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Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement 
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapter 2

• Slivkins, Aleksandrs. "Introduction to multi-armed bandits." 
Foundations and Trends® in Machine Learning 12.1-2 (2019)

– https://arxiv.org/pdf/1904.07272

– Chapter 1

• Agarwal, Alekh, et al. "Reinforcement learning: Theory and 
algorithms." CS Dept., UW, WA, USA, Tech. Rep 32 (2019): 96.

– https://rltheorybook.github.io/rltheorybook_AJKS.pdf

– Chapter 6 (will consider a modified version of their proof)
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Overview

• Multi-armed bandits have many applications

–Dynamic advertising on websites

–Dynamic pricing

– Investment

– etc.

• It’s a sequential decision-making problem

– Simpler than the general RL setting since there is no state

– Pick one out of 𝑘 actions at each step

• Agenda

– formalize the standard multi-armed bandit setting

– derive the popular confidence upper bound algorithm 
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Other Applications

• Suppose you are in a casino all by yourself

– There are 𝑘 slot machines, each with a different probability 
of success

–At any given time, you can only be on one slot machine

– You would like to learn which slot machine is the best

• Suppose you are a doctor

– You are presented with a sick patient with a rare condition

– There are a number of experimental treatments, but you 
don’t know their probability of success

– You would like to learn which treatment is the best
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Multi-armed Bandits Formalization

• At each time, you can select 1 out of 𝑘 actions

• Each action has an unknown expected reward

– E.g., slot machine payout rate/treatment success rate

• Your goal is to learn the expected rewards over time

– Then you select the action with highest expected reward

• Bonus points if you can minimize the number of attempts

–At the beginning, you are in exploration phase
• Trying different actions randomly and seeing the rewards

– Eventually, you switch to the exploitation phase
• When you have a good estimate of rewards, you pick actions to 

maximize the rewards

– Balancing the 2 is one of the fundamental challenges in RL
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Multi-armed Bandits Formalization, cont’d

• The agent has 𝐾 possible actions, i.e., 𝐴 = {𝑎1, … , 𝑎𝐾}

• Each action 𝑎 has an unknown reward function is 
𝑅𝑒 𝑎 = 𝔼[𝑅𝑡+1|𝐴𝑡 = 𝑎]

–where 𝐴𝑡 is the random variable for the action at time step 𝑡

–where 𝑅𝑡+1 is the random variable for the reward at time 
step 𝑡 + 1
• By convention, the reward is received one step after the action is 

taken

• At each round 𝑡, you taken an action 𝐴𝑡 and observe a reward 
𝑅𝑡+1

• Goal: estimate 𝑅𝑒 𝑎  for all actions 𝑎 and learn the best action
𝑎∗ = 𝑎𝑟𝑔max

𝑎
𝑅𝑒 𝑎
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Naïve Approach

• How do we estimate the expected reward of each action?

–Hint: what probabilistic tools did we discuss?

• Try each action 𝑁 number of times and collect the rewards

– Calculate the average reward per action

–As 𝑁 → ∞, the average will converge to the true expected 
reward (law of large numbers)

• What can we say about a specific finite 𝑁?

– For any 𝑁, can construct a confidence interval around your 
current estimate
• E.g., using a concentration bound like Hoeffding’s inequality
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Probability Aside: Hoeffding’s Inequality

• Let 𝑋1, … , 𝑋𝑛 be 𝑛 independent random variables

– Each bounded by 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖

• Let 𝑆𝑛 = 𝑋1 + ⋯ + 𝑋𝑛

• Hoeffding’s Theorem:

ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑡 ≤ exp −
2𝑡2

σ𝑖=1
𝑛 𝑏𝑖 − 𝑎𝑖

2

–A type of concentration bound

–Given a sample 𝑆𝑛, bound its deviation from the true mean

– The larger 𝑡 is, the higher the probability the mean is within 
𝑡 of the sample

– The smaller the bounds 𝑏𝑖 − 𝑎𝑖 , the tighter the bound on 
𝑆𝑛
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Probability Aside: Hoeffding’s Inequality, cont’d

• Hoeffding’s Theorem:

ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑡 ≤ exp −
2𝑡2

σ𝑖=1
𝑛 𝑏𝑖 − 𝑎𝑖

2

• Two-tailed version:

ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑡 ≤ 2exp −
2𝑡2

σ𝑖=1
𝑛 𝑏𝑖 − 𝑎𝑖

2

– Essentially applying bound twice
• Once for the case ≥ and once for the case ≤
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Probability Aside: Hoeffding’s Inequality, cont’d

• Suppose we know the reward varies by at most some 𝐵 > 0

– For simplicity, suppose 𝐵 = 1

• The bound simplifies to:

ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑡 ≤ exp −
2𝑡2

𝑛

• Furthermore, suppose we are interested in bounding the mean

ℙ
1

𝑛
(𝑆𝑛 − 𝔼 𝑆𝑛 ) ≥ 𝑡 = 

 = ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑛𝑡 ≤ exp −2𝑡2𝑛
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Probability Aside: Hoeffding’s Inequality, cont’d

ℙ
1

𝑛
𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑡 ≤ 2exp −2𝑡2𝑛

• How do we construct a 95%-confidence interval around 
𝑆𝑛

𝑛
?

– Solve for 𝑡 such that

2exp −2𝑡2𝑛 = 0.05

i.e., 𝑡 = 𝑐
1

𝑛

–where 𝑐 = −0.5 ∗ log(0.05/2) = 0.5 ∗ log(2/0.05)

• In general, for any confidence 1 − 𝛿:

𝑐 = 0.5 ∗ log(2/𝛿)
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Probability Aside: Hoeffding’s Inequality, cont’d

ℙ
1

𝑛
𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑡 ≤ 2exp −2𝑡2𝑛

• How do we construct a 1 − 𝛿-confidence interval around 
𝑆𝑛

𝑛
?

– Set 𝑡 = 𝑐
1

𝑛

• where 𝑐 = 0.5 ∗ log(2/𝛿)

• So finally:

ℙ
1

𝑛
𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑐

1

𝑛
≤ 𝛿
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Probability Aside: Hoeffding’s Inequality, cont’d

• So finally,

ℙ
1

𝑛
𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑐

1

𝑛
≤ 𝛿

• The 1 − 𝛿 confidence interval is thus

𝑆𝑛

𝑛
− 𝑐

1

𝑛
,
𝑆𝑛

𝑛
+ 𝑐

1

𝑛
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Naïve Approach, cont’d

• The previous bound only works for a single action

–Why?

– Each action has a 95% probability of being within its 
confidence interval

–What is the probability that all 𝐾 actions are all within their 
confidence intervals?
• Assuming actions are independent, then it is 0.95𝐾
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Multi-armed Bandits, the RL Approach

• In practice, we have to choose an action every time

– Can’t pre-collect 𝑁 datapoints for each action

• So how do we choose that action?

– Keep a running average of each action

–At each step, choose the action with the highest average

• This is OK, but has a major limitation

– Some actions may get very few points if they get a few bad 
samples

– You are not guaranteed to find the best action in the limit

–How do we fix this issue?
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Multi-armed Bandits, the RL Approach

• 𝜖-greedy action selection

• At each step, choose the action with the highest average

– But with probability 1 − 𝜖, for small 𝜖 > 0

–With probability 𝜖, pick another action at random

• 𝑘 − 1 other actions, so other actions get 
𝜖

𝑘−1
 probability each

• 10-armed example from the book

– The 𝜖 = 0.1 case converges fastest in this example

– The 𝜖 = 0 case eventually plateaus
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Multi-armed Bandits, RL Approach 

Implementation

• When computing the running average, we don’t need to add 
up all past rewards every time

– E.g., suppose average at time 𝑡 is 𝑞𝑡 𝑎 =
1

𝑡
σ𝑖=1

𝑡 𝑅𝑖

–When we receive 𝑅𝑡+1, what is the new average, in terms of 
𝑞𝑡(𝑎)?

𝑞𝑡+1 𝑎 =
𝑅1 + 𝑅2 + ⋯ + 𝑅𝑡+1

𝑡 + 1
 

=
1

𝑡 + 1
𝑅1 + ⋯ + 𝑅𝑡 +

1

𝑡 + 1
𝑅𝑡+1 

=
𝑡

𝑡 + 1

𝑅1 + ⋯ + 𝑅𝑡

𝑡
+

1

𝑡 + 1
𝑅𝑡+1 

=
𝑡

𝑡 + 1
𝑞𝑡 𝑎 +

1

𝑡 + 1
𝑅𝑡+1 

= 𝑞𝑡 𝑎 +
1

𝑡 + 1
𝑅𝑡+1 − 𝑞𝑡 𝑎  
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Multi-armed Bandits, RL Approach 

Implementation, cont’d

• When computing the running average, we don’t need to add 
up all past rewards every time

– E.g., suppose average at time 𝑡 is 𝑞𝑡 𝑎 =
1

𝑡
σ𝑖=1

𝑡 𝑅𝑖

–When we receive 𝑅𝑡+1, what is the new average, in terms of 
𝑞𝑡(𝑎)?

𝑞𝑡+1 𝑎 = 𝑞𝑡 𝑎 +
1

𝑡 + 1
𝑅𝑡+1 − 𝑞𝑡 𝑎

• Compute the difference between the new reward and the 
running average

– This is a simple example of temporal difference learning 
(more later)
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Successive Elimination Algorithm

• Can you design an algorithm that declares victory with high 
probability?

– i.e., it keeps trying actions until it is 95%-confident that it 
has identified the best action

• For simplicity, suppose we have 2 actions

– Suppose we keep running 95%-confidence intervals for each
𝐿𝐶𝐵 𝑎1 , 𝑈𝐶𝐵 𝑎1 , 𝐿𝐶𝐵 𝑎2 , 𝑈𝐶𝐵 𝑎2

• Can terminate algorithm when one interval is entirely larger 
than the other, e.g.,:

𝐿𝐶𝐵 𝑎2 > 𝑈𝐶𝐵 𝑎1

19



Successive Elimination Algorithm, cont’d

• What about more actions?

– Successively eliminate actions whose upper bound is lower 
then the best action’s lower bound
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Successive Elimination Algorithm, cont’d

• Can’t directly apply Hoeffding’s inequality to calculate the 
confidence intervals

–Why?

– The rewards 𝑅𝑡 are not necessarily independent!

– Consider the following algorithm:

• sample action 𝑎1 two times and then only sample 𝑎1 a 3rd time if 
𝑅1 = 𝑅2 = 0

• Clearly 𝑅3 only exists when 𝑅1 = 𝑅2 = 0

–How do we get around this issue?
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Successive Elimination Algorithm, cont’d

• Suppose we are allowed to make a total of 𝑇 actions

• Each action 𝑎 gets a total of 0 < 𝑛 𝑎 ≤ 𝑇 actions

–Note that 𝑛 𝑎  is random and depends on the algorithm

– Let 𝑆𝑛,𝑎 be the sample average for the rewards received 
when taking action 𝑎

• The following bound holds for any algorithm

ℙ
1

𝑛 𝑎
𝑆𝑛,𝑎 − 𝔼 𝑆𝑛,𝑎 ≥

2𝑇 log(1/𝛿)

𝑛(𝑎)
≤ 𝛿

– Proof requires theory of martingales
• Shown at the end of this deck
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Successive Elimination Algorithm, cont’d

• The following bound holds for any algorithm

ℙ
1

𝑛 𝑎
𝑆𝑛,𝑎 − 𝔼 𝑆𝑛,𝑎 ≥

2𝑇 log(1/𝛿)

𝑛(𝑎)
≤ 𝛿

• Very similar to the original Hoeffding bound

– If we assume 𝑇 ≈ 𝑛(𝑎), we get

ℙ
1

𝑛 𝑎
𝑆𝑛,𝑎 − 𝔼 𝑆𝑛,𝑎 ≥

2 log
1
𝛿

𝑛 𝑎
≤ 𝛿

– Similar to original Hoeffding bound except 𝑛(𝑎) is random

• Ultimately the bounds are the same: 𝑇 is fixed, so the choice of 
𝛿 will determine the confidence interval size
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Upper-Confidence-Bound Algorithm

• We know that without exploration we are almost certainly 
going to converge to a suboptimal action

• On the other hand, too much exploration may take a long time 
to converge

– So far, we’ve seen 𝜖-greedy exploration, which 
indiscriminately selects the next action randomly

• Is there a way to perform targeted exploration?

• Pick the action with the highest UCB!

–Why is this a good idea?
• Either the highest-UCB action is already the best

• or the highest-UCB action has a large confidence interval, which 
means it could benefit from more exploration

• In both cases it makes sense to select that action
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Upper-Confidence-Bound Algorithm, cont’d

• Suppose we have a choice of 𝐾 actions

• For 𝑡 ∈ 1, 𝐾 :

– Take each action once and observe the reward

• For 𝑡 > 𝐾:

– Calculate running reward averages 𝑞𝑡 𝑎𝑖  for each action 𝑎𝑖

– Take action 𝑎𝑡 = 𝑎𝑖∗, where 𝑖∗ = 𝑎𝑟𝑔max
𝑖

𝑞𝑡 𝑎𝑖 +
𝑐

𝑛 𝑎𝑖

• where 𝑐 = 2 log
1

𝛿

– Book uses a different 𝑐 (no time to prove)

» Tighter confidence bounds can be derived specific to UCB

–Observe corresponding reward 𝑟𝑡

• Update𝑞𝑡 𝑎𝑖  and increment 𝑛 𝑎𝑖∗
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Upper-Confidence-Bound Algorithm, cont’d

• UCB algorithm generally outperforms 𝜖-greedy

• UCB is not widely used in the general RL setting, however

–May introduce a lot of variance in a high-dimensional action 
space
• If we have many actions, we will require a lot of data in order to try 

all actions enough times and get good confidence intervals
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Conclusion

• Multi-armed bandits is a well-studied setting with a number of 
strong theoretical results

• It can be considered as a simplified RL setting where the 
environment has no state

• In this lecture, we considered the case where we made no 
assumptions about rewards

– Except that they are bounded

• Next time, we’ll look at Bayesian bandits where we assume a 
prior about the reward distribution
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Proof of Confidence Bound

• Suppose we are allowed to make a total of 𝑇 actions

• Each action 𝑎 gets a total of 0 < 𝑛 𝑎 ≤ 𝑇 actions

–Note that 𝑛 𝑎  is random and depends on the algorithm

– Let 𝑆𝑛,𝑎 be the sample average for the rewards received 
when taking action 𝑎

• The following bound holds for any algorithm

ℙ
1

𝑛 𝑎
𝑆𝑛,𝑎 − 𝔼 𝑆𝑛,𝑎 ≥

2𝑇 log(1/𝛿)

𝑛(𝑎)
≤ 𝛿

• Sutton book uses a slightly different bound but 
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Probability Aside: Hoeffding-Azuma Inequality

• Definition: A sequence of random variables 𝑋0, … , 𝑋𝑇 is a 
martingale difference sequence if

𝔼 𝑋𝑡 < ∞
𝔼 𝑋𝑡 𝑋0, … , 𝑋𝑡−1 = 0 

• Theorem [Hoeffding-Azuma Inequality]: Let 𝑋0, … , 𝑋𝑇 be a 
martingale difference sequence and suppose 𝑋𝑡 − 𝑋𝑡−1 ≤ 𝑐𝑡. 
Then, for all 𝜀 > 0, 𝑇 > 0:

ℙ ෍

𝑖=0

𝑇

𝑋𝑖 ≥ 𝜖 ≤ exp
−𝜖2

2 σ𝑖=1
𝑇 𝑐𝑖

2
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Proof of Confidence Bound, cont’d

• Consider a fixed action 𝑎 and fixed algorithm 𝒜

– Let Ƹ𝜇𝑎
𝑡 =

𝑆𝑛𝑡,𝑎

𝑛𝑡(𝑎)
 be the running average at time step 𝑡

– Let 𝜇𝑎 = 𝔼 𝑅𝑡+1 𝐴𝑡 = 𝑎  be the true expected reward for 
action 𝑎

–Assume each action 𝑎 is tried once initially, with random 
reward 𝑅𝑎

• Define the following random variables
𝑋0 = 𝑅𝑎 − 𝜇𝑎, 𝑋1 = 𝟏 𝐴1 = 𝑎 𝑅2 − 𝜇𝑎 , … , 𝑋𝑇 = 𝟏 𝐴𝑇 = 𝑎 𝑅𝑇+1 − 𝜇𝑎

– Each 𝑋𝑡 is 0 when action 𝑎 is not taken at time 𝑡 and 𝑟𝑡 
otherwise (normalized to be 0-mean by subtracting 𝜇𝑎)
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Proof of Confidence Bound, cont’d

• Define the following random variables
𝑋0 = 𝑅𝑎 − 𝜇𝑎, 𝑋1 = 𝟏 𝐴1 = 𝑎 𝑅2 − 𝜇𝑎 , … , 𝑋𝑇 = 𝟏 𝐴𝑇 = 𝑎 𝑅𝑇+1 − 𝜇𝑎

– Each 𝑋𝑡 is 0 when action 𝑎 is not taken at time 𝑡 and 𝑟𝑡 
otherwise (normalized to be 0-mean by subtracting 𝜇𝑎)

• Notice that 𝔼 𝑋𝑡 𝑋1, … , 𝑋𝑡−1 = 0

–Given all history, 𝟏 𝐴1 = 𝑎  is deterministic
• Decided by the algorithm 𝒜

– Either 𝟏 𝐴1 = 𝑎 = 0 (in which case expectation is 0)

–Or 𝟏 𝐴1 = 𝑎 = 1, in which case 𝔼 𝑋𝑡 𝑋1, … , 𝑋𝑡−1 =
𝔼 𝑅𝑡 − 𝜇𝑎 = 0

• Thus, 𝑋1, … , 𝑋𝑇 is a martingale difference sequence
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Proof of Confidence Bound, cont’d

• Define the following random variables
𝑋0 = 𝑅𝑎 − 𝜇𝑎, 𝑋1 = 𝟏 𝐴1 = 𝑎 𝑅2 − 𝜇𝑎 , … , 𝑋𝑇 = 𝟏 𝐴𝑇 = 𝑎 𝑅𝑇+1 − 𝜇𝑎

– Each 𝑋𝑡 is 0 when action 𝑎 is not taken at time 𝑡 and 𝑟𝑡 
otherwise (normalized to be 0-mean by subtracting 𝜇𝑎)

• Also notice that 𝑋𝑡 − 𝑋𝑡−1 ≤ 1 for all 𝑡

– Recall 𝑅𝑡 ∈ 0,1 , which means 𝜇𝑎 ∈ [0,1] and hence

𝑅𝑡 − 𝜇𝑎 ∈ [0,1] and 𝑋𝑡 ∈ 0,1

• By the Hoeffding-Azuma inequality, for any 𝑡

ℙ ෍

𝑖=0

𝑡

𝑋𝑖 ≥ 𝜖 ≤ exp
−𝜖2

2 σ𝑖=1
𝑡 12

≤ exp
−𝜖2

2𝑡
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Proof of Confidence Bound, cont’d

• Define the following random variables
𝑋0 = 𝑅𝑎 − 𝜇𝑎, 𝑋1 = 𝟏 𝐴1 = 𝑎 𝑅2 − 𝜇𝑎 , … , 𝑋𝑇

= 𝟏 𝐴𝑇 = 𝑎 𝑅𝑇+1 − 𝜇𝑎

• By the Hoeffding-Azuma inequality, for any fixed 𝑡

ℙ ෍

𝑖=0

𝑡

𝑋𝑖 ≥ 𝜖 ≤ exp
−𝜖2

2 σ𝑖=0
𝑡 12

≤ exp
−𝜖2

2𝑡

• Notice that

෍

𝑖=0

𝑡

𝑋𝑖 = ෍

𝑖=0

𝑡

𝟏 𝐴𝑖 = 𝑎 𝑅𝑖+1 − ෍

𝑖=0

𝑡

𝟏 𝐴𝑖 = 𝑎 𝜇𝑎

= 𝑆𝑛𝑡,𝑎 − 𝑛𝑡 𝑎 𝜇𝑎 

= 𝑛𝑡 𝑎 Ƹ𝜇𝑎
𝑡 − 𝑛𝑡 𝑎 𝜇𝑎 
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Proof of Confidence Bound, cont’d

• Define the following random variables
𝑋0 = 𝑅𝑎 − 𝜇𝑎, 𝑋1 = 𝟏 𝐴1 = 𝑎 𝑅2 − 𝜇𝑎 , … , 𝑋𝑇

= 𝟏 𝐴𝑇 = 𝑎 𝑅𝑇+1 − 𝜇𝑎

• By the Hoeffding-Azuma inequality, for any fixed 𝑡

ℙ ෍

𝑖=0

𝑡

𝑋𝑖 ≥ 𝜖 ≤ exp
−𝜖2

2 σ𝑖=0
𝑡 12

≤ exp
−𝜖2

2𝑡

• Finally,

෍

𝑖=0

𝑡

𝑋𝑖 ≥ 𝜖 = ℙ 𝑛𝑡 𝑎 Ƹ𝜇𝑎
𝑡 − 𝑛𝑡 𝑎 𝜇𝑎 ≥ 𝜖  

 = ℙ Ƹ𝜇𝑎
𝑡 − 𝜇𝑎 ≥

𝜖

𝑛𝑡(𝑎)
≤ exp

−𝜖2

2𝑡
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Proof of Confidence Bound, cont’d

ℙ Ƹ𝜇𝑎
𝑡 − 𝜇𝑎 ≥

𝜖

𝑛𝑡(𝑎)
≤ exp

−𝜖2

2𝑡

• Solving for 𝛿 = exp
−𝜖2

2𝑡
, we get

𝜖 = −2𝑡 log(𝛿) = 2𝑡 log(1/𝛿)

• Thus, for 1 − 𝛿 confidence:

ℙ Ƹ𝜇𝑎
𝑡 − 𝜇𝑎 ≥

2𝑡 log(1/𝛿)

𝑛𝑡(𝑎)
≤ 𝛿

– Plugging in 𝑇 = 𝑡, we get the final result
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