Probability Intro

- A random variable is a mathematical formalization of a quantity or object which depends on random events – The full formalization is beyond the scope of this course
- For example, a random variable X capturing a fair coin takes a value of heads with probability 0.5 and tails w.p. 0.5 $-$ written $\mathbb{P}[X = heads] = \mathbb{P}[X = tails] = 0.5$
- Similarly, a random variable Y capturing a fair die can take a value in {1, … , 6}, each w.p. 1/6 – written $\mathbb{P}[Y = 1] = \cdots = \mathbb{P}[Y = 6] = 1/6$
- For mathematical convenience, we map discrete event names to numbers, e.g., $heads = 1, tails = 0$

- The probability of a given event does not tell us what will happen in a specific realization
	- E.g., we don't know what the next coin toss will be
- Let's say we have an event A (e.g., $A = \{X = heads\}$) $-\mathsf{Suppose}\ \mathbb{P}[A] = p$
- Interpretation: if we ran the same experiment N times, we would expect A to occur pN times
	- $-A$ bit confusing because if we ran the *exact* same experiment, we *should* see the same outcome
	- But there are random factors beyond our control, e.g., wind
- We won't talk about philosophy too much
	- Probability is a nice formalization that has served us well

Random Variables, cont'd

- A random variable can be discrete or continuous
- A discrete variable can take on a finite number of values – Coin tosses and dice are discrete variables
- A continuous variable can take on infinitely many values – For example, stock prices are continuous

- A probability distribution characterizes the probabilities of all values that a variable can take
	- E.g., a coin toss has a binary (aka Bernoulli) distribution with probability 0.5
- Suppose we have a variable weather that can take on values sun, rain, snow
	- $-$ The probability distribution of weather in Troy is $\mathbb{P}[weather = sun] = 0.2$ $\mathbb{P}[weather = rain] = 0.2$ $\mathbb{P}[weather = snow] = 0.6$
- Note that all probabilities must sum up to 1

- The joint distribution of two random variables X, Y characterizes the probabilities of all pairs of values
- E.g., suppose you have a variable $traffic$ that takes values in $\{low, medium, high\}$
	- $-$ The joint distribution of weather and $traffic$ in Troy is $\mathbb{P}[weather = sun, traffic = low] = 0.1$ $\mathbb{P}[weather = sun, traffic = medium] = 0.06$ $\mathbb{P}[weather = sun, traffic = high] = 0.04$

…

- All probabilities need to sum up to 1 again
- In some sense, you can imagine we created a new variable *weathertraffic* that can take all combinations of values

- Intuitively, two variables X , Y are independent if their probabilities are unaffected by each other
	- E.g., if we toss two coins, we expect one coin to not affect the other
- Mathematically, X , Y are independent if $\mathbb{P}[X = a, Y = b] = \mathbb{P}[X = a]\mathbb{P}[Y = b]$
	- $-$ for all possible values a and b
	- $-$ E.g., the probability that both coins are $heads$ is the same as the product of each coin being *heads* independently
- Independence is a critical property in ML and statistics!

Conditional Distribution

- The conditional distribution of X given Y characterizes the probabilities of different values of X for a given value of Y
	- written $\mathbb{P}[X = a | Y = b]$
- For example, we know that $\mathbb{P}[weather = sun, traffic = low] = 0.1$ $\mathbb{P}[weather = sun, traffic = medium] = 0.06$ $\mathbb{P}[weather = sun, traffic = high] = 0.04$
- This means

 $\mathbb{P}[traffic = low| weather = sun] = 0.5$ $\mathbb{P}[traffic = medium| weather = sun] = 0.3$ $\mathbb{P}[traffic = high| weather = sun] = 0.2$

Conditional Distribution, cont'd

• Mathematically, the relationship between conditional and joint distributions is the following:

$$
\mathbb{P}[X|Y] = \frac{\mathbb{P}[X,Y]}{\mathbb{P}[Y]}
$$

• If Y has occurred, what proportion of the time does X also occur?

Marginalization

Rensselaer

- Marginalization is a very useful tool when deriving properties in RL
- Suppose you have two discrete random variables, X and Y $-$ i.e., $X \in \{x_1, ..., x_N\}, Y \in \{y_1, ..., y_M\}$
- Marginalization is the following property

$$
\mathbb{P}[X = x_i] = \sum_{j=1}^{M} \mathbb{P}[X = x_i, Y = y_j]
$$

- Intuitively, the probability that X is equal to x_i is the sum of the probabilities of all events where $X = x_i$
	- $-$ for all possible values of Y

Rensselaer

- Two variables are identically distributed if they have the same distribution
	- Two fair coins are identically distributed
	- $-$ A fair coin and a biased coin (e.g. $\mathbb{P}[heads = 0.6]$) are not identically distributed
	- A coin and a die are not identically distributed
- Two variables X , Y are IID if they are independent and identically distributed
- Two fair coin tosses are IID
	- Any number of fair coin tosses are IID
- If you tie two coins with a string, they are not independent, but they are identically distributed

Union Bound

- Recall the union bound from set theory
- What is the size of $|A \cup B|$? $|A \cup B| = |A| + |B| - |A \cap B|$
- In particular, $|A \cup B| \leq |A| + |B|$
- In general

$$
|\bigcup_i A_i| \le \sum_i |A_i|
$$

• Similarly,

$$
\mathbb{P}[\cup_i A_i] \le \sum_i \mathbb{P}[A_i]
$$

Rensselaer

- Consider a random variable X that can take k possible values, $x_1, ..., x_k$, each with probability $p_1, ..., p_k$
- The expected value of X is defined as $\mathbb{E}[X] = p_1 x_1 + \cdots + p_k x_k$
	- i.e., it is a weighted average
- If X can take on infinitely many values, the expectation is a bit more involved
- In the case where X is continuous, one may be able to describe $E[X]$ in terms of its probability density function (pdf):

$$
\mathbb{E}[X] = \int_{-\infty}^{\infty} x p(x) dx
$$

- where $p(x)$ is the pdf of X

- The expected value is a linear operator, i.e., $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- The expected value of the product of independent variables is just the product of the expectations: $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- What if the variables are not independent?
	- There is no closed form expression, need to know the joint probabilities:

$$
\mathbb{E}[XY] = \sum_{x,y} xy \mathbb{P}[X = x, Y = y]
$$

 $\lambda = 4$ $\circ \lambda = 10$

Expectation Examples

 $\mathbb{E}[X] =$

- Suppose you have a fair coin that produces values 0 and 1 $\mathbb{E}[X] = 0.5 * 0 + 0.5 * 1 = 0.5$
- Suppose you have a fair die that produces values 1-6 1 1 1

 $*$ 1 + … +

6 6 6 • Suppose you have a Poisson distribution where the probability of integer is

 $k=0$

 $* 6 =$

 $* 21 = 3.5$

$$
\mathbb{P}[X = k] = \frac{\lambda^k e^{-\lambda}}{k!} \begin{bmatrix} \frac{1}{\lambda} & \frac{0.35}{0.30} \\ \frac{1}{\lambda} & \frac{0.25}{0.15} \\ \frac{1}{\lambda} & \frac{0.30}{0.15} \end{bmatrix}
$$

For a given parameter $\lambda > 0$

$$
\mathbb{E}[X] = \sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} k
$$

Source: Wikipedia

Rensselaer

Expectation Examples, cont'd

• The expected value of a Poisson distribution is

First term is 0!

$$
\mathbb{E}[X] = \sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} k
$$

$$
= \sum_{k=1}^{\infty} \frac{\lambda^k e^{-\lambda}}{(k-1)!}
$$

$$
= \lambda e^{-\lambda} \sum_{\substack{k=1 \ \infty}}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}
$$

$$
= \lambda e^{-\lambda} \sum_{\substack{x=0 \ x=0}}^{\infty} \frac{\lambda^x}{x!}
$$

$$
= \lambda e^{-\lambda} e^{\lambda} = \lambda
$$

- Rensselaer
- Suppose you have a uniform distribution on $[0,1]$ $E[X] = 0.5$
	- But why?
	- Uniform distribution has density $p(x) = 1$

$$
\mathbb{E}[X] = \int_0^1 x dx
$$

$$
= \frac{x^2}{2} \Big|_0^1 = 0.5
$$

• For general intervals $[A, B]$, the density is $p(x) =$ 1 $B-A$

Expectation Examples, cont'd

• Suppose you have a normal distribution

• The pdf is

- Looks intimidating but it's actually quite easy to work with
- One of the most popular distributions for many reasons – Central limit theorem, etc.

- The variance of a random variable X is defined as $\mathbb{E}[(X - \mathbb{E}[X])^2]$
- Measures how much X deviates from its mean – Very similar to the definition of squared error
- When $\mathbb{E}[X] = 0$, the variance is just $\mathbb{E}[X^2]$
	- $-$ This is called the second moment of X
	- Higher moments defined similarly: $\mathbb{E}\big[X^3\big]$, etc.
	- For complex distributions, higher moments provide even more information about the distribution spread

Variance Examples

- What's the variance of the fair coin? $\mathbb{E}[(X-0.5)^2] = 0.5*(-0.5)^2 + 0.5*(0.5)^2 = 0.25$
- What's the variance of the fair die? $\mathbb{E}[(X-3.5)^2] =$ 1 6 $(-2.5)^{2} + (-1.5)^{2} + (-0.5)^{2} + (2.5)^{2} + (1.5)^{2} + (0.5)^{2}$ \approx 2.92
- What's the variance of the uniform distribution?

$$
\mathbb{E}\left[(X - 0.5)^2\right] = \int_0^1 (x - 0.5)^2 dx
$$

$$
= \left[\frac{x^3}{3} - \frac{x^2}{2} + 0.25x\right]_0^1 = \frac{1}{12}
$$

• The entropy of a discrete random variable X is defined as

$$
H(X) = -\sum_{x} p(x) \log[p(x)] = -\mathbb{E}[\log[p(X)]]
$$

- Measures the level of "surprise" or "information" in X
- Similar to variance but with subtle differences
- E.g., entropy is invariant to scale
- The cross-entropy between two distributions p and q is

$$
H(p,q) = -\sum_{x} p(x) \log[q(x)]
$$

– Measures the similarity between the two distributions

KL Divergence

Rensselaer

• The Kullback-Leibler divergence between two distributions is

$$
D_{KL}(p||q) = \sum_{x} p(x) \log \left[\frac{p(x)}{q(x)}\right]
$$

– Another measure of difference between distributions

• Cross-entropy can defined in terms of entropy and KL divergence

$$
H(p,q) = H(p) + D_{KL}(p||q)
$$

- KL divergence can be thought of as a distance metric between distributions (although it's not symmetric)
- Cross-entropy is not a distance metric since $H(P, P) \neq 0$

- Let $X_1, ..., X_n$ be *n* IID random variables
- Let $S_n = X_1 + \cdots + X_n$
- (Weak) Law of Large Numbers:

$$
\mathbb{P}\left[\left|\frac{S_n}{n} - \mathbb{E}[X_1]\right| < \epsilon\right] \to 1 \text{ as } n \to \infty
$$

 $-$ for any positive ϵ

• As we collect more data, the sample mean S_n/n converges to the expected mean $\mathbb{E}[X_1]$

— Since the X_i are IID, $\mathbb{E}[X_1]=\mathbb{E}[X_i]$ for any i

- Practically speaking, as our dataset gets larger, the law of large numbers is more likely to apply
	- E.g., for accuracy, parameter estimates, etc.