Linear Regression




Reading @ Rensselaer

* Chapters 3.1, 3.2

— Hastie, Trevor, et al. The elements of statistical learning:
data mining, inference, and prediction. Vol. 2. New York:
springer, 2009.

— Available online: https://hastie.su.domains/Papers/ESLIIl.pdf

* Chapters 3.1.1,3.1.2,3.2.1, 3.2.2

—James, Gareth, et al. An introduction to statistical learning.
Vol. 112. New York: springer, 2013.

— Available online: https://www.statlearning.com/

* Linear regression from a statistical point of view



https://hastie.su.domains/Papers/ESLII.pdf
https://www.statlearning.com/

Overview

® Rensselaer

* Linear regression is one of the simplest and best understood
methods in statistics/ML

* We can derive closed-form optimal solutions in many cases

* It works well with some of the fundamental results of
probability theory, e.g., the Central Limit Theorem

* It has good generalization capacity for many learning problems
in practice

e Most successful modern ML methods (deep learning, SVMs)
are direct extensions of linear methods

* Understanding linear methods is a necessary condition for
understanding more advanced topics




Linear Regression Setup

* As usual, we are given N labeled IID examples:

(leyl)J ey (xN;yN)
—wherex; ERP,y; ER

* We assume the examples are sampled from D and are
realizations of random variables (X,Y) ~D

* The goal of linear methods is to find a linear f such that
Y = f(X)
» Specifically, let X = [Xl, ...,Xp]T

* The goal is to find parameters w; such that
Y = Wy + W1X1 + .-+ Wpo

—The book uses f3; for parameters but w; is the standard
notation in ML
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Advertising Example

* Suppose you are a sales analyst and would like to asses the
benefit of different ways of advertising

—You have data for a product sold at 200 different markets

— For each market, the product has been advertised on TV,
radio and newspaper
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* Your job is to analyze the relative contribution of each
advertising method

—You need to build a model of how ad spending affects sales
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Advertising Example, cont’d

® Rensselaer

* Suppose you hypothesize that there is a linear relationship
between the amount of dollars invested and the sales

— Of course, true relationship is unknown

—But if a line captures most of the variability (modulo some
noise), then that’s a good start

e Consider first just TV ads
—How do you estimate the slope (and intercept) of the line?
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Best fit line @©@ Rensselaer

e Suppose we want a line that minimizes the average distance to
all points

—How do we pick wy and w4 ?

* First note that for any wy, wy:
— Given an example x;, the line prediction is y; = wy + wy x;
—The prediction error is
e, =Y — Vi =Y — (Wo+wixq)

: : .1
* Suppose we pick the weights to minimize NZ{-\’:l e;

—What is wrong with this strategy?
* ¢; can be made arbitrarily negative, i.e., minimum is —oo

—What’s an alternative formulation?
— Least squares!




Least Squares @) Rensselaer

* Instead of minimizing the average error, minimize the sum of
squared errors

1 N
X
=1
N

1
= NZ(YI: — Wo — w1X;)?
i=1

—The problem is now well defined because e/ > 0

—This approach has many names: least squares, minimum
squared error (MSE), residual sum of squares

—Note that 1/N is constant and doesn’t affect the wy and wy
that minimize the MSE




Minimize the sum of squares @) Rensselaer

* First, consider the special case wy = 0

Problem is

N
min 2(3’11 — W13Ci)2
W1
=1

* Expanding the parentheses, we get

N N N

2 E E 2.2
zyi — 2wiyix; + W1 X;
i=1 i=1 i=1

Quadratic equation in wy, min is achieved when derivative is 0




Minimize the sum of squares, cont’d ® Rensselaer

* Expanding the parentheses, we get

N N N

2 E E 2.2
Z)’i — 2wyy;ix; + W1 X;
=1 =1 =1

Quadratic equation in w{, min is achieved when derivative is 0

* Derivative w.r.t wy is

N
—ZZYLXL+ZW z x? =0

* 1= 1ylxl

wy =
N .2
i=1%i

yx

* If we stack all data in vectors x and y, then wy = Tx
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What about multiple dimensions?

* What if you would like to build a model that takes all 3 X
variables as inputs, i.e.,
f(X) = Wy + W1X1 + W2X2 + W3X3

* Why would you do this instead of building a separate model for
each dimension?

— Can capture interactions between different dimensions

—E.g., suppose TV ads are the most effective, but all ads were
increased simultaneously

* In each dimension, there will be a correlation between ad spending
and sales

e But if you build the 3D model, the TV coefficient will likely dominate

* In general, causality is very hard to capture, but building a multi-
dimensional model is always better than building many 1D models




Multiple dimensions, cont’d

®) Rensselaer

* The function f now becomes a plane

* Individual regression coefficients

Coefficient  Std. error {-statistic p-value
Intercept 7.0325 0.4578 1536 < 0.0001
vV 0.0475 0.0027 17.67 < 0.0001

Coefficient  Std. error t-statistic  p-value
Intercept 9.312 0.563 16.54 < 0.0001
radio 0.203 0.020 9.92 < 0.0001

Coeflicient  Std. error  t-statistic  p-value
Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.055 0.017 3.30  0.00115

* Multiple-dimension regression coefficients
— Note the newspaper coefficient

Coefficient  Std. error  {-statistic p-value
Intercept 2.939 0.3119 942 < 0.0001
v 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper —0.001 0.0059 —0.18 0.8599
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Interpretation of linear coefficients @®) Rensselaer

* Suppose we have obtained a parameter estimate w;
* We say that a unit change in X; is correlated, on average, with
a Wy unit changeinY

— Note the word “correlated”! It is very difficult to establish
causality using a purely data-driven method

— Also note the expression “on average”! The coefficient wy is
averaged over all training points
* will have different prediction error for different points

 This interpretation is specific to linear models
— But causality is hard to establish in any setting!




Multidimensional regression @) Rensselaer

e Consider the multi-dimensional linear function
fX) =wy+wi Xy + -+ wpX,

* Without loss of generality, we can write
fOX) = wrX®

—wherew = [WO W1 ...Wp]T
—How?

— Rewrite X* = [1 XT]T

—To avoid clutter, we will just write X instead of X*
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Multidimensional Least Squares

® Rensselaer

* Goal is the same as in the 1D case
— Find w such that the line minimizes squared errors

* For a given w, the prediction is §; = w! x;
—The prediction error is

e; =Y — Vi
* And the sum of squares is
N
-
i=1

N
Z()’i — WTxi)Z
i=1
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Multidimensional Least Squares, cont’d ® Rensselaer

* The sum of squares is

N

2
Z(}’i — WTxi)
i=1

* To minimize, once again expand the parentheses

N N N

2
z ylz — z Zyinxi + Z(WT.XL')
i=1 =1 =1

* Then, take gradient w.r.t. w and set equal to O

N N
—JZ:E:}QX%'+:2:E:(WVTX%)XQ:: 0
=1 =1
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Aside: Vector Calculus @©@ Rensselaer

* Suppose we are given a function f: R" - R

What is the derivative of f?

« Whenn = 1, itis just the partial derivative f' = g—i

When n > 1, the derivative is a vector of all partial derivatives:
Cof -

dx,
of
02y,

—This is called the gradient of f

—The gradient is the multi-dimensional extension of the
derivative

Vof =
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Multidimensional Least Squares, cont’d ® Rensselaer

N N
—2 z ViXi + 2 Z(WTxi)xi =0
=1 =1

 Temporary notation: Let y = [yy, ... yy]! and X = [x; ... xy]

* Note that for any matrix 4 and vector x, the following is true
Ax = x;a + -+ x,a,

* Thus, Y/, yix; = Xy
W

« Similarly, X/, (wlx))x; = X| .. |= X(WTX)T = XX"w
wlxy
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Multidimensional Least Squares, cont’d ® Rensselaer

N N
—2 z ViXi + 2 Z(WTxi)xi =0
=1 =1

 Temporary notation: Let y = [yy, ... yy]! and X = [x; ... xy]

* Then the above becomes
—2Xy + 2XX"w =0
XXTw = Xy

~1
* To solve for w, we need to multiply by (XXT) on the left
—When is that matrix invertible?
—Recall X € RPN 5o X must be a wide matrix

— Typically, we need much more examples than dimensions
for learning to succeed (i.e., N > p)




Multidimensional Least Squares, cont’d

®) Rensselaer

w' = (XXT) " Xy
* Notice that XX is symmetric
—Why?
(XXT)' = (XT) XT = XX7
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How accurate are our parameter estimates?

® Rensselaer

* There are several factors to consider when talking about
accuracy

* |s the true relationship linear or close to linear?
—If not, then no line will be a great predictor

* In many real-life cases, relationship is not truly linear but a
linear model is still a good way to describe trends

Radio
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How accurate are our parameter estimates? @) Rensselaer

* If the relationship is linear, how close to the true line is the line
we learned?

— Red: true line; Blue: learned lines

— As we collect more data, the learned line will converge to
the true line (Law of Large Numbers)

— Each slope estimate follows a bell-shaped distribution

e Converges to a Gaussian with more data (Central Limit Theorem)
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Spurious Correlation Examples

Number of people who drowned by falling into a pool
correlates with

Films Nicolas Cage appeared in

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
140 drownings 6 films
w
=14
{=
c
% 120 drownings 4 films Z
[ a
= 3
g g
0 0
e <7}
g 100 drownings 2 films B
E
=
wv
80 drownings 0 films
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
-~ Nicholas Cage = Swimming pool drownings
Total revenue generated by arcades
correlates with
. .
Computer science doctorates awarded in the US
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
$2 billion 2000 degrees
o)
o
3
$1.75 billion b
] 1500 degrees E
g w
2 g
5 $1.5 billion 3
E ™
Q.
;: 1000 degrees Q
$1.25 billion *— —— ~ 5]
—_ - s
m
Q
$1 billion 500 degrees
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-8~ Computer science doctorates -# Arcade revenue

source: http://www.tylervigen.com/spurious-correlations
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Linear Regression vs Nearest Neighbors

® Rensselaer

* Linear regression cannot capture complex
relationships

— Will talk more about classification next
* Nearest neighbor actually works quite well
in some cases

—What are cases where nearest neighbor
would not work so well?

— High-dimensional settings where data is
sparse

—This issue is called the curse of
dimensionality

e Quite common across ML

15-Nearest Meighbor Classifier




First Dataset: MNIST @ Rensselaer

* A dataset of 60K grayscale images of handwritten digits
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* Each image is a 28 X 28 matrix of pixels
— Each pixel is an integer between 0 and 255
— Often normalized between 0 and 1 for numeric stability

* Dataset more or less *solved*®
— Can achieve >99% accuracy with various methods
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MNIST, cont’d ® Rensselaer

 We'll have a few homeworks on MNIST

* First, we’ll try a linear regression/classifiication method
— Does this make sense?
—What do you expect to see?

26




What about non-linear terms?

® Rensselaer

* One can add non-linear terms to the function f, e.g.,
f(X) = Wy —+ W1X1 + W2X2 —+ W3X1X2

* And then learn the coefficients in the same way using MSE

* You should only do this if you have a good reason to believe
this non-linearity is present in the data
* Intuitive interpretation gets harder for non-linear models
—In general, non-linear models complicate the math very
quickly, and statistical guarantees are harder to get
* In modern ML, if the data has an unknown non-linear
relationship, then neural networks are the model of choice
— More on this later
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