Probability Intro




Random Variables @©@ Rensselaer

A random variable is a mathematical formalization of a
quantity or object which depends on random events

—The full formalization is beyond the scope of this course
* For example, a random variable X capturing a fair coin takes a
value of heads with probability 0.5 and tails w.p. 0.5
—written P[X = heads] = P|X = tails] = 0.5
e Similarly, a random variable Y capturing a fair die can take a
valuein {1, ..., 6}, each w.p. 1/6
—written P[Y = 1] =--=P[Y =6] =1/6

* For mathematical convenience, we map discrete event names
to numbers, e.g., heads = 1, tails = 0




Philosophy and Probability @) Rensselaer

* The probability of a given event does not tell us what will
happen in a specific realization

—E.g., we don’t know what the next coin toss will be

* Let’s say we have an event A (e.g., A = {X = heads})
—Suppose P[A] =p
* Interpretation: if we ran the same experiment N times, we
would expect A to occur pN times

— A bit confusing because if we ran the *exact™ same
experiment, we *should* see the same outcome

— But there are random factors beyond our control, e.g., wind

 We won’t talk about philosophy too much
— Probability is a nice formalization that has served us well




Random Variables, cont’d @©@ Rensselaer

* A random variable can be discrete or continuous

* A discrete variable can take on a finite number of values
— Coin tosses and dice are discrete variables

* A continuous variable can take on infinitely many values
— For example, stock prices are continuous




Probability Distribution @) Rensselaer

» A probability distribution characterizes the probabilities of all
values that a variable can take

—E.g., a coin toss has a binary (aka Bernoulli) distribution with
probability 0.5

» Suppose we have a variable weather that can take on values
sun, rain, SNow

—The probability distribution of weather in Troy is
Plweather = sun] = 0.2
Plweather = rain] = 0.2
P|weather = snow] = 0.6

* Note that all probabilities must sumup to 1




Joint Distributions @©@ Rensselaer

* The joint distribution of two random variables X,Y
characterizes the probabilities of all pairs of values

* E.g., suppose you have a variable traf fic that takes values in
{low, medium, high}
—The joint distribution of weather and traf fic in Troy is
P[weather = sun, traf fic = low] = 0.1
P[weather = sun, traf fic = medium] = 0.06
P[weather = sun, traf fic = high] = 0.04

* All probabilities need to sum up to 1 again

* In some sense, you can imagine we created a new variable
weathertraf fic that can take all combinations of values




Independent Variables @) Rensselaer

* Intuitively, two variables X,Y are independent if their
probabilities are unaffected by each other

—E.g., if we toss two coins, we expect one coin to not affect
the other
 Mathematically, X, Y are independent if
P[X =a,Y =b] =P|X = a]P[Y = b]
—for all possible values a and b
—E.g., the probability that both coins are heads is the same
as the product of each coin being heads independently

* Independence is a critical property in ML and statistics!




Conditional Distribution

® Rensselaer

* The conditional distribution of X given Y characterizes the
probabilities of different values of X for a given value of Y

—written P[X = a|Y = b]

* For example, we know that
P[weather = sun, traf fic = low] = 0.1
P[weather = sun, traf fic = medium] = 0.06
P[weather = sun, traf fic = high] = 0.04
* This means

P[traf fic = low|weather = sun] = 0.5
P[traf fic = medium|weather = sun] = 0.3

P[traf fic = high|weather = sun] = 0.2




Conditional Distribution, cont’d @ Rensselaer

* Mathematically, the relationship between conditional and joint
distributions is the following:

P[X|Y] = PIE[(;]/]

* If Y has occurred, what proportion of the time does X also
occur?




Marginalization

® Rensselaer

Marginalization is a very useful tool when deriving properties
in RL

Suppose you have two discrete random variables, X and Y
—i.e, X €E{xq, ..., xn}L,Y € {y1, ..., Yy}

Marginalization is the following property
M

[P[X — xi] — Z ]P)[X = Xi,y = y]]
j=1
Intuitively, the probability that X is equal to x; is the sum of
the probabilities of all events where X = x;

—for all possible values of Y




IID Variables @©@ Rensselaer

* Two variables are identically distributed if they have the same
distribution

— Two fair coins are identically distributed

— A fair coin and a biased coin (e.g. P[heads = 0.6]) are not
identically distributed

— A coin and a die are not identically distributed

* Two variables X,Y are lID if they are independent and
identically distributed

* Two fair coin tosses are IID
— Any number of fair coin tosses are IID

* If you tie two coins with a string, they are not independent, but
they are identically distributed




Union Bound

®) Rensselaer

* In general

Similarly,

Recall the union bound from set theory

What is the size of |A U B|?

|AUB| = |A| + |B| — |A N B|

In particular, |A U B| < |A| + |B|

|U; 4l SZ|Ai|

l

Plu; 4;] < 2 P[A;]
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Expected value @) Rensselaer

* Consider a random variable X that can take k possible values,
X1, .-, Xk, €ach with probability py, ..., px

* The expected value of X is defined as
E[X] = p1xg + - + prexy
—i.e., it is a weighted average

If X can take on infinitely many values, the expectation is a bit
more involved

In the case where X is continuous, one may be able to describe
[E[X] in terms of its probability density function (pdf):

E|X] = fooxp(x)dx

—where p(x) is the pdf of X




Expected value, cont’d @ Rensselaer

* The expected value is a linear operator, i.e.,
E[X + Y] = E[X] + E[Y]

* The expected value of the product of independent variables is

just the product of the expectations:
E[XY] = E|X]E[Y]

* What if the variables are not independent?

—There is no closed form expression, need to know the joint
probabilities:

E[XY] = z xyP[X = x,Y = y]
X,y




Expectation Examples @ Rensselaer

e Suppose you have a fair coin that produces values 0 and 1
E[X]=05x0+05+1=0.5

e Suppose you have a fair die that produces values 1-6

1 1 1
E[X]==*14+-4+=-x6==%21=35

6 6 6
* Suppose you have a Poisson distribution where the probability
of integer k is 0o - —
Ake=d a1t |
PX =K==

015t

—for a given parameter A > 0

0.10 F

00 |
k . —A 0.05 F -
. A e 0.00 _ -
]E [X] k 0 5 10 15 20

.
k! Source: wikipedia
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Expectation Examples, cont’d

® Rensselaer

* The expected value of a Poisson distribution is

Are=4
E[X] = ]
k=0
S Jke2
First term is O! = Z Y
L (koo D!
Ak—l
= e 4
— |
= (k—1)
= le~* ﬁ
x!
x=0
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Expectation Examples, cont’d

® Rensselaer

* Suppose you have a uniform distribution on [0,1]
E[X] = 0.5

— But why?
— Uniform distribution has density p(x) = 1

E|X] = jlxdx
0

= 0.5

* For general intervals |4, B], the density is p(x) = —

1
B-A
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Expectation Examples, cont’d ®) Rensselaer

e Suppose you have a normal distribution

, 02202, =——
, 07210, m—
225, ]
, 2:0.5'_ —

* The pdfis R
(x) 1 _(x—uz)2
X) = e 2o
P =

* Looks intimidating but it’s actually quite easy to work with

* One of the most popular distributions for many reasons
— Central limit theorem, etc.
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Variance

® Rensselaer

e The variance of a random variable X is defined as
E|(X — E[X])?]

* Measures how much X deviates from its mean
—Very similar to the definition of squared error

* When E[X] = 0, the variance is just [E[XZ]
—This is called the second moment of X
—Higher moments defined similarly: ]E[X3], etc.

— For complex distributions, higher moments provide even
more information about the distribution spread




Variance Examples @) Rensselaer

 What’s the variance of the fair coin?
E[(X —0.5)2] = 0.5 = (=0.5)2 + 0.5 = (0.5)% = 0.25

* What’s the variance of the fair die?
E[(X —3.5)?] = %((—2.5)2 + (—=1.5)% + (—0.5)2? + (2.5)? + (1.5)? + (0.5)?)
~ 2.92

e What’s the variance of the uniform distribution?

1
E[(X —0.5)?] = j (x — 0.5)2%dx
0
1

_ X x2+025 _ 1
372 'x0_12
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® Rensselaer

Entropy and Cross-Entropy

* The entropy of a discrete random variable X is defined as
H(X) = Z p(x) loglp()] = —Elloglp(X)]]

— Measures the IeveI of “surprise” or “information” in X
—Similar to variance but with subtle differences
—E.g., entropy is invariant to scale

* The cross-entropy between two distributions p and q is
H(p,q) = = ) p()logla()]

— Measures the similarity between the two distributions




KL Divergence @) Rensselaer

* The Kullback-Leibler divergence between two distributions is

D (pll9) = ) p(x) log (x)]

— Another measure of difference between distributions

* Cross-entropy can defined in terms of entropy and KL
divergence

H(p,q) = H(p) + Dk, (pllq)

* KL divergence can be thought of as a distance metric between
distributions (although it’s not symmetric)

* Cross-entropy is not a distance metric since H(P,P) # 0




Law of Large Numbers @) Rensselaer

* Let Xy, ..., X;; be n IID random variables
e LetS,, =X+ + X,
* (Weak) Law of Large Numbers:

Xl]‘ ]—>1asn—>oo

—for any p05|t|ve €
* As we collect more data, the sample mean §,, /n converges to
the expected mean E[X]
—Since the X; are IID, E[X;] = E[X;] for any i
* Practically speaking, as our dataset gets larger, the law of large
numbers is more likely to apply
—E.g., for accuracy, parameter estimates, etc.
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