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Overview

® Rensselaer

e Similar to linear regression, logistic regression is one of the
most established methods in ML/stats
* Logistic regression is usually used in classification settings

—Word “regression” is used since we’re estimating the
probabilities of each label given the features

—The labels are now discrete values (e.g., objects in an image,
the presence/absence of a disease)
* One could also extend regression methods for classification
(e.g., by thresholding the output of the function f)
— But those do not typically estimate probabilities

 Logistic regression is an example of a very simple neural
network




Example Classification Tasks @®) Rensselaer

* Many classical ML problems are classification tasks
—Image classification (i.e., object recognition)
— Determine whether a patient has cancer from MRI images
— Determine whether an email is ham or spam
* In the context of autonomous systems and control, many
problems can also be mapped to classification tasks
— Decide which route to a destination to take
— Decide which action to take (out of a finite number)

—In general, decision making is one of the main parts of
autonomous systems (and it is typically a discrete choice)




Linear Classification Setup @ Rensselaer

* As before, we are given N labeled IID examples:

(leyl)J ey (xN;yN)
—where x; € RP

— Unlike in regression, y; is a discrete label (e.g., cat, dog)
—We encode labels with integers, i.e., y; € {1, ..., K}

* We assume the examples are sampled from D and are
realizations of random variables (X,Y) ~D

* The goal of classification is to find an f such that
Y = f(X)

—Same as in regression, modulo the fact that Y is discrete




Probabilistic View of Classification

® Rensselaer

* The final goal of classification is a function of the form
Y = f(X)
* An even stronger requirement is to output the probabilities for
each label, given an example X
— For K labels, consider the K-dimensional vector Y € [0,1]%
—The value of each element Y; represents
PlY = i|X]
—That implies Y&, ¥; =1
* Thus, the goal of classification is also to develop a function F
Y = F(X)

* F predicts the probabilities of all labels given an example X




Probabilistic View of Classification, cont’d @ Rensselaer

* Thus, the goal of classification is also to develop a function F
Y = F(X)
* Note that we can build a classifier on top of F
—How?
f(X) = argmax; F(X)
—i.e., just take the Y; with highest probability
— So computing probabilities of labels is strictly harder than
just outputting the most likely label
* Both types of approaches exist
— Logistic regression takes the latter approach
— Support vector machines only perform classification




Why not use linear regression for classification? @) Rensselaer

* One could apply regression to classification problems, by using
least squares, i.e., minimize

N

2
Z(}’i — WTxi)
i=0

—where each y; is an integer
—Then, predict a discrete label by thresholding w x;
e E.g.,in the binary case: f(x;) = 1ifwlx; > 0.5
* Linear regression is not designed to output probabilities
— Can output values outside of [0,1]




Linear regression: classification issue in binary
case

® Rensselaer

» Suppose we fit a line and choose a
classification threshold

— Most probabilities for label 1 are very low
—Some probabilities for label 0 are negative
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Linear regression: classification issue in
multi-label case

® Rensselaer

* Linear regression gets tricky with multiple labels

* Suppose we are trying to classify an image directly from pixels
— Labels are: cat, elephant, dog

What potential issue do you see?

First of all, assigning number labels to categories is arbitrary
—E.g., does cat=0, elephant=1, dog=2 make sense?

—That would imply dog is farther from cat than from elephant
— We would learn a different function if we change the labels

* Second of all, if we use a linear classifier this way, we would be
assuming that a unit difference in y means something




Linear regression: classification issue in
multi-label case

®) Rensselaer

* Suppose we have three labels in 1D
—If we pick the labels right, linear regression works well

— But if we switch the labels, linear regression loses the
middle class

—How do we address this issue?

* One option: multiple binary regressions
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Logistic Regression @®) Rensselaer

* Linear regression models the labels directly
—i.e, Y = f(X)

* Logistic regression models the probability of a given label
—e.g., in the binary case: f(X) = P[Y = 1|X]

* How do we come up with such a function?

e Can we adapt linear regression to output numbersin [0,1]?
— Maybe we can normalize the output to be between 0 and 1°?
* Only works if the inputs are bounded

— Maybe feed the output of linear regression into a function
that is alwaysin [0,1]?




Logistic Regression, cont’d @®) Rensselaer

* Feed the output of linear regression into a function in [0,1]
— Solution: the logistic function a
(also known as the sigmoid) f

ex 0.5
O-(X) - 1+ e* , /

° AS_X' N w, O_(x) - 1 ) -4 -2 0 2 4 6

Source: wikipedia
* Asx - —00,a(x) = 0

 How do we feed the output of linear regression into ¢?
eW0+W1x
fx) =

* In multiple dimensions (again appending a 1 to x):
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® Rensselaer

Logistic Regression, cont’d

* In the binary case:

T
ewx

P[Y = 1|X = x] = T

—Similarly, P[Y = 0| X =x] =1—-P[Y = 1|X = x]

—i.e.,

T
eW.X'

P[Yy =0|X=x]=1-

1+ew'x
1+ eWTx — eWTx

1+ ew'x
1

14w
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Example

®) Rensselaer

e Use a simulated dataset from the book

e Goalis to predict whether a person will default on their credit
card payment

— Features are annual income and current balance
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Logistic vs. Linear Regression ®) Rensselaer
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* Some probabilities predicted by linear regression are negative

* In terms of classification, two methods are the same
—Why?
— Classification threshold can be adjusted for each method to
maximize classification accuracy
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Learning the Logistic Regression Coefficients (@) Rensselaer

* |In linear regression, we learned the coefficients using MSE
N

2

i=1
—where e; = y; — f(x;) are the prediction errors

* We could do the same for logistic regression:

2
w X
>t = (o)

—What issues do you see with this expression?

—It’s not quadratic in w, so we can’t minimize it by hand

—There exist minimization algorithms, will look at them later
in the course




Learning the Logistic Regression Coefficients:
Maximum Likelihood Estimation

® Rensselaer

* An alternative way to learning the coefficients is through
maximizing the data likelihood

* The real data is distributed according to an unknown
distribution

—E.g., each example (x, y) has an unknown conditional
distribution
PlY = y|lX = x]

* For given logistic weights w, logistic regression predicts
probability (e.g., fory = 1)

T
ewx

P,[Y =1|X = x] =

1+ ewW'x
— Pick weights w that maximize predicted training data
probability




Learning the Logistic Regression Coefficients:
Maximum Likelihood Estimation, cont’d

® Rensselaer

* True data likelihood can be simplified
Plyy, o, ynlX1, o Xy ] =

N
Ply;|x;]
i=1
* Why?
—Data is lID
* Joint probability is equal to the product of individual probabilities
* How do we maximize the predicted likelihood by the sigmoid?

— Choose weights w that maximize predicted likelihood

N
[ [Pulyixd
=1




Learning the Logistic Regression Coefficients:
Maximum Likelihood Estimation, cont’d

® Rensselaer

* Instead of maximizing the likelihood, we are actually going to
maximize the logarithm of likelihood

N
1L =log| | | Pulyilxi]
=1

e Claim: the w that maximizes the likelihood also maximizes the
log-likelihood (why?)

— Logarithm is monotonic

— So maximizing the log-likelihood is the same as maximizing
the likelihood

N N
1 =1tog| | [Pubilxil | = > log(Pulyilxi])
i=1 =1




Learning the Logistic Regression Coefficients:
Maximum Likelihood Estimation, cont’d

® Rensselaer

N
LL =) log(Py[yilx:])
=1

T
W' x; 1
* Note P, [y; = 1|x;] = ———and P,,[y; = 0]x;] =

14+e% Xi 1+ewai

e So we can write

1
log(P [yllxl]) = Vi 10g<1 n ewal> + (1 o yi)log (1 + ewai)

w Xi 14 ewai 1
= yilog\ T T 1 +log (1 + eWTxi)

w X 1
= y; log (e l) + log Tt oW




Learning the Logistic Regression Coefficients:
Maximum Likelihood Estimation, cont’d

® Rensselaer

N
LL = Z y;wlx; —log (1 + eWTxi)

i=1
* To find the maximizing w, take the derivative w.r.t. w and set it
equal to 0
— Logistic regression LL is a concave function in w
* Unfortunately, the derivative becomes a transcendental
equation, so it has no closed-form solution ©

—Similar to non-linear least squares, algorithms exist for
solving this numerically
 We'll look at them later in the course




Loss functions @©@ Rensselaer

LL =

l

N
y;wlx; —log (1 + eWTxi)
=1
* ML people like to minimize functions (instead of maximize), so
we typically minimize the negative log-likelihood:
N
NLL = — y;wlx; —log (1 + eWTxi)

1

l

* Negative log-likelihood and least squares are our first examples
of loss functions

— More later
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Multinomial Logistic Regression

 What about the case of multiple labels?
— All probabilities must sumup to 1
P,[Y=1|X=x]+ 4+ P,[Y =K|[X=x] =1

* We need a separate weight vector for each label
T

wl-x
) = T
* Then normalize
fi(x)
P,lY =ilX =x] =
" {{=1ﬁ(x)

* This approach is called multinomial logistic regression
— Also known as softmax in deep learning

® Rensselaer




Multinomial Logistic Regression, cont’d

® Rensselaer

* Probability for each label is

fi(x)

P,lY =ilX=x] = K 1.0

* Now, LL becomes

LL = z log(Py [yilx;])

fyi(xi)
Zlog( §-<=1f,-<xi>>

* Maximizing the LL is once again done using specialized
algorithms based on gradient descent
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