Decision Trees

Reading @ Rensselaer

* Chapters 8.1, 8.2

—James, Gareth, et al. An introduction to statistical learning.
Vol. 112. New York: springer, 2013.

— Available online: https://www.statlearning.com/

https://www.statlearning.com/

Overview

® Rensselaer

* Decision trees are a popular classification/regression model
* They are often preferred because they are intuitive and easy to
interpret
—Similar to a standard computer program

* Vanilla decision tree performance is often inferior to other
methods

* Many improvements have been proposed such as random
forests and so on

—Random forests are on par with some of the best methods
in classification, at a cost in interpretability

High-level description @®) Rensselaer

* A decision tree is a predictive model
based on if-cases

* Predict baseball players’ salary (in log-scale)
based on years and number of hits last year

its <|117.5
5.11

* Very easy to interpret the tree’s prediction

6.00 6.74

—E.g., if a player has at least 4.5 years of experience and
made less than 117.5 hits the previous year, their predicted
salary is 10 = $1M

e Can split each branch arbitrarily for finer precision predictions

* This is a regression tree since it predicts continuous values

— However, it can only output finitely many values, so the
distinction with classification is blurry

Elements of a decision tree @ Rensselaer

Internal nodes

Internal m

—Where the predictor space is split

 Branches
—Subsets of the tree that connect nodes

Terminal nodes or leaves 5.1

— Where outputs are produced

. . Leaf
* Decisions are made from top to bottom =

by convention

Branch

® Rensselaer

Decision Tree Intuition

* The decision tree works by producing
linear cuts in the feature space o
— For each region R;, the prediction
is the average over all points in R;
R

* Can achieve arbitrary precision given

Years

enough cuts
— A bit rudimentary for a small

number of cuts
* |ts main advantage is its interpretability and graph structure

— Decision trees received increased attention with the recent

push for interpretable Al

Training the Decision Tree @®) Rensselaer

* Decision tree training is more an art than a science
—This is true for many ML techniques in general

* Users need to make several decisions before even starting
—How many splits to include?
— Are the splits axis-aligned (i.e., boxes) or arbitrary lines?
— Which variable to split on first?
—Some or all of these can be chosen algorithmically also

Training the Decision Tree, cont’d @®) Rensselaer

* Suppose we want to have J regions: Ry, ..., R;

—Need to come up with conditions that result in the best
predictive model given the training data

— How do we formulate these conditions?
e Least squares!

m1n z z Y — f](xl))

] 1i:x; i€ERj
—i.e., find regions minimize the sum of squared errors

—When x € R}, fj(x) is the mean of all y; € R}, call it YR,

 What is the challenge with this approach?
—There are exponentially many (in / and p) tree shapes

e Unclear which tree shapes lead to better performance

Least Squares for Decision Trees @) Rensselaer

e Suppose first] = 2
* Need to pick a threshold t; along some dimension d
—Let x4 denote dimension d of input x
— Left branch is taken if x¢ < t
—Need to go through all dimensions and pick the best one
—So far so good (linear in the number of dimensions)
e Whatif] = 3?
— Need to pick two thresholds
e But which one goes first?

* Also, how do we arrange the tree — longer left or right branch?
* Hard to say which shape will generalize better

Least Squares for Decision Trees, cont’d @) Rensselaer

* |f we can’t try all tree shapes, how do we grow the tree?
— A greedy approach!

—It’s a standard approximation technique for combinatorial
problems

 Sometimes produces quite good (or even optimal) solutions

* Greedy means that we only choose the best next split without
considering how it might affect future splits

Greedy Least Squares @) Rensselaer

* For 1%t split, need to pick a threshold t; along dimension d

— That would create potential split regions
R (d,ty) = {x € RP|x?% < tg}and R, (d, ty) = {x € RP|x% > ¢t}
— Dataset is now split according to examples in R; and R,

D, ={(x;,y;) €ED|x; € Ry}
D, = {(x1,¥;) € D|x; € Ry}

—where D = {(x]_))’1); L) (xN; yN)}

—What is the prediction in each region?

o1 Z
le — |D1| Vi
(xi!yi)EDl

1
sz_lD_zl Z Vi

(xi'yi) €D,

11

Greedy Least Squares, cont’d @®) Rensselaer

* For 1%t split, need to pick a threshold t; along dimension d
— That would create potential split regions
R (d,ty) = {x € RP|x?% < tg}and R, (d, ty) = {x € RP|x% > ¢t}
—What is the prediction in each region?

le |D1 yl
(x1,yi)€D,

YR, = |1)_2| z Vi
(x1,¥i)ED,

—What is the total squared error in each region?

er, = z (J’i —le)z
(x4,Yi)ED4

12

Greedy Least Squares, cont’d @®) Rensselaer

* For 1%t split, need to pick a threshold t; along dimension d

— That would create potential split regions
R (d,ty) = {x € RP|x?% < tg}and R, (d, ty) = {x € RP|x% > ¢t}

* Need to pick d and t; to minimize mean squared error:

1
MSE(d,t;,D) = W Z ()’i - 37R1)2 + z (yi - yRZ)Z

(x;,yi)ED (x;,yi)ED
xld<td x{ith

1 . :)
— As usual, we’ll drop the DI factor since it doesn’t affect
minimum (but will keep abbreviation MSE for consistency)

MSE(d,t;,D) = z (yi—?R1)2+ z (Yi_sz)z

(x;,yi)ED (x;,yi)ED
xfl<td xldztd

Greedy Least Squares, cont’d

® Rensselaer

* For 1%t split, need to pick a threshold t; along dimension d

— That would create potential split regions
R (d,ty) = {x € RP|x?% < tg}and R, (d, ty) = {x € RP|x% > ¢t}

* Need to pick t and d to minimize mean squared error:

MSE(d,t;,D) = z (yi—f/Rl)2+ z (Yi_sz)z

(xi,y)€D
x?<td
= eRl ~+ eRz

(x;,yi)ED
x{ith

* |terate through all p dimensions (recall x; € RP)

— For each dimension d, find threshold t; that minimizes
MSE(d, t;, D) on the training data (how?)

Greedy Least Squares, cont’d @®) Rensselaer

MSE 4
 MISE may not be convexin t, so we can’t _L_. |
just set the derivative to O e
* But MSE is piecewise-constant on the
training set t

—Why?
— Because the prediction per region is only changed if an
example is added or removed
* One can do an exhaustive search over the range of ¢
— Set a small enough step size and step through the range of t
—Pick the t™* that results on lowest MISE

 Alternatively, can sort all examples along dimension d
—Increment threshold to include, e.g., 5%, 10%,... of data

Greedy Least Squares, cont’d @) Rensselaer

* Iterate through all p dimensions

— For each dimension d, find threshold t; that minimizes
MSE(d, ty, D) on the training data

— Finally, pick the combination (d, t;) that minimizes
MSE(d,t;, D)

—We have now created regions R; and R,

* To create future regions, we split R; or R, in the same way

—Terminate when we have | regions (or too few data points
per region)

— Might still be computationally expensive if we iterate
through all R; in order to decide which one to split

Algorithm lllustration @) Rensselaer

1. Compute MSE(d,t4,D) for
each (d, t;) pair

2. Find (d¥, t}) that minimizes
MSE(d, tq,D) = eg, + ep,

Spliton (d*, t})

1. Compute MSE(d,t;, D) for each 1. Compute MSE(d,t;, D) for each
(d, ty) pair (d, t;) pair

2. Find (d™, t;") that minimizes 2. Find (d™, t;") that minimizes
MSE(d, ty,D) = eg, + eg,, + eg,, MSE(d,ty,D) = eg, + eg,, + eg,,

Suppose splitting R, results in lower loss

17

Algorithm lllustration

®) Rensselaer

1.
2.

1. Compute MSE(d,t4,D) for
each (d, t;) pair

2. Find (d¥, t}) that minimizes
MSE(d, tq,D) = eg, + ep,

Spliton (d*, t})

1. Compute MSE(d,t,, D) for each (d, t;) pair
2. Find (d™,t;™) that minimizes
MSE(d, td,D) - eR11 + €R12 + eR21 + eR22

Spliton (d**, t;"

Compute MSE(d, t;, D) for each (d, t;) pair 1. Compute MSE(d,ty, D) for each (d, t;) pair
Find (d***, t;™) that minimizes 2. Find (d™",t;™) that minimizes
MSE(d, tq,D) = €r, T €Rry, T €Ryyy T €Ryqy MSE(d, tq,D) = €R, T €Ryy T €Rypy T €R1gp

Suppose splitting R4 results in lowest loss

18

Algorithm lllustration ®) Rensselaer

1. Compute MSE(d,t4,D) for
each (d, t;) pair

2. Find (d¥, t}) that minimizes
MSE(d, ty,D) = eg, + ep,

Spliton (d*, t})

In first round loss was
1. Compute MSE(d,t;,D) foreach (d,t;)
pair
2. Find (d*,t;") that minimizes
MSE(d,t;, D) = eg, + eg,, + eg,,

Spliton (d**, t;"

Spliton (d*™,t;™)

In second round loss was

1. Compute MSE(d,ty, D) for each (d, t) pair
2. Find (d*,t;™) that minimizes
MSE(d, tq, D) = €Ryy + €R.» + €Rr,, + €Rr,,

Do we need to recalculate each time?
19

Loss Improvement @) Rensselaer

Loss calculation for R, was first
MSE(d, td,D) — eRl + 3R21 + €R22

e and then
MSE(d, La, D) — eRll T eR12 + eR21 + eRZZ

Notice that splitting on R, does not affect the rest of the loss

— After a split, the node’s contribution to the total loss
changes fromeg, toeg,. + eg,,

* The loss improvement associated with R, is then
er, — (er,, T €r,,)
* Needs to be calculated once (when node is created)

* Then always split on node with highest loss improvement

Algorithm lllustration

@) Rensselaer

1. Compute MSE(d,t4,D) for
each (d, t;) pair

2. Find (d¥, t}) that minimizes
MSE(d, ty,D) = eg, + ep,

Spliton (d*, t})

Don’t forget to replace MSE with 0-1 loss in
the case of classification

21

Classification Trees

® Rensselaer

* Very similar to regression trees

* |nstead of outputting the average label per region, they output
the majority class

* You can standard classification losses
—E.g., 0-1 loss (0/1 for correct/wrong prediction, respectively)
— Other losses are possible as well

22

Complexity of Decision Tree Training @®) Rensselaer

* As usual, suppose the training data is (x1, y1), ..., (Xn, Yn)
—Each x; e R?

* We perform | — 1 splits in total

* At each split, we compute the MSE of splitting each existing R;

—We only need to compute the MSE of each R; once
* E.g., suppose we have R4, R,, R; and split R; into R, and R;
* On the next iteration, the MSEs of R; and R, are known
* Splitting R3 doesn’t affect which examples are in R; and R,

— Each iteration involves computing 2 more MSE’s

* Final complexity for exhaustive search is:
O((J—1)*2+p*T=*N)

—where T is the number of points in the threshold search

Toy Training Example ®) Rensselaer

* We have two classes and the training data is
((2,2),4), ((2,2.5),4),((2.2,2.8),+),((2.5,2.2), +), ((2.52,2.53), +),
((3,2,2.1),+),((3.1,2.6), +)

((1,2.4),-),((1.5,3.5),—),((2.15,3.8),—),((3,0.1),-),((3.3,4), -),
((3.8,3.49),-), ((3.8,0.5),—), ((3.9,2.05), -)

24

Toy Training Example, root

® Rensselaer

* We have two classes and the training data is

((2,2),4), ((2,2.5),4),((2.2,2.8),+),((2.5,2.2), +), ((2.52,2.53), +),
((3,2,2.1),+),((3.1,2.6), +)

((1,2.4),-),((1.5,3.5),—),((2.15,3.8),—),((3,0.1),-),((3.3,4), -),
((3.8,3.49),-), ((3.8,0.5),—), ((3.9,2.05), -)

Positive examples: 7
((2.2), 1),
((2,2.5),+),((2.2,2.8),+),
((2.52.2),+),((2.52,2.53),+),
(32,2.1),+),((3.1,2.6),+)

Negative examples: 8
Predicted ((1,24),-),((1.53.5),-),
label: - ((2.15,3.8),-),((3,0.1),-),
((3.34),-), ((3.83.49),-),
((3.8,0.5),—-), ((3.9,2.05),—)

Loss: 7 (all positive examples are classified incorrectly)

25

Toy Training Example, split along x axis ®) Rensselaer

Positive examples: 7 Negative examples: 8

((2,2),4), ((1,24),-),((1.53.5),-),
((2,2.5),+),((2.2,2.8), +), ((2.15,3.8),-),((3,0.1),-),
((2.5,2.2),+),((2.52,2.53), 4), label: - ((3:3.4),-), ((3.8,3.49),-),
((32,2.1),+),((3.1,2.6),4) ((3.8,0.5),—), ((3.9,2.05),-)

Predicted

X axis ranges from 1 to 3.9. With a step size of 0.1, you will have 29 thresholds to try.

Positive examples: 7
((2,2),+),
((2,2.5),+),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53), +),
X =2 ((32.2.1),+),((3.1,2.6), +)

Negative examples: 6
((2.15,3.8),-),((3,0.1),-),
((3.3,4),-), ((3.8,3.49), -),
((3.8,0.5),—), ((3.9,2.05),—)

Let’stryt = 2

x <2

Negative examples: 2
((1,24),-),((1.5,3.5),-)

Predicted
label: +

Predicted
label: -

Olloss=0+6

26

Toy Training Example, split along x axis

® Rensselaer

Positive examples: 7
((2,2),+),
((2,2.5),4),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53), +),
((32,2.1),+),((3.1,2.6), +)

Predicted

label: -

X axis ranges from 1 to 3.9. With a step size of 0.1, you will have 29 thresholds to try.

Let’stry t = 3.2

Negative examples: 8
((1,24),-),((1.53.5),-),
((2.15,3.8),-),((3,0.1),-),
((3.34),-), ((3.8,3.49),-),
((3.8,0.5),—), ((3.9,2.05),-)

x < 3.2 x = 3.2 Negative examples: 4

Negative examples: 4

((1,2.4),-),((1.53.5),-),
((2.15,3.8),-),((3,0.1),-)

Positive examples: 7
((2,2),+),
((2,2.5),+),((2.2,2.8), +),
((2.52.2),+),((2.52,2.53), +),
((32,2.1),+),((3.1,2.6), +)

Predicted
label: +

Predicted
label: -

Olloss=4+0

((3.34),-), ((3.8,3.49),-),
((3.8,0.5),-), ((3.9,2.05), —)

27

®) Rensselaer

* Best threshold along x axis is 3.2, with a loss of 4!

28

® Rensselaer

Toy Training Example, split along y axis

Negative examples: 8
((1,24),-),((1.53.5),-),
((2.15,3.8),-),((3,0.1),-),
((3.34),-), ((3.8,3.49),-),
((3.8,0.5),—), ((3.9,2.05),-)

Positive examples: 7
((2,2),+),
((2,2.5),4),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53), +),
((32,2.1),+),((3.1,2.6), +)

Predicted

label: -

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 37 thresholds to try.

Positive examples: 7
((22),4),
((2,2.5),+),((2.2,2.8), +),
((2.5,2.2),+),((2.52,2.53), +),
y = 0.6 (3,2,2.1),+),((3.1,2.6), +)

Negative examples: 6

((1,2.4),-),((1.53.5),-),
((2.15,3.8),-),((3:34),-),
((3.8,3.49),-), ((3.9,2.05),-)

Let'stry t = 0.6

y < 0.6

Predicted
label: -

Predicted

Negative examples: 2
label: +

((3,0.1),-),((3.8,0.5),—-)

Olloss=0+6

29

Toy Training Example, split along y axis

® Rensselaer

Negative examples: 8
((1,24),-),((1.53.5),-),
((2.15,3.8),-),((3,0.1),-),
((3.34),-), ((3.8,3.49),-),
((3.8,0.5),—), ((3.9,2.05),-)

Positive examples: 7
((2,2),+),
((2,2.5),4),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53), +),
((32,2.1),+),((3.1,2.6), +)

Predicted

label: -

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 37 thresholds to try.
Let'stry t = 2.7

Positive examples: 7
((2,2),+),
((2,2.5),4),((2.2,2.8), +),
((2.5,2.2),4),((2.52,2.53), +),
((3.22.1),+),((3.1,2.6), +)

((1.5,3.5),-),((2.15,3.8), -),
((3.34),-), ((3.8,3.49),-),

Negative examples: 4

((1,2.4),-),((3,0.1),-),
((3.8,0.5),—), ((3.9,2.05),—)

Predicted
label: +

Predicted
label: -

Olloss=4+0

Negative examples: 4

30

®) Rensselaer

* Best threshold along y axis is 2.7, with a loss of 4!

31

®) Rensselaer

e Split along x axis

32

Toy Training Example, new tree @) Rensselaer

x < 3.2 x = 3.2 Negative examples: 4

((3.34),-), ((3.8,3.49),-),

Negative examples: 4 ((38,0.5),-), ((3.9,2.05),)

((1,2.4),-),((1.5,3.5),-),
((2.15,3.8),-),((3,0.1),-)

Positive examples: 7
((2.2), 1),
((2,2.5),+),((2.2,2.8), +),
((2.5,2.2),4),((2.52,2.53), +),
((3.2,2.1),+),((3.1,2:6), +)

Predicted
label: +

Predicted
label: -

Olloss=4+0

Next split

®) Rensselaer

* Right leaf is already pure, so nothing to improve

e Consider left leaf only

34

Toy Training Example, split left leaf along x axis ® Rensselaer

Positive examples: 7

((2,2),4),

((2,2.5),+),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53), +),
((3.2,2.1),+),((3.1,2.6), +)

Negative examples: 4

((1,2.4),-),((1.53.5),-),
((2.15,3.8),-),((3,0.1),-)

Predicted

label: -

X axis ranges from 1 to 3.1. With a step size of 0.1, you will have 21 thresholds to try.

Let'stryt = 1.6

Negative examples: 2
((1,2.4),-),((1.53.5),-)

Positive examples: 7
((22),+),
((2,2.5),+),((2.2,2.8),+),
((2.52.2),+),((2.52,2.53), +),
((3.2,2.1),+),((3.1,2.6), +)

Negative examples: 2
((2.15,3.8),-),((3,0.1),-)

x <1.6 x = 1.6

Predicted
label: -

Predicted
label: -

Olloss=0+2

35

Toy Training Example, split left leaf along y axis ® Rensselaer

Positive examples: 7 Negative examples: 4
((2,2),+), Predicted & pies:

((22.5),+),((2.2,2.8), +), label: - ((1,24),-),((1.53.5),-),
((2.5,2.2),+),((2.52,2.53), +), e ((2.15,3.8),-),((3,0.1),-)
((3.2,2.1),+),((3.1,2.6), +)

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 38 thresholds to try.

Let'stry t = 2.7

Negative examples: 2

((1,2.4),-),(B,0.1),-) Negative examples: 2
Positive examples: 7 ((15,3.5),), (21538).)
((2,2),4),
((2,2.5),+),((2.2,2.8),+),
((2.5,2.2),+),((2.52,2.53), +),

((32,2.1),+),((3.1,2.6), +)

Predicted
label: +

Predicted
label: -

Olloss=2+0

36

®) Rensselaer

* Split along y axis

37

Current Tree @ Rensselaer

Negative examples: 4

((3.34),-), ((3.8,3.49),-),
((3.8,0.5), —), ((3.9,2.05), —)

Predicted
label: -

y <27

Negative examples: 2
((1,24),-),((3,0.1),-)

Predicted
label: -

Predicted Negative examples: 2

Positive examples: 7
((1.5,3.5),-), ((2.15,3.8), —)

((2.2),4),
((2,2.5),+),((2.2,2.8), +),
((2.5,2.2),+),((2.52,2.53), +),
((3,2,2.1),+),((3.1,2.6), +)

label: +

38

@) Rensselaer

Current Splits

Output - |
A I_
- I
- I -
------------ 4
+ |
o+ v Output -
+ I
+ T -
l
Output + 1 -
-1

e Can continue building the tree for perfect training accuracy

39

Tree Pruning @ Rensselaer

* If we pick J to be too large, the decision tree might become
very complex

—In the extreme case of] = N, the tree becomes a table that
just remembers all training data

—What is the issue with that?
— Overfitting!
 We want the tree to capture patterns in the data without being
too sensitive to noise in the training data
— We will talk about overfitting in more detail later

* One way to achieve this is to prune some branches that are too
sensitive

Tree Pruning, cont’d @) Rensselaer

* One way of keeping trees smaller is to terminate the splitting
when gains in the loss are small

— May be short-sighted as it might prevent large gains later on

* Alternatively, grow a large tree and prune post-factum
— Usually works well, though it’s still only a heuristic

* How do we prune?
— One option is to use a greedy approach in reverse

e Can stop when the MSE increases by more than some threshold
* Unclear how to set this threshold

— A more principled way is to penalize larger trees in the loss

Cost Complexity Pruning @ Rensselaer

* Suppose we want to pick a subtree with the property that it
has low MSE and few leaves

* A principled way to do that is to add a term to the loss function
* Suppose the original tree is T
* Let a be a small positive number

e Then the new loss is
|T|

2
> > (vi—9s,) +al
j=1 i:xiERj
—i.e., finda T c T, that minimizes the above loss
—where |T| denotes the number of leaves in T

Cost Complexity Pruning, cont’d @ Rensselaer

e Then the new loss is
|IT|

z z 3’R + alT|
j:

* Note that when a = 0, the above loss becomes MSE

* As we increase a we penalize larger trees
—As a = oo, the optimal tree converges to a one-leaf tree
— For intermediate «, the loss balances between trees with
low MSE and few leaves
* This technique is called regularization
— Will talk more about regularization later

* If interested, see slides at the back of deck for more detail

Effect of Regularization

® Rensselaer

* Notice that training error keeps decreasing for larger trees
—We can bring it down to 0 with a very large tree

 However, test error starts increasing after some point
— Overfitting!
— A very common phenomenon (more later)

* Cross validation produces = E——

a better estimate of test -1 — Tes
error

— Will discuss more later

Mean Squared Error

44

Trees vs. Linear Regression

® Rensselaer

* Linear regression is a well understood and robust algorithm

— However, does not work very well when data is highly

nonlinear

* Trees can capture all sorts of non-linearities
— But very susceptible to overfitting

o —

;EJG/)E.Q
T 4 T 4
L'
\
1 1 1 1 1 1
2 1 0 1 2 -1
X1
o

Bagging and Random Forests

® Rensselaer

Decision trees are nice and intuitive but they produce worse
predictions than other methods in general

Many improvements have been proposed over the years

Bagging: train multiple trees by creating multiple datasets
using sampling with replacement

— Trees might be correlated

Random forests: decrease correlation by only training on a
subset of features per split

— Forces trees to have different structure

Summary @ Rensselaer

* Decision trees are a nice graphical and easy-to-interpret model
— Unfortunately, they are inferior to other classical methods
—Why?

— Splits are too simplistic, focusing on one feature at a time
—Training on high-dimensional data is very slow

Can be used with high-level features of the data
—E.g., brightness, symmetry, etc.

* Bagging and random forests provide a significant boost in
performance

Random forests became quite popular recently with the latest
push for interpretability

Cost Complexity Pruning, cont’d @) Rensselaer

* How do we pick the optimal T for a given «?

* Keep in mind MSE(T) > MSE(T,) forany T c T,
—Why?
— By construction, when we refine a tree, we reduce the MSE

* We can recursively construct the optimal T from T,
— Start from the bottom of each branch
— Compute the current loss vs. the loss if leaves are merged
—If merging reduces loss, then merge; otherwise, move up

1 ﬂ 2 ﬂ 3 ﬂ 4 e

Yo <ty L
N \ — R, R Ry
! R I

Ry R;

R Ry Ry
Ry Rs Ry R;

Cross Validation

® Rensselaer

* How do we pick a'?

—« is called a hyper-parameter: a parameter we pick at
design-time that is not optimized during training proper

Cross validation!

* Classic cross validation is used to estimate a model’s test error
— Split the data randomly into 90% training and 10% testing
—Train on the training data and record the test accuracy
— Repeat multiple (e.g., 10) times
— Take the average test error over all runs
— A better estimate of generalization error than a single split

* Try different values for a and pick the one that results in
lowest cross-validation error

Cross Validation, cont’d @©@ Rensselaer

* Cross validation is especially useful for small datasets when it is
hard to get a good test error estimate

* Not widely used today since datasets are quite large
— Performing well on modern test sets is usually a good sign
— Re-splitting the data and retraining can be quite costly

* Cross validation is an important tool when it comes to
generalization

— We'll talk more about generalization next

	Slide 1: Decision Trees
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: High-level description
	Slide 5: Elements of a decision tree
	Slide 6: Decision Tree Intuition
	Slide 7: Training the Decision Tree
	Slide 8: Training the Decision Tree, cont’d
	Slide 9: Least Squares for Decision Trees
	Slide 10: Least Squares for Decision Trees, cont’d
	Slide 11: Greedy Least Squares
	Slide 12: Greedy Least Squares, cont’d
	Slide 13: Greedy Least Squares, cont’d
	Slide 14: Greedy Least Squares, cont’d
	Slide 15: Greedy Least Squares, cont’d
	Slide 16: Greedy Least Squares, cont’d
	Slide 17: Algorithm Illustration
	Slide 18: Algorithm Illustration
	Slide 19: Algorithm Illustration
	Slide 20: Loss Improvement
	Slide 21: Algorithm Illustration
	Slide 22: Classification Trees
	Slide 23: Complexity of Decision Tree Training
	Slide 24: Toy Training Example
	Slide 25: Toy Training Example, root
	Slide 26: Toy Training Example, split along x axis
	Slide 27: Toy Training Example, split along x axis
	Slide 28
	Slide 29: Toy Training Example, split along y axis
	Slide 30: Toy Training Example, split along y axis
	Slide 31
	Slide 32
	Slide 33: Toy Training Example, new tree
	Slide 34: Next split
	Slide 35: Toy Training Example, split left leaf along x axis
	Slide 36: Toy Training Example, split left leaf along y axis
	Slide 37
	Slide 38: Current Tree
	Slide 39: Current Splits
	Slide 40: Tree Pruning
	Slide 41: Tree Pruning, cont’d
	Slide 42: Cost Complexity Pruning
	Slide 43: Cost Complexity Pruning, cont’d
	Slide 44: Effect of Regularization
	Slide 45: Trees vs. Linear Regression
	Slide 46: Bagging and Random Forests
	Slide 47: Summary
	Slide 48: Cost Complexity Pruning, cont’d
	Slide 49: Cross Validation
	Slide 50: Cross Validation, cont’d

