
Linear Regression
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Reading

• Chapters 3.1, 3.2

–Hastie, Trevor, et al. The elements of statistical learning: 
data mining, inference, and prediction. Vol. 2. New York: 
springer, 2009.

–Available online: https://hastie.su.domains/Papers/ESLII.pdf

• Chapters 3.1.1, 3.1.2, 3.2.1, 3.2.2

– James, Gareth, et al. An introduction to statistical learning. 
Vol. 112. New York: springer, 2013.

–Available online: https://www.statlearning.com/

• Linear regression from a statistical point of view
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Overview

• Linear regression is one of the simplest and best understood 
methods in statistics/ML

• We can derive closed-form optimal solutions in many cases

• It works well with some of the fundamental results of 
probability theory, e.g., the Central Limit Theorem

• It has good generalization capacity for many learning problems 
in practice

• Most successful modern ML methods (deep learning, SVMs) 
are direct extensions of linear methods

• Understanding linear methods is a necessary condition for 
understanding more advanced topics
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Linear Regression Setup

• As usual, we are given 𝑁 labeled IID examples: 
𝒙1, 𝑦1 , … , (𝒙𝑁, 𝑦𝑁)

–where 𝒙𝑖 ∈ ℝ𝑝, 𝑦𝑖 ∈ ℝ

• We assume the examples are sampled from 𝒟 and are 
realizations of random variables 𝑿, 𝑌  ~ 𝒟

• The goal of linear methods is to find a linear 𝑓 such that
𝑌 = 𝑓(𝑿)

• Specifically, let 𝑿 = 𝑋1, … , 𝑋𝑝
𝑇

• The goal is to find parameters 𝑤𝑖  such that
𝑌 = 𝑤0 + 𝑤1𝑋1 + ⋯ + 𝑤𝑝𝑋𝑝

– The book uses 𝛽𝑖 for parameters but 𝑤𝑖  is the standard 
notation in ML
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Advertising Example

• Suppose you are a sales analyst and would like to asses the 
benefit of different ways of advertising

– You have data for a product sold at 200 different markets

– For each market, the product has been advertised on TV, 
radio and newspaper

• Your job is to analyze the relative contribution of each 
advertising method

– You need to build a model of how ad spending affects sales
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Advertising Example, cont’d

• Suppose you hypothesize that there is a linear relationship 
between the amount of dollars invested and the sales

–Of course, true relationship is unknown

– But if a line captures most of the variability (modulo some 
noise), then that’s a good start

• Consider first just TV ads

–How do you estimate the slope (and intercept) of the line?
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Best fit line

• Suppose we want a line that minimizes the average distance to 
all points

–How do we pick 𝑤0 and 𝑤1?

• First note that for any 𝑤0, 𝑤1:

–Given an example 𝑥𝑖, the line prediction is ො𝑦𝑖 = 𝑤0 + 𝑤1𝑥𝑖

– The prediction error is
𝑒𝑖 = 𝑦𝑖 − ො𝑦𝑖 = 𝑦𝑖 − (𝑤0 + 𝑤1𝑥1)

• Suppose we pick the weights to minimize 
1

𝑁
σ𝑖=1

𝑁 𝑒𝑖

–What is wrong with this strategy?
• 𝑒𝑖 can be made arbitrarily negative, i.e., minimum is −∞

–What’s an alternative formulation?

– Least squares!
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Least Squares

• Instead of minimizing the average error, minimize the sum of 
squared errors

1

𝑁
෍

𝑖=1

𝑁

𝑒𝑖
2 = 

=
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝑤0 − 𝑤1𝑥𝑖
2

– The problem is now well defined because 𝑒𝑖
2 ≥ 0

– This approach has many names: least squares, minimum 
squared error (MSE), residual sum of squares

–Note that 1/𝑁 is constant and doesn’t affect the 𝑤0 and 𝑤1 
that minimize the MSE
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Minimize the sum of squares

• First, consider the special case 𝑤0 = 0

• Problem is

min
𝑤1

෍

𝑖=1

𝑁

𝑦𝑖 − 𝑤1𝑥𝑖
2

• Expanding the parentheses, we get

෍

𝑖=1

𝑁

𝑦𝑖
2 − ෍

𝑖=1

𝑁

2𝑤1𝑦𝑖𝑥𝑖 + ෍

𝑖=1

𝑁

𝑤1
2𝑥𝑖

2

• Quadratic equation in 𝑤1, min is achieved when derivative is 0
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Minimize the sum of squares, cont’d

• Expanding the parentheses, we get

෍

𝑖=1

𝑁

𝑦𝑖
2 − ෍

𝑖=1

𝑁

2𝑤1𝑦𝑖𝑥𝑖 + ෍

𝑖=1

𝑁

𝑤1
2𝑥𝑖

2

• Quadratic equation in 𝑤1, min is achieved when derivative is 0

• Derivative w.r.t 𝑤1 is

−2 ෍

𝑖=1

𝑁

𝑦𝑖𝑥𝑖 + 2𝑤1 ෍

𝑖=1

𝑁

𝑥𝑖
2 = 0

𝑤1
∗ =

σ𝑖=1
𝑁 𝑦𝑖𝑥𝑖

σ𝑖=1
𝑁 𝑥𝑖

2

• If we stack all data in vectors 𝒙 and 𝒚, then  𝑤1
∗ =

𝒚𝑇𝒙

𝒙𝑇𝒙
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What about multiple dimensions?

• What if you would like to build a model that takes all 3 𝑋 
variables as inputs, i.e.,

𝑓 𝑿 = 𝑤0 + 𝑤1𝑋1 + 𝑤2𝑋2 + 𝑤3𝑋3

• Why would you do this instead of building a separate model for 
each dimension?

– Can capture interactions between different dimensions

– E.g., suppose TV ads are the most effective, but all ads were 
increased simultaneously
• In each dimension, there will be a correlation between ad spending 

and sales

• But if you build the 3D model, the TV coefficient will likely dominate

• In general, causality is very hard to capture, but building a multi-
dimensional model is always better than building many 1D models
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Multiple dimensions, cont’d

• The function 𝑓 now becomes a plane

• Individual regression coefficients

• Multiple-dimension regression coefficients

–Note the newspaper coefficient
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Interpretation of linear coefficients

• Suppose we have obtained a parameter estimate ෝ𝑤1

• We say that a unit change in 𝑋1 is correlated, on average, with 
a ෝ𝑤1 unit change in 𝑌

–Note the word “correlated”! It is very difficult to establish 
causality using a purely data-driven method

–Also note the expression “on average”! The coefficient ෝ𝑤1 is 
averaged over all training points
• will have different prediction error for different points

• This interpretation is specific to linear models

– But causality is hard to establish in any setting!
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Multidimensional regression

• Consider the multi-dimensional linear function
𝑓 𝑿 = 𝑤0 + 𝑤1𝑋1 + ⋯ + 𝑤𝑝𝑋𝑝

• Without loss of generality, we can write
𝑓 𝑿 = 𝒘𝑇𝑿∗

–where 𝒘 = 𝑤0 𝑤1 … 𝑤𝑝
𝑇

–How?

– Rewrite 𝑿∗ = 1 𝑿𝑇 𝑇

– To avoid clutter, we will just write 𝑿 instead of 𝑿∗
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Multidimensional Least Squares

• Goal is the same as in the 1D case

– Find 𝒘 such that the line minimizes squared errors

• For a given 𝒘, the prediction is ො𝑦𝑖 = 𝒘𝑇𝒙𝑖

– The prediction error is
𝑒𝑖 = 𝑦𝑖 − ො𝑦𝑖

• And the sum of squares is

෍

𝑖=1

𝑁

𝑒𝑖
2 = 

= ෍

𝑖=1

𝑁

𝑦𝑖 − 𝒘𝑇𝒙𝑖
2
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Multidimensional Least Squares, cont’d

• The sum of squares is 

෍

𝑖=1

𝑁

𝑦𝑖 − 𝒘𝑇𝒙𝑖
2

• To minimize, once again expand the parentheses

෍

𝑖=1

𝑁

𝑦𝑖
2 − ෍

𝑖=1

𝑁

2𝑦𝑖𝒘𝑇𝒙𝑖 + ෍

𝑖=1

𝑁

𝒘𝑇𝒙𝑖
2

• Then, take gradient w.r.t. 𝒘 and set equal to 0

−2 ෍

𝑖=1

𝑁

𝑦𝑖𝒙𝑖 + 2 ෍

𝑖=1

𝑁

𝒘𝑇𝒙𝑖 𝒙𝑖 = 0
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Aside: Vector Calculus

• Suppose we are given a function 𝑓: ℝ𝑛 → ℝ

• What is the derivative of 𝑓?

• When 𝑛 = 1, it is just the partial derivative 𝑓′ =
𝜕𝑓

𝜕𝑥

• When 𝑛 > 1, the derivative is a vector of all partial derivatives:

∇𝒙𝑓 =

𝜕𝑓

𝜕𝑥1…
𝜕𝑓

𝜕𝑥𝑛

– This is called the gradient of 𝑓

– The gradient is the multi-dimensional extension of the 
derivative
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Multidimensional Least Squares, cont’d

−2 ෍

𝑖=1

𝑁

𝑦𝑖𝒙𝑖 + 2 ෍

𝑖=1

𝑁

𝒘𝑇𝒙𝑖 𝒙𝑖 = 0

• Temporary notation: Let 𝒚 = 𝑦1, … 𝑦𝑁
𝑇 and 𝑿 = [𝒙1 … 𝒙𝑁]

• Note that for any matrix 𝑨 and vector 𝒙, the following is true
𝑨𝒙 = 𝑥1𝒂1 + ⋯ + 𝑥𝑛𝒂𝑛

• Thus, σ𝑖=1
𝑁 𝑦𝑖𝒙𝑖 = 𝑿𝒚

• Similarly, σ𝑖=1
𝑁 𝒘𝑇𝒙𝑖 𝒙𝑖 = 𝑿

𝒘𝑇𝒙1

…
𝒘𝑇𝒙𝑁

= 𝑿 𝒘𝑇𝑿
𝑇

= 𝑿𝑿𝑇𝒘
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Multidimensional Least Squares, cont’d

−2 ෍

𝑖=1

𝑁

𝑦𝑖𝒙𝑖 + 2 ෍

𝑖=1

𝑁

𝒘𝑇𝒙𝑖 𝒙𝑖 = 0

• Temporary notation: Let 𝒚 = 𝑦1, … 𝑦𝑁
𝑇 and 𝑿 = [𝒙1 … 𝒙𝑁]

• Then the above becomes
−2𝑿𝒚 + 2𝑿𝑿𝑇𝒘 = 0 

𝑿𝑿𝑇𝒘 = 𝑿𝒚 

• To solve for 𝒘, we need to multiply by 𝑿𝑿𝑇 −1
 on the left

–When is that matrix invertible?

– Recall 𝑿 ∈ ℝ𝑝+1×𝑁, so 𝑿 must be a wide matrix

– Typically, we need much more examples than dimensions 
for learning to succeed (i.e., 𝑁 ≫ 𝑝)
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Multidimensional Least Squares, cont’d

𝒘∗ = 𝑿𝑿𝑇 −1
𝑿𝒚

• Notice that 𝑿𝑿𝑇 is symmetric

–Why?

𝑿𝑿𝑇 𝑇
= 𝑿𝑇 𝑇

𝑿𝑇 = 𝑿𝑿𝑇
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How accurate are our parameter estimates?

• There are several factors to consider when talking about 
accuracy

• Is the true relationship linear or close to linear?

– If not, then no line will be a great predictor

• In many real-life cases, relationship is not truly linear but a 
linear model is still a good way to describe trends
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How accurate are our parameter estimates?

• If the relationship is linear, how close to the true line is the line 
we learned?

– Red: true line; Blue: learned lines

–As we collect more data, the learned line will converge to 
the true line (Law of Large Numbers)

– Each slope estimate follows a bell-shaped distribution
• Converges to a Gaussian with more data (Central Limit Theorem)

22



Spurious Correlation Examples
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Linear Regression vs Nearest Neighbors

• Linear regression cannot capture complex
relationships

–Will talk more about classification next

• Nearest neighbor actually works quite well
in some cases

–What are cases where nearest neighbor
would not work so well?

–High-dimensional settings where data is
sparse

– This issue is called the curse of 
dimensionality
• Quite common across ML
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First Dataset: MNIST

• A dataset of 60K grayscale images of handwritten digits

• Each image is a 28 × 28 matrix of pixels

– Each pixel is an integer between 0 and 255

–Often normalized between 0 and 1 for numeric stability

• Dataset more or less *solved*

– Can achieve >99% accuracy with various methods
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MNIST, cont’d

• We’ll have a few homeworks on MNIST

• First, we’ll try a linear regression/classifiication method

–Does this make sense?

–What do you expect to see?
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What about non-linear terms?

• One can add non-linear terms to the function 𝑓, e.g.,
𝑓 𝑿 = 𝑤0 + 𝑤1𝑋1 + 𝑤2𝑋2 + 𝑤3𝑋1𝑋2

• And then learn the coefficients in the same way using MSE

• You should only do this if you have a good reason to believe 
this non-linearity is present in the data

• Intuitive interpretation gets harder for non-linear models

– In general, non-linear models complicate the math very 
quickly, and statistical guarantees are harder to get

• In modern ML, if the data has an unknown non-linear 
relationship, then neural networks are the model of choice

–More on this later
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