Decision Trees

Reading

- Chapters 8.1, 8.2
	- James, Gareth, et al. An introduction to statistical learning. Vol. 112. New York: springer, 2013.
	- Available online:<https://www.statlearning.com/>

Overview

Rensselaer

- Decision trees are a popular classification/regression model
- They are often preferred because they are intuitive and easy to interpret
	- Similar to a standard computer program
- Vanilla decision tree performance is often inferior to other methods
- Many improvements have been proposed such as random forests and so on
	- Random forests are on par with some of the best methods in classification, at a cost in interpretability

High-level description

- A decision tree is a predictive model based on if-cases
- Predict baseball players' salary (in log-scale) based on years and number of hits last year
- Very easy to interpret the tree's prediction
	- E.g., if a player has at least 4.5 years of experience and made less than 117.5 hits the previous year, their predicted salary is $10^6 = $1M$
- Can split each branch arbitrarily for finer precision predictions
- This is a regression tree since it predicts continuous values
	- However, it can only output finitely many values, so the distinction with classification is blurry

Elements of a decision tree

6

- The decision tree works by producing linear cuts in the feature space
	- $-$ For each region R_j , the prediction is the average over all points in R_i
- Can achieve arbitrary precision given enough cuts
	- A bit rudimentary for a small number of cuts
- Its main advantage is its interpretability and graph structure
	- Decision trees received increased attention with the recent push for interpretable AI

- Decision tree training is more an art than a science
	- This is true for many ML techniques in general
- Users need to make several decisions before even starting
	- How many splits to include?
	- Are the splits axis-aligned (i.e., boxes) or arbitrary lines?
	- Which variable to split on first?
	- Some or all of these can be chosen algorithmically also

- Suppose we want to have *J* regions: $R_1, ..., R_l$
	- Need to come up with conditions that result in the best predictive model given the training data
	- How do we formulate these conditions?
		- Least squares!

$$
\min_{R_1,...,R_J} \sum_{j=1}^{J} \sum_{i:x_i \in R_j} (y_i - f_j(x_i))^2
$$

- i.e., find regions minimize the sum of squared errors
- —When $\pmb{x} \in R_j$, $f_j(\pmb{x})$ is the mean of all $y_i \in R_j$, call it $\widehat{\mathcal{Y}}_{R_j}$
- What is the challenge with this approach?
	- $-$ There are exponentially many (in *J* and p) tree shapes
		- Unclear which tree shapes lead to better performance

Least Squares for Decision Trees

- Suppose first $J=2$
- Need to pick a threshold t_d along some dimension d
	- $-$ Let $x^{\bm{d}}$ denote dimension d of input \bm{x}
	- Left branch is taken if $x^d < t_d$
	- Need to go through all dimensions and pick the best one
	- So far so good (linear in the number of dimensions)
- What if $J = 3$?
	- Need to pick two thresholds
		- But which one goes first?
		- Also, how do we arrange the tree longer left or right branch?
		- Hard to say which shape will generalize better

Least Squares for Decision Trees, cont'd

- If we can't try all tree shapes, how do we grow the tree?
	- A greedy approach!
	- It's a standard approximation technique for combinatorial problems
		- Sometimes produces quite good (or even optimal) solutions
- Greedy means that we only choose the best next split without considering how it might affect future splits

Rensselaer

- For 1st split, need to pick a threshold t_d along dimension d
	- That would create potential split regions

 $R_1(d,t_d)=\big\{\pmb{x}\in\mathbb{R}^p\big| x^d< t_d\big\}$ and $R_2(d,t_d)=\big\{\pmb{x}\in\mathbb{R}^p\big| x^d\geq t_d\big\}$

 $-$ Dataset is now split according to examples in R_1 and R_2

 $D_1 = \{ (x_i, y_i) \in D | x_i \in R_1 \}$ $D_2 = \{ (x_i, y_i) \in D | x_i \in R_2 \}$

- where $\mathcal{D} = \{ (x_1, y_1), ..., (x_N, y_N) \}$
- What is the prediction in each region?

$$
\hat{y}_{R_1} = \frac{1}{|\mathcal{D}_1|} \sum_{(x_i, y_i) \in \mathcal{D}_1} y_i
$$

$$
\hat{y}_{R_2} = \frac{1}{|\mathcal{D}_2|} \sum_{(x_i, y_i) \in \mathcal{D}_2} y_i
$$

- For 1st split, need to pick a threshold t_d along dimension d
	- That would create potential split regions

 $R_1(d,t_d)=\big\{\pmb{x}\in\mathbb{R}^p\big| x^d< t_d\big\}$ and $R_2(d,t_d)=\big\{\pmb{x}\in\mathbb{R}^p\big| x^d\geq t_d\big\}$

– What is the prediction in each region?

$$
\hat{y}_{R_1} = \frac{1}{|\mathcal{D}_1|} \sum_{(x_i, y_i) \in \mathcal{D}_1} y_i
$$

$$
\hat{y}_{R_2} = \frac{1}{|\mathcal{D}_2|} \sum_{(x_i, y_i) \in \mathcal{D}_2} y_i
$$

– What is the total squared error in each region?

$$
e_{R_1} = \sum_{(x_i, y_i) \in \mathcal{D}_1} (y_i - \hat{y}_{R_1})^2
$$

• For 1st split, need to pick a threshold t_d along dimension d – That would create potential split regions

 $R_1(d,t_d)=\big\{\pmb{x}\in\mathbb{R}^p\big| x^d< t_d\big\}$ and $R_2(d,t_d)=\big\{\pmb{x}\in\mathbb{R}^p\big| x^d\geq t_d\big\}$

- Need to pick d and t_d to minimize mean squared error: $MSE(d, t_d, D) =$ 1 \mathcal{D} \sum x_i , y_i) $\in \mathcal{D}$ x_i^d lt_d $y_i - \hat{y}_{R_1}$ 2 + x_i , y_i) $\in \mathcal{D}$ $x_i^d \geq t_d$ $y_i - \hat{y}_{R_2}$ 2
	- $-$ As usual, we'll drop the $\frac{1}{12}$ $|\mathcal{D}|$ factor since it doesn't affect minimum (but will keep abbreviation MSE for consistency) 2

$$
MSE(d, t_d, D) = \sum_{\substack{(x_i, y_i) \in D \\ x_i^d < t_d}} (y_i - \hat{y}_{R_1})^2 + \sum_{\substack{(x_i, y_i) \in D \\ x_i^d \ge t_d}} (y_i - \hat{y}_{R_2})^2
$$

• For 1st split, need to pick a threshold t_d along dimension d – That would create potential split regions

 $R_1(d,t_d)=\big\{\pmb{x}\in\mathbb{R}^p\big| x^d< t_d\big\}$ and $R_2(d,t_d)=\big\{\pmb{x}\in\mathbb{R}^p\big| x^d\geq t_d\big\}$

• Need to pick t and d to minimize mean squared error:

$$
MSE(d, t_d, D) = \sum_{\substack{(x_i, y_i) \in D \\ x_i^d < t_d \\ x_i^d \ge t_d}} (y_i - \hat{y}_{R_1})^2 + \sum_{\substack{(x_i, y_i) \in D \\ x_i^d \ge t_d \\ x_i^d \ge t_d}} (y_i - \hat{y}_{R_2})^2
$$

- Iterate through all p dimensions (recall $x_i \in \mathbb{R}^p$)
	- For each dimension d, find threshold t_d that minimizes $MSE(d, t_d, D)$ on the training data (how?)

Greedy Least Squares, cont'd

- MSE may not be convex in t , so we can't just set the derivative to 0
- But MSE is piecewise-constant on the training set
	- Why?
	- Because the prediction per region is only changed if an example is added or removed
- One can do an exhaustive search over the range of t
	- $-$ Set a small enough step size and step through the range of t
	- $-$ Pick the t^* that results on lowest MSE
- Alternatively, can sort all examples along dimension d
	- Increment threshold to include, e.g., 5%, 10%,… of data

- Iterate through all p dimensions
	- For each dimension d, find threshold t_d that minimizes $MSE(d, t_d, D)$ on the training data
	- Finally, pick the combination (d,t_d) that minimizes $MSE(d, t_d, D)$
	- We have now created regions R_1 and R_2
- To create future regions, we split R_1 or R_2 in the same way
	- $-$ Terminate when we have *J* regions (or too few data points per region)
	- Might still be computationally expensive if we iterate through all R_i in order to decide which one to split

2. Find (d^{**}, t_d^{**}) that minimizes $MSE(d, t_d, D) = e_{R_2} + e_{R_{11}} + e_{R_{12}}$

2. Find (d^{**}, t_d^{**}) that minimizes $MSE(d, t_d, D) = e_{R_1} + e_{R_{21}} + e_{R_{22}}$

Suppose splitting R_1 results in lower loss

Suppose splitting R_{11} results in lowest loss

- Loss calculation for R_2 was first $MSE(d, t_d, D) = e_{R_1} + e_{R_{21}} + e_{R_{22}}$
- and then

$$
MSE(d, t_d, D) = e_{R_{11}} + e_{R_{12}} + e_{R_{21}} + e_{R_{22}}
$$

- Notice that splitting on R_2 does not affect the rest of the loss – After a split, the node's contribution to the total loss changes from e_{R_2} to $e_{R_{21}}+e_{R_{22}}$
- The loss improvement associated with R_2 is then

$$
e_{R_2} - (e_{R_{21}} + e_{R_{22}})
$$

- Needs to be calculated once (when node is created)
- Then always split on node with highest loss improvement

21

Classification Trees

- Very similar to regression trees
- Instead of outputting the average label per region, they output the majority class
- You can standard classification losses
	- E.g., 0-1 loss (0/1 for correct/wrong prediction, respectively)
	- –Other losses are possible as well

- As usual, suppose the training data is (x_1, y_1) , …, (x_N, y_N) $-$ Each $x_i \in \mathbb{R}^p$
- We perform $J-1$ splits in total
- At each split, we compute the MSE of splitting each existing R_i – We only need to compute the MSE of each R_i once
	- E.g., suppose we have R_1 , R_2 , R_3 and split R_3 into R_4 and R_5
	- On the next iteration, the MSEs of R_1 and R_2 are known
	- Splitting R_3 doesn't affect which examples are in R_1 and R_2
	- Each iteration involves computing 2 more MSE's
- Final complexity for exhaustive search is:

$$
O((J-1)*2*p*T*N)
$$

– where T is the number of points in the threshold search

Toy Training Example

• We have two classes and the training data is $((2,2), +), ((2,2.5), +), ((2.2,2.8), +), ((2.5,2.2), +), ((2.52,2.53), +),$ $((3,2,2.1), +), ((3.1,2.6), +)$ $((1,2.4), -), ((1.5,3.5), -), ((2.15,3.8), -), ((3,0.1), -), ((3.3,4), -),$ $((3.8,3.49), -), ((3.8,0.5), -), ((3.9,2.05), -)$

Toy Training Example, root

• We have two classes and the training data is $((2,2), +), ((2,2.5), +), ((2.2,2.8), +), ((2.5,2.2), +), ((2.52,2.53), +),$ $((3,2,2.1), +), ((3.1,2.6), +)$ $((1,2.4), -), ((1.5,3.5), -), ((2.15,3.8), -), ((3,0.1), -), ((3.3,4), -),$ $((3.8,3.49), -), ((3.8,0.5), -), ((3.9,2.05), -)$

Positive examples: 7 $((2,2), +),$ $((2,2.5), +), ((2.2,2.8), +),$ $((2.5,2.2)$, + $), ((2.52,2.53)$, + $),$ $((3,2,2.1), +), ((3.1,2.6), +)$

Negative examples: 8 $((1,2.4), -), ((1.5,3.5), -),$ $((2.15,3.8), -), ((3,0.1), -),$ $((3.3,4), -), ((3.8,3.49), -),$ $(3.8, 0.5), -), (3.9, 2.05), -)$

Loss: 7 (all positive examples are classified incorrectly)

• Best threshold along x axis is 3.2, with a loss of 4!

• Best threshold along y axis is 2.7, with a loss of 4!

• Split along x axis

Next split

- Right leaf is already pure, so nothing to improve
- Consider left leaf only

Toy Training Example, split left leaf along x axis

Positive examples: 7 $((2,2), +),$ $((2,2.5), +), ((2.2,2.8), +),$ $((2.5,2.2), +), ((2.52,2.53), +),$ $((3,2,2.1), +), ((3.1,2.6), +)$

Negative examples: 4 $((1,2.4), -), ((1.5,3.5), -),$ $((2.15,3.8), -), ((3,0.1), -)$

<u>© Rensselaer</u>

X axis ranges from 1 to 3.1. With a step size of 0.1, you will have 21 thresholds to try.

Toy Training Example, split left leaf along y axis ⁽¹⁰⁾ Rensselaer

Positive examples: 7 $((2,2), +),$ $((2,2.5), +), ((2.2,2.8), +),$ $((2.5,2.2)$, + $), ((2.52,2.53)$, + $),$ $((3,2,2.1), +), ((3.1,2.6), +)$

Negative examples: 4 $((1,2.4), -), ((1.5,3.5), -),$ $((2.15,3.8), -), ((3,0.1), -)$

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 38 thresholds to try.

• Split along y axis

Current Tree

Current Splits

• Can continue building the tree for perfect training accuracy

Tree Pruning

Rensselaer

- If we pick *to be too large, the decision tree might become* very complex
	- $-$ In the extreme case of *, the tree becomes a table that* just remembers all training data
	- What is the issue with that?
	- –Overfitting!
- We want the tree to capture patterns in the data without being too sensitive to noise in the training data
	- We will talk about overfitting in more detail later
- One way to achieve this is to prune some branches that are too sensitive

- One way of keeping trees smaller is to terminate the splitting when gains in the loss are small
	- May be short-sighted as it might prevent large gains later on
- Alternatively, grow a large tree and prune post-factum – Usually works well, though it's still only a heuristic
- How do we prune?
	- –One option is to use a greedy approach in reverse
		- Can stop when the MSE increases by more than some threshold
		- Unclear how to set this threshold
	- A more principled way is to penalize larger trees in the loss

Cost Complexity Pruning

- Suppose we want to pick a subtree with the property that it has low MSE and few leaves
- A principled way to do that is to add a term to the loss function
- Suppose the original tree is T_0
- Let α be a small positive number
- Then the new loss is

$$
\sum_{j=1}^{|T|} \sum_{i: x_i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2 + \alpha |T|
$$

- i.e., find a $T \subset T_0$ that minimizes the above loss
- where $|T|$ denotes the number of leaves in T

Cost Complexity Pruning, cont'd

• Then the new loss is

$$
\sum_{j=1}^{|T|} \sum_{i: x_i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2 + \alpha |T|
$$

- Note that when $\alpha = 0$, the above loss becomes MSE
- As we increase α we penalize larger trees
	- $-\text{As } \alpha \to \infty$, the optimal tree converges to a one-leaf tree
	- $-$ For intermediate α , the loss balances between trees with low MSE and few leaves
- This technique is called regularization
	- Will talk more about regularization later
- If interested, see slides at the back of deck for more detail

Effect of Regularization

- Notice that training error keeps decreasing for larger trees – We can bring it down to 0 with a very large tree
- However, test error starts increasing after some point
	- –Overfitting!
	- A very common phenomenon (more later)
- Cross validation produces a better estimate of test error
	- Will discuss more later

Trees vs. Linear Regression

- Linear regression is a well understood and robust algorithm
	- However, does not work very well when data is highly nonlinear
- Trees can capture all sorts of non-linearities
	- But very susceptible to overfitting

Bagging and Random Forests

- Decision trees are nice and intuitive but they produce worse predictions than other methods in general
- Many improvements have been proposed over the years
- Bagging: train multiple trees by creating multiple datasets using sampling with replacement
	- Trees might be correlated
- Random forests: decrease correlation by only training on a subset of features per split
	- Forces trees to have different structure

Summary

- Decision trees are a nice graphical and easy-to-interpret model
	- Unfortunately, they are inferior to other classical methods
	- Why?
	- Splits are too simplistic, focusing on one feature at a time
	- Training on high-dimensional data is very slow
- Can be used with high-level features of the data
	- E.g., brightness, symmetry, etc.
- Bagging and random forests provide a significant boost in performance
- Random forests became quite popular recently with the latest push for interpretability

Cost Complexity Pruning, cont'd

- How do we pick the optimal T for a given α ?
- Keep in mind $MSE(T) > MSE(T_0)$ for any $T \subset T_0$
	- Why?
	- By construction, when we refine a tree, we reduce the MSE
- We can recursively construct the optimal T from T_0
	- Start from the bottom of each branch
	- Compute the current loss vs. the loss if leaves are merged
	- If merging reduces loss, then merge; otherwise, move up

- How do we pick α ?
	- $-\alpha$ is called a hyper-parameter: a parameter we pick at design-time that is not optimized during training proper
- Cross validation!
- Classic cross validation is used to estimate a model's test error
	- Split the data randomly into 90% training and 10% testing
	- Train on the training data and record the test accuracy
	- Repeat multiple (e.g., 10) times
	- Take the average test error over all runs
	- A better estimate of generalization error than a single split
- Try different values for α and pick the one that results in lowest cross-validation error

Cross Validation, cont'd

- Cross validation is especially useful for small datasets when it is hard to get a good test error estimate
- Not widely used today since datasets are quite large
	- Performing well on modern test sets is usually a good sign
	- Re-splitting the data and retraining can be quite costly
- Cross validation is an important tool when it comes to generalization
	- We'll talk more about generalization next