
Reinforcement Learning Intro

1

Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapter 1

• E.A. Lee and S.A. Seshia, Introduction to Embedded Systems:
CPS Approach, Second Edition, MIT Press, 2017

– https://ptolemy.berkeley.edu/books/leeseshia/releases/Lee
Seshia_DigitalV2_2.pdf

– Chapter 2

• Puterman, Martin L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons, 2014.

– Chapter 1
2

http://www.incompleteideas.net/book/the-book-2nd.html

Overview

• RL is learning what to do, i.e., map situations to actions

– Typically in the form of maximizing a numerical reward

• The learner is not told what to do

–Need to explore the space and discover which actions yield
the most return

• RL can be used in many settings

– Control, scheduling of tasks, training language models

• Control is most relevant to this course

–An alternative to standard control theoretic methods,
especially in complex environments, such as image-based
control

3

Comparison with other types of learning

• Different from supervised learning

–No access to carefully collected labeled data

• Different from unsupervised learning

–Not trying to learn relationships between unlabeled data

• Similar to unsupervised learning

– Learning is largely “unsupervised”, agent must explore and
learn on its own

• Similar to supervised learning

–Over time, labeled state-action-reward pairs are collected

• Overall, RL considered a different learning paradigm

4

Exploration vs Exploitation

• One of the major challenges in RL

• More exploration allows the agent to observe larger parts of
the state space and discover higher-reward actions

–At the expense of more random actions and failures

• More exploitation allows the agent to perform actions that are
already known to produce good rewards

–At the expense of getting stuck in a local minimum

• Decades-old trade-off that does not have an obvious solution

– Solution is typically task-specific

5

• A benchmark reinforcement learning problem

• Learn a controller to get an underpowered car up a hill
– Need to go up left hill first

– Small negative reward after each step (smaller for higher inputs)

– Big positive reward if goal is reached

• Learning problem considered “solved” if average reward over
100 random trials is over 90

–Go up the hill *fast* while conserving energy

Example, Mountain Car

Initial condition chosen
randomly from this range

6

• A benchmark reinforcement learning problem

• Learn a controller to stabilize the pendulum vertically
– Need to swing it to one side first and then swing the other way

– Small negative reward after each step (smaller for higher inputs)

– The longer it takes you to stabilize the pendulum, the lower the reward

• There is no “solved” threshold, but a reward above -200 is
generally a good sign

Example, Inverted Pendulum

7

• (Soon-to-be) A benchmark reinforcement learning problem

• Learn a controller to navigate a hallway environment
– Get a small positive reward after each step with no crash

– Get a big negative reward upon crash

– Over time, learn to avoid walls

• This problem can be solved with standard control techniques
but only for known environments with regular shapes

Example, F1/10

8

Other Examples

• Chess (and other games)

– Select a (sequence of) move that leads to victory

• Learning to walk (in simulation)

– Select joint/muscle actions that lead to stability and
movement

• Learn to flip pancakes

• Fold proteins

• Many, many, many more

9

Elements of RL

• Agent
– Robot, controller, decision maker who is learning the task

• Environment
– Agent’s environment, e.g., obstacles, other objects, other agents

• Policy
– A mapping from perceived states (measurements) to actions

– i.e., a controller

• Reward signal
– Defines the goal of the RL problem

– Observe a reward after each action and corresponding state change

– Easier for some tasks than for others – need to be able to quantify the
conceptual goal (e.g., walking, driving safely)

10

Limitations of RL

• Measurements need to be sufficient for the agent to maximize
reward

– Some equivalent of “observability” is necessary
• May be hard to formalize over high-dimensional data

– If one cannot measure the necessary quantities, then RL
unlikely to succeed

• RL is computationally very expensive

–A lot of iterations necessary and typically no convergence
guarantees

–Often not easy to identify the issue (exploration vs.
exploitation, small models, not enough training)

11

RL vs. Control

• In most existing settings, standard control is superior to RL

– Easier to understand, requires (significantly) less
computation and easier to adapt/modify

–Main exception are structured tasks such as games

• The hard problem in modern autonomous systems is
perception, not so much control

– If we know our “state”, then control is easy-ish

• On the other hand, the notion of state may be why it’s so hard
to build safe autonomous systems

– State is an abstraction of the real world, which may be
insufficient

– RL could help in this setting by mapping measurements to
controls without explicitly encoding the *state* 12

Standard Control Loop

13

PlantEnvironment

Sensors

Controller

Actuators

Standard Control Approach

• For simple control tasks, one can build a controller purely
based on the error between measurements and a reference

– PID controller

• For more complex tasks, one needs to model the plant

–Dozens of modeling frameworks exist
• Finite state machines, differential equations, hybrid systems, etc.

–Need to model the measurements as well

–Given a model, can develop more sophisticated techniques
• E.g., model predictive control (MPC)

– Control techniques work fairly well in practice when the
model is good

14

F1/10 Car Simulator

• Developed a model for the F1/10 car as part of my research

• Car navigates a hallway environment while avoiding collisions

–Has access to LiDAR measurements (laser scan)

• Modeled the car dynamics as well as the LiDAR measurements

• Control inputs are throttle and steering

15

F1/10: control velocity

• Suppose we would like to achieve a target velocity of 2 m/s

• What is a simple approach to achieve that velocity?

– Try some throttle and observe the error

– If your velocity is under the target, increase thrust

– It is enough to know that there is a positive relationship
between thrust and velocity

• Attempt 1: apply thrust that is proportionate to the error, i.e.,
difference between current and target velocity

– Suppose we observe velocity 𝑣 = 1

– Error is 𝑒 = 𝑣𝑇 − 𝑣 = 1

–Apply throttle proportionate to error, e.g.,
𝑢 = 𝐾𝑝𝑒

16

Response of Proportionate Controller

17

• Step response: How will
system output change if at
time 0, with 𝑣 = 0, we change
reference input to 2?

• Beyond convergence, what
are desired characteristics of
the response?

Characteristics of the Step Response

1. Overshoot: Difference between
maximum output value and
reference value

2. Rise Time: Time at which the
output value crosses reference
value

3. Settling Time: Time at which
output value reaches steady-state
value

4. Steady State Error: Difference
between steady-state output
value and reference

18

Why is there steady-state error?

Eventually error becomes small
enough so that a proportional
controller can’t remove it

Rise time

Overshoot

Settling time

Steady state error

Improving the Step Response

• Performance of the P-controller
depends on the value of the
proportional gain constant 𝐾𝑃

• What happens if we increase it?

• Rise time decreases, but
overshoot increases

• Steady-state error remains!

• How do we get rid of steady-
state error?

19

Adding up errors over time

20

• PI Controller: add up errors over
time and adjust throttle
accordingly

– Even if steady-state error is
very small, it will eventually
accumulate and be corrected

–Overshoot, rise time, settling
time increase (why?)

• PD controller: adding derivative
term to proportional controller
gets rid of overshoot

– Steady state error remains

PID Controller

21

Reference 𝑟

𝑢𝑃 = 𝐾𝑃𝑒

Proportional

Measurement 𝑦

Plant
𝑢𝐼 = 𝐾𝐼𝑒𝐼

Integral

𝑒𝐼 = 𝑒𝐼 + 𝑒

𝑒𝐷 = Δ𝑒/Δ𝑡

𝑢𝐷 = 𝐾𝐷𝑒𝐷

Derivative

Error 𝑒
Σ

Σ
Control 𝑢

𝑢𝑃

𝑢𝐼

𝑢𝐷

-

PID Controller

• If 𝑒(𝑡) is the error signal, then the output 𝑢(𝑡) of the PID
controller is the sum of 3 terms:

– Proportional term: 𝐾𝑃𝑒(𝑡), 𝐾𝑃 is called proportional gain
(response to current error)

– Integral term: 𝐾𝐼 0

1
𝑒 𝑡 𝑑𝑡, 𝐾𝐼 is integral gain (response to

error accumulated so far)

–Derivative term: 𝐾𝐷 ሶ𝑒, 𝐾𝐷 is derivative gain (response to
current rate of change of error)

• Special cases of controllers: P, PD, PI

– You rarely need all 3

22

PID Controller for F1/10 Car Velocity

• Excellent performance on all metrics

–𝐾𝑃 = 18, 𝐾𝐷 = 0.2, 𝐾𝐼 = 4

• Small rise time, settling time, negligible steady state error, no
overshoot

23

Designing PID Controllers

• What are the effects of changing the gain constants 𝐾𝑃, 𝐾𝐷, 𝐾I?

• Broad co-relationships well understood

–A PI controller is sufficient for many tasks

–Derivative term increases variance so people often avoid it

– It is not uncommon to have a “stack” of controllers,
operating at different rates (long- and short-term)

• Control toolboxes allow automatic tuning of parameters

• PID controllers seem to work well even when the actual system
differs significantly from the plant model

– Computation of control output depends only on the
measured error, and not on the model!

24

Deficiencies of PID controller

• When is the PID controller not sufficient?

– For example, can you solve Mountain Car?

–No, because you need to get farther from the goal first

• PID controller is only good when the error provides enough
information

– Sometimes, you need to plan ahead

–Need to know how your control affects the plant

–Need to know the dynamics of the plant!

• For more sophisticated control, we need to model the plant

– Same goes for RL – need to have a good model in order to
learn a sophisticated strategy

25

A Simple Dynamics Model

• Suppose a car is moving in a straight line at 𝑣 𝑚/𝑠

• How much will the car have travelled after 𝑇 𝑠?
𝑣𝑇 𝑚

• Suppose the car’s position at time 0 is 𝑝0 and at time 𝑇 is 𝑝𝑇

𝑝𝑇 = 𝑝0 + 𝑣𝑇

• Suppose every 𝑇 seconds velocity jumps up by 𝑎 𝑚/𝑠

• How do we adapt the model (for discrete times when velocity
is changed)?

𝑝𝑘𝑇 = 𝑝 𝑘−1 𝑇 + 𝑣(𝑘−1)𝑇𝑇

𝑣𝑘𝑇 = 𝑣 𝑘−1 𝑇 + 𝑎

–where 𝑘 = 1,2, …

26

	Slide 1: Reinforcement Learning Intro
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Comparison with other types of learning
	Slide 5: Exploration vs Exploitation
	Slide 6: Example, Mountain Car
	Slide 7: Example, Inverted Pendulum
	Slide 8: Example, F1/10
	Slide 9: Other Examples
	Slide 10: Elements of RL
	Slide 11: Limitations of RL
	Slide 12: RL vs. Control
	Slide 13: Standard Control Loop
	Slide 14: Standard Control Approach
	Slide 15: F1/10 Car Simulator
	Slide 16: F1/10: control velocity
	Slide 17: Response of Proportionate Controller
	Slide 18: Characteristics of the Step Response
	Slide 19: Improving the Step Response
	Slide 20: Adding up errors over time
	Slide 21: PID Controller
	Slide 22: PID Controller
	Slide 23: PID Controller for F1/10 Car Velocity
	Slide 24: Designing PID Controllers
	Slide 25: Deficiencies of PID controller
	Slide 26: A Simple Dynamics Model

