
Decision Trees

1

Reading

• Chapters 8.1, 8.2

– James, Gareth, et al. An introduction to statistical learning.
Vol. 112. New York: springer, 2013.

–Available online: https://www.statlearning.com/

2

https://www.statlearning.com/

Overview

• Decision trees are a popular classification/regression model

• They are often preferred because they are intuitive and easy to
interpret

– Similar to a standard computer program

• Vanilla decision tree performance is often inferior to other
methods

• Many improvements have been proposed such as random
forests and so on

– Random forests are on par with some of the best methods
in classification, at a cost in interpretability

3

High-level description

• A decision tree is a predictive model
based on if-cases

• Predict baseball players’ salary (in log-scale)
based on years and number of hits last year

• Very easy to interpret the tree’s prediction

– E.g., if a player has at least 4.5 years of experience and
made less than 117.5 hits the previous year, their predicted
salary is 106 = $1𝑀

• Can split each branch arbitrarily for finer precision predictions

• This is a regression tree since it predicts continuous values

–However, it can only output finitely many values, so the
distinction with classification is blurry

4

Elements of a decision tree

• Internal nodes

–Where the predictor space is split

• Branches

– Subsets of the tree that connect nodes

• Terminal nodes or leaves

–Where outputs are produced

• Decisions are made from top to bottom
by convention

5

Internal
node

Branch

Leaf

Decision Tree Intuition

• The decision tree works by producing
linear cuts in the feature space

– For each region 𝑅𝑗, the prediction

is the average over all points in 𝑅𝑗

• Can achieve arbitrary precision given
enough cuts

–A bit rudimentary for a small
number of cuts

• Its main advantage is its interpretability and graph structure

–Decision trees received increased attention with the recent
push for interpretable AI

6

Training the Decision Tree

• Decision tree training is more an art than a science

– This is true for many ML techniques in general

• Users need to make several decisions before even starting

–How many splits to include?

–Are the splits axis-aligned (i.e., boxes) or arbitrary lines?

–Which variable to split on first?

– Some or all of these can be chosen algorithmically also

7

Training the Decision Tree, cont’d

• Suppose we want to have 𝐽 regions: 𝑅1, … , 𝑅𝐽

–Need to come up with conditions that result in the best
predictive model given the training data

–How do we formulate these conditions?
• Least squares!

min
𝑅1,…,𝑅𝐽

𝑗=1

𝐽

𝑖:𝒙𝑖∈𝑅𝑗

𝑦𝑖 − 𝑓𝑗 𝒙𝑖

2

– i.e., find regions minimize the sum of squared errors

–When 𝒙 ∈ 𝑅𝑗, 𝑓𝑗 𝒙 is the mean of all 𝑦𝑖 ∈ 𝑅𝑗, call it ො𝑦𝑅𝑗

• What is the challenge with this approach?

– There are exponentially many (in 𝐽 and 𝑝) tree shapes
• Unclear which tree shapes lead to better performance 8

Least Squares for Decision Trees

• Suppose first 𝐽 = 2

• Need to pick a threshold 𝑡𝑑 along some dimension 𝑑

– Let 𝑥𝑑 denote dimension 𝑑 of input 𝒙

– Left branch is taken if 𝑥𝑑 < 𝑡𝑑

–Need to go through all dimensions and pick the best one

– So far so good (linear in the number of dimensions)

• What if 𝐽 = 3?

–Need to pick two thresholds
• But which one goes first?

• Also, how do we arrange the tree – longer left or right branch?

• Hard to say which shape will generalize better

9

Least Squares for Decision Trees, cont’d

• If we can’t try all tree shapes, how do we grow the tree?

–A greedy approach!

– It’s a standard approximation technique for combinatorial
problems
• Sometimes produces quite good (or even optimal) solutions

• Greedy means that we only choose the best next split without
considering how it might affect future splits

10

Greedy Least Squares

• For 1st split, need to pick a threshold 𝑡𝑑 along dimension 𝑑

– That would create potential split regions

𝑅1(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 < 𝑡𝑑 and 𝑅2(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 ≥ 𝑡𝑑

–Dataset is now split according to examples in 𝑅1 and 𝑅2
𝒟1 = 𝒙𝑖 , 𝑦𝑖 ∈ 𝒟 𝒙𝑖 ∈ 𝑅1}
𝒟2 = 𝒙𝑖 , 𝑦𝑖 ∈ 𝒟 𝒙𝑖 ∈ 𝑅2}

–where 𝒟 = 𝒙1, 𝑦1 , … , 𝒙𝑁 , 𝑦𝑁

–What is the prediction in each region?

ො𝑦𝑅1
=

1

𝒟1

𝒙𝑖,𝑦𝑖 ∈𝒟1

𝑦𝑖

ො𝑦𝑅2
=

1

𝒟2

𝒙𝑖,𝑦𝑖 ∈𝒟2

𝑦𝑖

11

Greedy Least Squares, cont’d

• For 1st split, need to pick a threshold 𝑡𝑑 along dimension 𝑑

– That would create potential split regions

𝑅1(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 < 𝑡𝑑 and 𝑅2(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 ≥ 𝑡𝑑

–What is the prediction in each region?

ො𝑦𝑅1
=

1

𝒟1

𝒙𝑖,𝑦𝑖 ∈𝒟1

𝑦𝑖

ො𝑦𝑅2
=

1

𝒟2

𝒙𝑖,𝑦𝑖 ∈𝒟2

𝑦𝑖

–What is the total squared error in each region?

𝑒𝑅1
=

𝒙𝑖,𝑦𝑖 ∈𝒟1

𝑦𝑖 − ො𝑦𝑅1

2

12

Greedy Least Squares, cont’d

• For 1st split, need to pick a threshold 𝑡𝑑 along dimension 𝑑

– That would create potential split regions

𝑅1(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 < 𝑡𝑑 and 𝑅2(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 ≥ 𝑡𝑑

• Need to pick 𝑑 and 𝑡𝑑 to minimize mean squared error:

𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 =
1

𝒟

𝒙𝑖,𝑦𝑖 ∈𝒟

𝑥𝑖
𝑑<𝑡𝑑

𝑦𝑖 − ො𝑦𝑅1

2
+

𝒙𝑖,𝑦𝑖 ∈𝒟

𝑥𝑖
𝑑≥𝑡𝑑

𝑦𝑖 − ො𝑦𝑅2

2

–As usual, we’ll drop the
1

|𝒟|
 factor since it doesn’t affect

minimum (but will keep abbreviation MSE for consistency)

𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 =

𝒙𝑖,𝑦𝑖 ∈𝒟

𝑥𝑖
𝑑<𝑡𝑑

𝑦𝑖 − ො𝑦𝑅1

2
+

𝒙𝑖,𝑦𝑖 ∈𝒟

𝑥𝑖
𝑑≥𝑡𝑑

𝑦𝑖 − ො𝑦𝑅2

2

13

Greedy Least Squares, cont’d

• For 1st split, need to pick a threshold 𝑡𝑑 along dimension 𝑑

– That would create potential split regions

𝑅1(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 < 𝑡𝑑 and 𝑅2(𝑑, 𝑡𝑑) = 𝒙 ∈ ℝ𝑝 𝑥𝑑 ≥ 𝑡𝑑

• Need to pick 𝑡 and 𝑑 to minimize mean squared error:

𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 =

𝒙𝑖,𝑦𝑖 ∈𝒟

𝑥𝑖
𝑑<𝑡𝑑

𝑦𝑖 − ො𝑦𝑅1

2
+

𝒙𝑖,𝑦𝑖 ∈𝒟

𝑥𝑖
𝑑≥𝑡𝑑

𝑦𝑖 − ො𝑦𝑅2

2

= 𝑒𝑅1
+ 𝑒𝑅2

• Iterate through all 𝑝 dimensions (recall 𝒙𝑖 ∈ ℝ𝑝)

– For each dimension 𝑑, find threshold 𝑡𝑑 that minimizes
𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) on the training data (how?)

14

Greedy Least Squares, cont’d

• MSE may not be convex in 𝑡, so we can’t
just set the derivative to 0

• But MSE is piecewise-constant on the
training set

–Why?

– Because the prediction per region is only changed if an
example is added or removed

• One can do an exhaustive search over the range of 𝑡

– Set a small enough step size and step through the range of 𝑡

– Pick the 𝑡∗ that results on lowest MSE

• Alternatively, can sort all examples along dimension 𝑑

– Increment threshold to include, e.g., 5%, 10%,… of data
15

𝑡

MSE

Greedy Least Squares, cont’d

• Iterate through all 𝑝 dimensions

– For each dimension 𝑑, find threshold 𝑡𝑑 that minimizes
𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) on the training data

– Finally, pick the combination (𝑑, 𝑡𝑑) that minimizes
𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟)

–We have now created regions 𝑅1 and 𝑅2

• To create future regions, we split 𝑅1 or 𝑅2 in the same way

– Terminate when we have 𝐽 regions (or too few data points
per region)

–Might still be computationally expensive if we iterate
through all 𝑅𝑖 in order to decide which one to split

16

Algorithm Illustration

17

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for
each 𝑑, 𝑡𝑑 pair

2. Find (𝑑∗, 𝑡𝑑
∗) that minimizes

𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 = 𝑒𝑅1
+ 𝑒𝑅2

Split on (𝑑∗, 𝑡𝑑
∗)

𝑅1, 𝒟1 𝑅2, 𝒟2

Suppose splitting 𝑅1 results in lower loss

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for each
𝑑, 𝑡𝑑 pair

2. Find (𝑑∗∗, 𝑡𝑑
∗∗) that minimizes

𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 = 𝑒𝑅2
+ 𝑒𝑅11

+ 𝑒𝑅12

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for each
𝑑, 𝑡𝑑 pair

2. Find (𝑑∗∗, 𝑡𝑑
∗∗) that minimizes

𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 = 𝑒𝑅1
+ 𝑒𝑅21

+ 𝑒𝑅22

𝑅, 𝒟

Algorithm Illustration

18

𝑅12, 𝒟12𝑅11, 𝒟11

Split on (𝑑∗, 𝑡𝑑
∗)

Split on (𝑑∗∗, 𝑡𝑑
∗∗)

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for
each 𝑑, 𝑡𝑑 pair

2. Find (𝑑∗, 𝑡𝑑
∗) that minimizes

𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 = 𝑒𝑅1
+ 𝑒𝑅2

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for each 𝑑, 𝑡𝑑 pair
2. Find (𝑑∗∗∗, 𝑡𝑑

∗∗∗) that minimizes
𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 = 𝑒𝑅2

+ 𝑒𝑅12
+ 𝑒𝑅111

+ 𝑒𝑅112

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for each 𝑑, 𝑡𝑑 pair
2. Find (𝑑∗∗∗, 𝑡𝑑

∗∗∗) that minimizes
𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 = 𝑒𝑅2

+ 𝑒𝑅11
+ 𝑒𝑅121

+ 𝑒𝑅122

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for each 𝑑, 𝑡𝑑 pair
2. Find (𝑑∗∗∗, 𝑡𝑑

∗∗∗) that minimizes
𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 = 𝑒𝑅11

+ 𝑒𝑅12
+ 𝑒𝑅21

+ 𝑒𝑅22

𝑅1, 𝒟1 𝑅2, 𝒟2

𝑅, 𝒟

Suppose splitting 𝑅11 results in lowest loss

Algorithm Illustration

19

𝑅112, 𝒟112𝑅111, 𝒟111

Split on (𝑑∗, 𝑡𝑑
∗)

Split on (𝑑∗∗, 𝑡𝑑
∗∗)

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for
each 𝑑, 𝑡𝑑 pair

2. Find (𝑑∗, 𝑡𝑑
∗) that minimizes

𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 = 𝑒𝑅1
+ 𝑒𝑅2

Split on (𝑑∗∗∗, 𝑡𝑑
∗∗∗)

𝑅1, 𝒟1 𝑅2, 𝒟2

𝑅, 𝒟

𝑅12, 𝒟12𝑅11, 𝒟11

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for each 𝑑, 𝑡𝑑
pair

2. Find (𝑑∗∗, 𝑡𝑑
∗∗) that minimizes

𝑴𝑺𝑬 𝒅, 𝒕𝒅, 𝓓 = 𝒆𝑹𝟏
+ 𝒆𝑹𝟐𝟏

+ 𝒆𝑹𝟐𝟐

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for each 𝑑, 𝑡𝑑 pair
2. Find (𝑑∗∗∗, 𝑡𝑑

∗∗∗) that minimizes
𝑴𝑺𝑬 𝒅, 𝒕𝒅, 𝓓 = 𝒆𝑹𝟏𝟏

+ 𝒆𝑹𝟏𝟐
+ 𝒆𝑹𝟐𝟏

+ 𝒆𝑹𝟐𝟐

In first round loss was

In second round loss was

Do we need to recalculate each time?

Loss Improvement

• Loss calculation for 𝑅2 was first
𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 = 𝑒𝑅1

+ 𝑒𝑅21
+ 𝑒𝑅22

• and then
𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 = 𝑒𝑅11

+ 𝑒𝑅12
+ 𝑒𝑅21

+ 𝑒𝑅22

• Notice that splitting on 𝑅2 does not affect the rest of the loss

–After a split, the node’s contribution to the total loss
changes from 𝑒𝑅2

 to 𝑒𝑅21
+ 𝑒𝑅22

• The loss improvement associated with 𝑅2 is then
𝑒𝑅2

− (𝑒𝑅21
+ 𝑒𝑅22

)

• Needs to be calculated once (when node is created)

• Then always split on node with highest loss improvement

20

Algorithm Illustration

21

𝑅112, 𝒟112𝑅111, 𝒟111

Don’t forget to replace MSE with 0-1 loss in
the case of classification

Split on (𝑑∗, 𝑡𝑑
∗)

Split on (𝑑∗∗, 𝑡𝑑
∗∗)

1. Compute 𝑀𝑆𝐸(𝑑, 𝑡𝑑 , 𝒟) for
each 𝑑, 𝑡𝑑 pair

2. Find (𝑑∗, 𝑡𝑑
∗) that minimizes

𝑀𝑆𝐸 𝑑, 𝑡𝑑 , 𝒟 = 𝑒𝑅1
+ 𝑒𝑅2

Split on (𝑑∗∗∗, 𝑡𝑑
∗∗∗)

𝑅1, 𝒟1 𝑅2, 𝒟2

𝑅, 𝒟

𝑅12, 𝒟12𝑅11, 𝒟11

Classification Trees

• Very similar to regression trees

• Instead of outputting the average label per region, they output
the majority class

• You can standard classification losses

– E.g., 0-1 loss (0/1 for correct/wrong prediction, respectively)

–Other losses are possible as well

22

Complexity of Decision Tree Training

• As usual, suppose the training data is 𝒙1, 𝑦1 , … , (𝒙𝑁 , 𝑦𝑁)

– Each 𝒙𝑖 ∈ ℝ𝑝

• We perform 𝐽 − 1 splits in total

• At each split, we compute the MSE of splitting each existing 𝑅𝑖

–We only need to compute the MSE of each 𝑅𝑖 once
• E.g., suppose we have 𝑅1, 𝑅2, 𝑅3 and split 𝑅3 into 𝑅4 and 𝑅5

• On the next iteration, the MSEs of 𝑅1 and 𝑅2 are known

• Splitting 𝑅3 doesn’t affect which examples are in 𝑅1 and 𝑅2

– Each iteration involves computing 2 more MSE’s

• Final complexity for exhaustive search is:
𝑂(𝐽 − 1 ∗ 2 ∗ 𝑝 ∗ 𝑇 ∗ 𝑁)

–where 𝑇 is the number of points in the threshold search
23

Toy Training Example

• We have two classes and the training data is
(2,2 , +), 2,2.5 , + , 2.2,2.8 , + , 2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

1,2.4 , − , 1.5,3.5 , − , 2.15,3.8 , − , 3,0.1 , − , 3.3,4 , − ,

3.8,3.49 , − , 3.8,0.5 , − , 3.9,2.05 , −

24

+
+
+

+
+ +

+

-
-

-

-

-

-

-

-

Toy Training Example, root

• We have two classes and the training data is
(2,2 , +), 2,2.5 , + , 2.2,2.8 , + , 2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

1,2.4 , − , 1.5,3.5 , − , 2.15,3.8 , − , 3,0.1 , − , 3.3,4 , − ,

3.8,3.49 , − , 3.8,0.5 , − , 3.9,2.05 , −

25

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Negative examples: 8
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , − ,

3.3,4 , − , 3.8,3.49 , − ,

3.8,0.5 , − , 3.9,2.05 , −

Predicted
label: -

Loss: 7 (all positive examples are classified incorrectly)

Toy Training Example, split along x axis

26

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Negative examples: 8
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , − ,

3.3,4 , − , 3.8,3.49 , − ,

3.8,0.5 , − , 3.9,2.05 , −

Predicted
label: -

X axis ranges from 1 to 3.9. With a step size of 0.1, you will have 29 thresholds to try.

Let’s try 𝑡 = 2

𝑥 < 2 𝑥 ≥ 2

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Negative examples: 2
1,2.4 , − , 1.5,3.5 , −

Negative examples: 6
2.15,3.8 , − , 3,0.1 , − ,

3.3,4 , − , 3.8,3.49 , − ,

3.8,0.5 , − , 3.9,2.05 , −

Predicted
label: -

Predicted
label: +

01 loss = 0 + 6

Toy Training Example, split along x axis

27

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Negative examples: 8
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , − ,

3.3,4 , − , 3.8,3.49 , − ,

3.8,0.5 , − , 3.9,2.05 , −

X axis ranges from 1 to 3.9. With a step size of 0.1, you will have 29 thresholds to try.

Let’s try 𝑡 = 3.2

𝑥 < 3.2 𝑥 ≥ 3.2

01 loss = 4 + 0

Negative examples: 4
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , −

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Predicted
label: +

Negative examples: 4
3.3,4 , − , 3.8,3.49 , − ,

3.8,0.5 , − , 3.9,2.05 , −

Predicted
label: -

Predicted
label: -

• Best threshold along x axis is 3.2, with a loss of 4!

28

Toy Training Example, split along y axis

29

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Negative examples: 8
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , − ,

3.3,4 , − , 3.8,3.49 , − ,

3.8,0.5 , − , 3.9,2.05 , −

Predicted
label: -

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 37 thresholds to try.

Let’s try 𝑡 = 0.6

𝑦 < 0.6 𝑦 ≥ 0.6

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Predicted
label: -

Predicted
label: +

01 loss = 0 + 6

Negative examples: 2
3,0.1 , − , 3.8,0.5 , −

Negative examples: 6
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3.3,4 , − ,

3.8,3.49 , − , 3.9,2.05 , −

Toy Training Example, split along y axis

30

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Negative examples: 8
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , − ,

3.3,4 , − , 3.8,3.49 , − ,

3.8,0.5 , − , 3.9,2.05 , −

Predicted
label: -

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 37 thresholds to try.

Let’s try 𝑡 = 2.7

𝑦 < 2.7 𝑦 ≥ 2.7
Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Predicted
label: +

Predicted
label: -

01 loss = 4 + 0

Negative examples: 4
1.5,3.5 , − , 2.15,3.8 , − ,

3.3,4 , − , 3.8,3.49 , − ,

Negative examples: 4
1,2.4 , − , 3,0.1 , − ,

3.8,0.5 , − , 3.9,2.05 , −

• Best threshold along y axis is 2.7, with a loss of 4!

31

• Split along x axis

32

Toy Training Example, new tree

𝑥 < 3.2 𝑥 ≥ 3.2

01 loss = 4 + 0

Negative examples: 4
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , −

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Predicted
label: +

Negative examples: 4
3.3,4 , − , 3.8,3.49 , − ,

3.8,0.5 , − , 3.9,2.05 , −

Predicted
label: -

Next split

• Right leaf is already pure, so nothing to improve

• Consider left leaf only

34

Toy Training Example, split left leaf along x axis

35

Predicted
label: -

Negative examples: 4
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , −

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

X axis ranges from 1 to 3.1. With a step size of 0.1, you will have 21 thresholds to try.

Let’s try 𝑡 = 1.6

𝑥 < 1.6 𝑥 ≥ 1.6

01 loss = 0 + 2

Negative examples: 2
1,2.4 , − , 1.5,3.5 , −

Predicted
label: -

Predicted
label: -

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Negative examples: 2
2.15,3.8 , − , 3,0.1 , −

Toy Training Example, split left leaf along y axis

36

Predicted
label: -

Negative examples: 4
1,2.4 , − , 1.5,3.5 , − ,

2.15,3.8 , − , 3,0.1 , −

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Y axis ranges from 0.1 to 3.8. With a step size of 0.1, you will have 38 thresholds to try.

Let’s try 𝑡 = 2.7

𝑦 < 2.7 𝑦 ≥ 2.7

01 loss = 2 + 0

Predicted
label: +

Predicted
label: -

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Negative examples: 2
1,2.4 , − , 3,0.1 , − Negative examples: 2

1.5,3.5 , − , 2.15,3.8 , −

• Split along y axis

37

Current Tree

38

𝑥 < 3.2 𝑥 ≥ 3.2

Negative examples: 4
3.3,4 , − , 3.8,3.49 , − ,

3.8,0.5 , − , 3.9,2.05 , −

Predicted
label: -

𝑦 < 2.7
𝑦 ≥ 2.7

Positive examples: 7
(2,2 , +),

2,2.5 , + , 2.2,2.8 , + ,

2.5,2.2 , + , 2.52,2.53 , + ,

3,2,2.1 , + , (3.1,2.6 , +)

Negative examples: 2
1,2.4 , − , 3,0.1 , −

Predicted
label: +

Predicted
label: -

Negative examples: 2
1.5,3.5 , − , 2.15,3.8 , −

Current Splits

• Can continue building the tree for perfect training accuracy

39

+
+
+

+
+ +

+

-
-

-

-

-

-

-

-

Output -

Output -

Output +

Tree Pruning

• If we pick 𝐽 to be too large, the decision tree might become
very complex

– In the extreme case of 𝐽 = 𝑁, the tree becomes a table that
just remembers all training data

–What is the issue with that?

–Overfitting!

• We want the tree to capture patterns in the data without being
too sensitive to noise in the training data

–We will talk about overfitting in more detail later

• One way to achieve this is to prune some branches that are too
sensitive

40

Tree Pruning, cont’d

• One way of keeping trees smaller is to terminate the splitting
when gains in the loss are small

–May be short-sighted as it might prevent large gains later on

• Alternatively, grow a large tree and prune post-factum

–Usually works well, though it’s still only a heuristic

• How do we prune?

–One option is to use a greedy approach in reverse
• Can stop when the MSE increases by more than some threshold

• Unclear how to set this threshold

–A more principled way is to penalize larger trees in the loss

41

Cost Complexity Pruning

• Suppose we want to pick a subtree with the property that it
has low MSE and few leaves

• A principled way to do that is to add a term to the loss function

• Suppose the original tree is 𝑇0

• Let 𝛼 be a small positive number

• Then the new loss is

𝑗=1

|𝑇|

𝑖:𝑥𝑖∈𝑅𝑗

𝑦𝑖 − ො𝑦𝑅𝑗

2
+ 𝛼 𝑇

– i.e., find a 𝑇 ⊂ 𝑇0 that minimizes the above loss

–where |𝑇| denotes the number of leaves in 𝑇

42

Cost Complexity Pruning, cont’d

• Then the new loss is

𝑗=1

|𝑇|

𝑖:𝑥𝑖∈𝑅𝑗

𝑦𝑖 − ො𝑦𝑅𝑗

2
+ 𝛼 𝑇

• Note that when 𝛼 = 0, the above loss becomes MSE

• As we increase 𝛼 we penalize larger trees

–As 𝛼 → ∞, the optimal tree converges to a one-leaf tree

– For intermediate 𝛼, the loss balances between trees with
low MSE and few leaves

• This technique is called regularization

–Will talk more about regularization later

• If interested, see slides at the back of deck for more detail
43

Effect of Regularization

• Notice that training error keeps decreasing for larger trees

–We can bring it down to 0 with a very large tree

• However, test error starts increasing after some point

–Overfitting!

–A very common phenomenon (more later)

• Cross validation produces
a better estimate of test
error

–Will discuss more later

44

Trees vs. Linear Regression

• Linear regression is a well understood and robust algorithm

–However, does not work very well when data is highly
nonlinear

• Trees can capture all sorts of non-linearities

– But very susceptible to overfitting

45

Bagging and Random Forests

• Decision trees are nice and intuitive but they produce worse
predictions than other methods in general

• Many improvements have been proposed over the years

• Bagging: train multiple trees by creating multiple datasets
using sampling with replacement

– Trees might be correlated

• Random forests: decrease correlation by only training on a
subset of features per split

– Forces trees to have different structure

46

Summary

• Decision trees are a nice graphical and easy-to-interpret model

–Unfortunately, they are inferior to other classical methods

–Why?

– Splits are too simplistic, focusing on one feature at a time

– Training on high-dimensional data is very slow

• Can be used with high-level features of the data

– E.g., brightness, symmetry, etc.

• Bagging and random forests provide a significant boost in
performance

• Random forests became quite popular recently with the latest
push for interpretability

47

Cost Complexity Pruning, cont’d

• How do we pick the optimal 𝑇 for a given 𝛼?

• Keep in mind 𝑀𝑆𝐸 𝑇 > 𝑀𝑆𝐸(𝑇0) for any 𝑇 ⊂ 𝑇0

–Why?

– By construction, when we refine a tree, we reduce the MSE

• We can recursively construct the optimal 𝑇 from 𝑇0

– Start from the bottom of each branch

– Compute the current loss vs. the loss if leaves are merged

– If merging reduces loss, then merge; otherwise, move up

48

1 2 3 4

Cross Validation

• How do we pick 𝛼?

–𝛼 is called a hyper-parameter: a parameter we pick at
design-time that is not optimized during training proper

• Cross validation!

• Classic cross validation is used to estimate a model’s test error

– Split the data randomly into 90% training and 10% testing

– Train on the training data and record the test accuracy

– Repeat multiple (e.g., 10) times

– Take the average test error over all runs

–A better estimate of generalization error than a single split

• Try different values for 𝛼 and pick the one that results in
lowest cross-validation error

49

Cross Validation, cont’d

• Cross validation is especially useful for small datasets when it is
hard to get a good test error estimate

• Not widely used today since datasets are quite large

– Performing well on modern test sets is usually a good sign

– Re-splitting the data and retraining can be quite costly

• Cross validation is an important tool when it comes to
generalization

–We’ll talk more about generalization next

50

	Slide 1: Decision Trees
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: High-level description
	Slide 5: Elements of a decision tree
	Slide 6: Decision Tree Intuition
	Slide 7: Training the Decision Tree
	Slide 8: Training the Decision Tree, cont’d
	Slide 9: Least Squares for Decision Trees
	Slide 10: Least Squares for Decision Trees, cont’d
	Slide 11: Greedy Least Squares
	Slide 12: Greedy Least Squares, cont’d
	Slide 13: Greedy Least Squares, cont’d
	Slide 14: Greedy Least Squares, cont’d
	Slide 15: Greedy Least Squares, cont’d
	Slide 16: Greedy Least Squares, cont’d
	Slide 17: Algorithm Illustration
	Slide 18: Algorithm Illustration
	Slide 19: Algorithm Illustration
	Slide 20: Loss Improvement
	Slide 21: Algorithm Illustration
	Slide 22: Classification Trees
	Slide 23: Complexity of Decision Tree Training
	Slide 24: Toy Training Example
	Slide 25: Toy Training Example, root
	Slide 26: Toy Training Example, split along x axis
	Slide 27: Toy Training Example, split along x axis
	Slide 28
	Slide 29: Toy Training Example, split along y axis
	Slide 30: Toy Training Example, split along y axis
	Slide 31
	Slide 32
	Slide 33: Toy Training Example, new tree
	Slide 34: Next split
	Slide 35: Toy Training Example, split left leaf along x axis
	Slide 36: Toy Training Example, split left leaf along y axis
	Slide 37
	Slide 38: Current Tree
	Slide 39: Current Splits
	Slide 40: Tree Pruning
	Slide 41: Tree Pruning, cont’d
	Slide 42: Cost Complexity Pruning
	Slide 43: Cost Complexity Pruning, cont’d
	Slide 44: Effect of Regularization
	Slide 45: Trees vs. Linear Regression
	Slide 46: Bagging and Random Forests
	Slide 47: Summary
	Slide 48: Cost Complexity Pruning, cont’d
	Slide 49: Cross Validation
	Slide 50: Cross Validation, cont’d

