaer

* |In practice, we have to choose an action every time
— Can’t pre-collect N datapoints for each action

* So how do we choose that action?
— Keep a running average of each action
— At each step, choose the action with the highest average

* This is OK, but has a major limitation

—Some actions may get very few points if they get a few bad
samples

—You are not guaranteed to find the best action in the limit
—How do we fix this issue?




Multi-armed Bandits, the RL Approach @) Rensselaer

* e-greedy action selection

* At each step, choose the action with the highest average
— But with probability 1 — ¢, for small e > 0
— With probability €, pick another action at random

 k — 1 other actions, so other actions get k—: probability each

* 10-armed example from the book
—The € = 0.1 case converges fastest in this example
—The € = 0 case eventually plateaus

1
-=0.1
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Multi-armed Bandits, RL Approach
Implementation

® Rensselaer

* When computing the running average, we don’t need to add
up all past rewards every time
: , 1
—E.g., suppose average at time tis g*(a) = - ‘R

—When we receive R;,1, What is the new average, in terms of

t
q-(a)? o .
1+ Ry + -+ 1
qt+1(a)= t+
t+1
_ ! (Ry +--+Ry) + ! R
_t+1(1 t) t+1 ttl
t (Ry+-+R, 1
— R
t+1 t +t+1 t+1
=gt +——R
Tt W T

1
=q'(a) + t_l_—l(Rt+1 —q'(a))




Multi-armed Bandits, RL Approach
Implementation, cont’d

® Rensselaer

* When computing the running average, we don’t need to add
up all past rewards every time

. . 1
—E.g., suppose average at time tis g*(a) = - ‘R

—When we receive R;,1, What is the new average, in terms of
q‘(a)? 1
"' (a) = ¢*(a) + t_l_—l(Rt+1 - qt(a))
* Compute the difference between the new reward and the

running average

—This is a simple example of temporal difference learning
(more later)




Successive Elimination Algorithm @ Rensselaer

* Canyou design an algorithm that declares victory with high
probability?
—i.e., it keeps trying actions until it is 95%-confident that it
has identified the best action

* For simplicity, suppose we have 2 actions
— Suppose we keep running 95%-confidence intervals for each
[LCB (al)i UCB (al)]r [LCB (az), UCB (aZ)]

* Can terminate algorithm when one interval is entirely larger
than the other, e.g.,:
LCB(a,) > UCB(aq)




Successive Elimination Algorithm, cont’d ® Rensselaer

e What about more actions?

— Successively eliminate actions whose upper bound is lower
then the best action’s lower bound

UCB(a")

pia’)
somewhere | ¢
here

last round they overlap

@)
somewhere { ¢
here

LCBi(a)

20




Successive Elimination Algorithm, cont’d @) Rensselaer

e Can’t directly apply Hoeffding’s inequality to calculate the
confidence intervals
—Why?
—The rewards R; are not necessarily independent!
— Consider the following algorithm:

* sample action a; two times and then only sample a4 a 3rd time if
Rl — RZ — O
* Clearly R; only exists when Ry = R, =0

—How do we get around this issue?




Successive Elimination Algorithm, cont’d @) Rensselaer

* Suppose we are allowed to make a total of T actions

* Each action a gets a total of 0 < n(a) < T actions
— Note that n(a) is random and depends on the algorithm
—Let 5, 4 be the sample average for the rewards received
when taking action a

* The following bound holds for any algorithm
\/ZTlog(l/(S) <5
n(a)

P

|Sn,a _ [E[Sn,a” =

1
n(a)
— Proof requires theory of martingales

* Shown at the end of this deck




Successive Elimination Algorithm, cont’d @) Rensselaer

* The following bound holds for any algorithm

1 V2T log(1/8)
n(a) |Sn,a o [E[Sn,a“ = n(a) ]

* Very similar to the original Hoeffding bound

2 log 1
o6,

—Similar to original Hoeffding bound except n(a) is random

<94

P

—If we assume T = n(a), we get

P

* Ultimately the bounds are the same: T is fixed, so the choice of
0 will determine the confidence interval size




Upper-Confidence-Bound Algorithm @®) Rensselaer

* We know that without exploration we are almost certainly
going to converge to a suboptimal action

* On the other hand, too much exploration may take a long time
to converge

—So far, we've seen e-greedy exploration, which
indiscriminately selects the next action randomly

* |s there a way to perform targeted exploration?

* Pick the action with the highest UCB!
—Why is this a good idea?
* Either the highest-UCB action is already the best

* or the highest-UCB action has a large confidence interval, which
means it could benefit from more exploration

* |n both cases it makes sense to select that action




Upper-Confidence-Bound Algorithm, cont’d ® Rensselaer

* Suppose we have a choice of K actions
* Fort € [1,K]:
—Take each action once and observe the reward

e Fort > K:
— Calculate running reward averages g‘(a;) for each action q;

Cc

n(a;)

—Take action a; = a;+, where i* = argmax q®(q;) +
i
1
* wherec = 2log (E)
— Book uses a different ¢ (no time to prove)
» Tighter confidence bounds can be derived specific to UCB

— Observe corresponding reward 1;

 Updateg®(q;) and increment n(a;+)




Upper-Confidence-Bound Algorithm, cont’d ® Rensselaer

* UCB algorithm generally outperforms e-greedy

* UCB is not widely used in the general RL setting, however

—May introduce a lot of variance in a high-dimensional action
space

* If we have many actions, we will require a lot of data in order to try
all actions enough times and get good confidence intervals

15k UCB c=2
| W
Average

reward
05F

1 250 500 750 1000
Steps
26




Conclusion

® Rensselaer

* Multi-armed bandits is a well-studied setting with a number of
strong theoretical results

* |t can be considered as a simplified RL setting where the
environment has no state

* In this lecture, we considered the case where we made no
assumptions about rewards
— Except that they are bounded

* Next time, we’ll look at Bayesian bandits where we assume a
prior about the reward distribution




Proof of Confidence Bound @©@ Rensselaer

* Suppose we are allowed to make a total of T actions

* Each action a gets a total of 0 < n(a) < T actions
— Note that n(a) is random and depends on the algorithm
—Let 5, 4 be the sample average for the rewards received
when taking action a

* The following bound holds for any algorithm

1 V2T log(1/6) <5
n(a) n(a) -

» Sutton book uses a slightly different bound but

P

|Sn,a _ [E[Sn,a” =




Probability Aside: Hoeffding-Azuma Inequality

® Rensselaer

* Definition: A sequence of random variables X, ...

martingale difference sequence if
E[X;] < o0
]E[Xt|XO, ""Xt—l] —_ 0

* Theorem [Hoeffding-Azuma Inequality]: Let X, ...
- Xt—ll S Ct‘

martingale difference sequence and suppose | X;

Then, foralle > 0,T > 0:

T
P ZXL = €
| 1=0

< exp(

—e2 )
221 1 l

,Xrisa

, X7 be a




Proof of Confidence Bound, cont’d @©@ Rensselaer

* Consider a fixed action a and fixed algorithm A

" S : :
—Let it = % be the running average at time step t

—Let u, = E[R;;+1|A; = a] be the true expected reward for
action a

— Assume each action a is tried once initially, with random
reward R,

* Define the following random variables
Xo = Rq — ta, X1 = H{A; = a}(R; — tg), ... Xy = WAy = a}(Rry1 — Ug)
—Each X; is 0 when action a is not taken at time t and 1
otherwise (normalized to be 0-mean by subtracting u,)




Proof of Confidence Bound, cont’d @©@ Rensselaer

* Define the following random variables
Xo =Ry — e Xy = 1{A; = a}(Ry — ug), -, Xy = H{Ar = a}(Rr41 — Ug)
—Each X; is 0 when action a is not taken attime t and r;
otherwise (normalized to be 0-mean by subtracting u,)

* Notice that E[X;|X{, ..., X;—1] =0
— Given all history, 1{A; = a} is deterministic
* Decided by the algorithm A
—Either 1{A; = a} = 0 (in which case expectation is 0)
—0r1{4; = a} = 1, in which case E[X;| Xy, ..., X;—1] =
IE[Rt — .ua] =0

* Thus, X4, ..., X7 is a martingale difference sequence




Proof of Confidence Bound, cont’d @©@ Rensselaer

* Define the following random variables
Xo =Ry — e Xy = 1{A; = a}(Ry — ug), -, Xy = H{Ar = a}(Rr41 — Ug)
—Each X; is 0 when action a is not taken at time t and 1
otherwise (normalized to be 0-mean by subtracting u,)

* Also notice that |X; — X;_{| < 1forallt
—Recall R; € [0,1], which means u, € [0,1] and hence
R; — u, €10,1] and X; € [0,1]

* By the Hoeffding-Azuma inequality, for any ¢t

—e? —e?
P ZXL =€l < exp (2 Zt 12) < exp <2_t>
. =1




Proof of Confidence Bound, cont’d @©@ Rensselaer

* Define the following random variables
Xo = Rq — Ua, X1 = H{A; = a}(Ry — fhg), -, X
= 1{Ar = a}(Rr41 — Uq)

* By the Hoeffding-Azuma inequality, for any fixed t
- :

—e? —e?
P ZXL =€l < €Xp<22t 012) < exp(2—t>
1=

=0

* Notice that

zx Zl{A = a}R;ys — Zl{A = alu,

Snt a — Ne(@pg
= ne(@)fig — ne(@uq




Proof of Confidence Bound, cont’d @©@ Rensselaer

* Define the following random variables
Xo =Rg — Ug, X1 = 1{141 — a}(RZ o Ma)r ey X
= 1{Ar = a}(Rr41 — Uq)

* By the Hoeffding-Azuma inequality, for any fixed t
- :

—62 —62
P ZXL =€l < €Xp<22t 012) < exp(2—t>
l=

=0

* Finally,

> X = €| = Pln (@) — ne(@tg > €]

] 2
- € €
— ]P [.ua _ .ua 2 nt(a)] S eXp <Z_t)




Proof of Confidence Bound, cont’d @©@ Rensselaer

ot € |- —e?
— X —
.ua .ua — nt(a) =€ p Zt
_e2
* Solving for § = exp (7), we get

€ = \/—Ztlog(S) = \/Ztlog(l/(ﬁ)
* Thus, for 1 — 6 confidence:

Nt \/Ztlog(l/(ﬁ)
Hg — Ug = n,(a)

—Plugging in T = t, we get the final result

P <94
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