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Random Variables

• A random variable is a mathematical formalization of a 
quantity or object which depends on random events

– The full formalization is beyond the scope of this course

• For example, a random variable 𝑋 capturing a fair coin takes a 
value of ℎ𝑒𝑎𝑑𝑠 with probability 0.5 and 𝑡𝑎𝑖𝑙𝑠 w.p. 0.5

–written ℙ 𝑋 = ℎ𝑒𝑎𝑑𝑠 = ℙ 𝑋 = 𝑡𝑎𝑖𝑙𝑠 = 0.5

• Similarly, a random variable 𝑌 capturing a fair die can take a 
value in {1, … , 6}, each w.p. 1/6

–written ℙ 𝑌 = 1 = ⋯ = ℙ 𝑌 = 6 = 1/6

• For mathematical convenience, we map discrete event names 
to numbers, e.g., ℎ𝑒𝑎𝑑𝑠 = 1, 𝑡𝑎𝑖𝑙𝑠 = 0
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Philosophy and Probability

• The probability of a given event does not tell us what will 
happen in a specific realization

– E.g., we don’t know what the next coin toss will be

• Let’s say we have an event 𝐴 (e.g., 𝐴 = {𝑋 = ℎ𝑒𝑎𝑑𝑠})

– Suppose ℙ 𝐴 = 𝑝

• Interpretation: if we ran the same experiment 𝑁 times, we 
would expect 𝐴 to occur 𝑝𝑁 times

–A bit confusing because if we ran the *exact* same 
experiment, we *should* see the same outcome

– But there are random factors beyond our control, e.g., wind

• We won’t talk about philosophy too much

– Probability is a nice formalization that has served us well
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Random Variables, cont’d

• A random variable can be discrete or continuous

• A discrete variable can take on a finite number of values

– Coin tosses and dice are discrete variables

• A continuous variable can take on infinitely many values

– For example, stock prices are continuous
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Probability Distribution

• A probability distribution characterizes the probabilities of all 
values that a variable can take

– E.g., a coin toss has a binary (aka Bernoulli) distribution with 
probability 0.5

• Suppose we have a variable 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 that can take on values 
𝑠𝑢𝑛, 𝑟𝑎𝑖𝑛, 𝑠𝑛𝑜𝑤

– The probability distribution of 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 in Troy is
ℙ 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛 = 0.2

ℙ 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑟𝑎𝑖𝑛 = 0.2 
ℙ 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑛𝑜𝑤 = 0.6 

• Note that all probabilities must sum up to 1
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Joint Distributions

• The joint distribution of two random variables 𝑋, 𝑌 
characterizes the probabilities of all pairs of values

• E.g., suppose you have a variable 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 that takes values in 
{𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ}

– The joint distribution of 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 and 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 in Troy is
ℙ 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛, 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 = 𝑙𝑜𝑤 = 0.1

ℙ 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛, 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 = 𝑚𝑒𝑑𝑖𝑢𝑚 = 0.06 
 ℙ 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛, 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 = ℎ𝑖𝑔ℎ = 0.04

…

• All probabilities need to sum up to 1 again

• In some sense, you can imagine we created a new variable 
𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑡𝑟𝑎𝑓𝑓𝑖𝑐 that can take all combinations of values
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Independent Variables

• Intuitively, two variables 𝑋, 𝑌 are independent if their 
probabilities are unaffected by each other

– E.g., if we toss two coins, we expect one coin to not affect 
the other

• Mathematically, 𝑋, 𝑌 are independent if
ℙ 𝑋 = 𝑎, 𝑌 = 𝑏 = ℙ 𝑋 = 𝑎 ℙ[𝑌 = 𝑏]

– for all possible values 𝑎 and 𝑏

– E.g., the probability that both coins are ℎ𝑒𝑎𝑑𝑠 is the same 
as the product of each coin being ℎ𝑒𝑎𝑑𝑠 independently

• Independence is a critical property in ML and statistics!
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Conditional Distribution

• The conditional distribution of 𝑋 given 𝑌 characterizes the 
probabilities of different values of 𝑋 for a given value of 𝑌

–written ℙ[𝑋 = 𝑎|𝑌 = 𝑏]

• For example, we know that 
ℙ 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛, 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 = 𝑙𝑜𝑤 = 0.1

ℙ 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛, 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 = 𝑚𝑒𝑑𝑖𝑢𝑚 = 0.06 
 ℙ 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛, 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 = ℎ𝑖𝑔ℎ = 0.04

• This means
ℙ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 = 𝑙𝑜𝑤 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛 = 0.5

ℙ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 = 𝑚𝑒𝑑𝑖𝑢𝑚 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛 = 0.3 
ℙ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 = ℎ𝑖𝑔ℎ 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛 = 0.2 
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Conditional Distribution, cont’d

• Mathematically, the relationship between conditional and joint 
distributions is the following:

ℙ 𝑋 𝑌 =
ℙ[𝑋, 𝑌]

ℙ[𝑌]

• If 𝑌 has occurred, what proportion of the time does 𝑋 also 
occur?
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Marginalization

• Marginalization is a very useful tool when deriving properties 
in RL

• Suppose you have two discrete random variables, 𝑋 and 𝑌

– i.e., 𝑋 ∈ 𝑥1, … , 𝑥𝑁 , 𝑌 ∈ {𝑦1, … , 𝑦𝑀}

• Marginalization is the following property

ℙ 𝑋 = 𝑥𝑖 = ෍

𝑗=1

𝑀

ℙ 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗

• Intuitively, the probability that 𝑋 is equal to 𝑥𝑖  is the sum of 
the probabilities of all events where 𝑋 = 𝑥𝑖  

– for all possible values of 𝑌
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IID Variables

• Two variables are identically distributed if they have the same 
distribution

– Two fair coins are identically distributed

–A fair coin and a biased coin (e.g. ℙ[ℎ𝑒𝑎𝑑𝑠 = 0.6]) are not 
identically distributed

–A coin and a die are not identically distributed

• Two variables 𝑋, 𝑌 are IID if they are independent and 
identically distributed

• Two fair coin tosses are IID

–Any number of fair coin tosses are IID

• If you tie two coins with a string, they are not independent, but 
they are identically distributed
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Union Bound

• Recall the union bound from set theory

• What is the size of |𝐴 ∪ 𝐵|?
𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − |𝐴 ∩ 𝐵|

• In particular, 𝐴 ∪ 𝐵 ≤ 𝐴 + |𝐵|

• In general

∪𝑖 𝐴𝑖 ≤ ෍

𝑖

𝐴𝑖

• Similarly,

ℙ ∪𝑖 𝐴𝑖 ≤ ෍

𝑖

ℙ 𝐴𝑖
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Expected value

• Consider a random variable 𝑋 that can take 𝑘 possible values, 
𝑥1, … , 𝑥𝑘, each with probability 𝑝1, … , 𝑝𝑘

• The expected value of 𝑋 is defined as
𝔼 𝑋 = 𝑝1𝑥1 + ⋯ + 𝑝𝑘𝑥𝑘

– i.e., it is a weighted average

• If 𝑋 can take on infinitely many values, the expectation is a bit 
more involved

• In the case where 𝑋 is continuous, one may be able to describe 
𝔼[𝑋] in terms of its probability density function (pdf):

𝔼 𝑋 = න
−∞

∞

𝑥𝑝 𝑥 𝑑𝑥

–where 𝑝(𝑥) is the pdf of 𝑋 
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Expected value, cont’d

• The expected value is a linear operator, i.e.,
𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼 𝑌

• The expected value of the product of independent variables is 
just the product of the expectations:

𝔼 𝑋𝑌 = 𝔼 𝑋 𝔼[𝑌]

• What if the variables are not independent?

– There is no closed form expression, need to know the joint 
probabilities:

𝔼 𝑋𝑌 = ෍

𝑥,𝑦

𝑥𝑦ℙ 𝑋 = 𝑥, 𝑌 = 𝑦
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Expectation Examples

• Suppose you have a fair coin that produces values 0 and 1
𝔼 𝑋 = 0.5 ∗ 0 + 0.5 ∗ 1 = 0.5

• Suppose you have a fair die that produces values 1-6

𝔼 𝑋 =
1

6
∗ 1 + ⋯ +

1

6
∗ 6 =

1

6
∗ 21 = 3.5

• Suppose you have a Poisson distribution where the probability 
of integer 𝑘 is

ℙ 𝑋 = 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
– for a given parameter 𝜆 > 0

𝔼 𝑋 = ෍

𝑘=0

∞
𝜆𝑘𝑒−𝜆

𝑘!
𝑘
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Expectation Examples, cont’d

• The expected value of a Poisson distribution is

𝔼 𝑋 = ෍

𝑘=0

∞
𝜆𝑘𝑒−𝜆

𝑘!
𝑘

 = ෍

𝑘=1

∞
𝜆𝑘𝑒−𝜆

(𝑘 − 1)!

 = 𝜆𝑒−𝜆 ෍

𝑘=1

∞
𝜆𝑘−1

(𝑘 − 1)!

 = 𝜆𝑒−𝜆 ෍

𝑥=0

∞
𝜆𝑥

𝑥!

 = 𝜆𝑒−𝜆𝑒𝜆 = 𝜆
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Expectation Examples, cont’d

• Suppose you have a uniform distribution on [0,1]
𝔼 𝑋 = 0.5

– But why?

–Uniform distribution has density 𝑝 𝑥 = 1

𝔼 𝑋 = න
0

1

𝑥𝑑𝑥

 =
𝑥2

2
ቚ

0

1
= 0.5

• For general intervals 𝐴, 𝐵 , the density is 𝑝 𝑥 =
1

𝐵−𝐴
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Expectation Examples, cont’d

• Suppose you have a normal distribution

• The pdf is 

𝑝 𝑥 =
1

𝜎 2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2

• Looks intimidating but it’s actually quite easy to work with

• One of the most popular distributions for many reasons

– Central limit theorem, etc.
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Variance

• The variance of a random variable 𝑋 is defined as

𝔼 𝑋 − 𝔼 𝑋 2

• Measures how much 𝑋 deviates from its mean

–Very similar to the definition of squared error

• When 𝔼 𝑋 = 0, the variance is just 𝔼 𝑋2

– This is called the second moment of 𝑋

–Higher moments defined similarly: 𝔼 𝑋3 , etc.

– For complex distributions, higher moments provide even 
more information about the distribution spread
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Variance Examples

• What’s the variance of the fair coin?
𝔼 𝑋 − 0.5 2 = 0.5 ∗ −0.5 2 + 0.5 ∗ 0.5 2 = 0.25

• What’s the variance of the fair die?

𝔼 𝑋 − 3.5 2 =
1

6
−2.5 2 + −1.5 2 + −0.5 2 + 2.5 2 + 1.5 2 + 0.5 2

≈ 2.92

• What’s the variance of the uniform distribution?

𝔼 𝑋 − 0.5 2 = න
0

1

𝑥 − 0.5 2𝑑𝑥 

 =
𝑥3

3
−

𝑥2

2
+ 0.25𝑥

0

1

=
1

12
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Entropy and Cross-Entropy

• The entropy of a discrete random variable 𝑋 is defined as

𝐻 𝑋 = − ෍

𝑥

𝑝 𝑥 log 𝑝 𝑥 = −𝔼 log 𝑝 𝑋

–Measures the level of “surprise” or “information” in 𝑋

– Similar to variance but with subtle differences

– E.g., entropy is invariant to scale

• The cross-entropy between two distributions 𝑝 and 𝑞 is

𝐻 𝑝, 𝑞 = − ෍

𝑥

𝑝 𝑥 log 𝑞 𝑥

–Measures the similarity between the two distributions
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KL Divergence

• The Kullback-Leibler divergence between two distributions is

𝐷𝐾𝐿(𝑝| 𝑞 = ෍

𝑥

𝑝 𝑥 log
𝑝 𝑥

𝑞 𝑥

–Another measure of difference between distributions

• Cross-entropy can defined in terms of entropy and KL 
divergence

𝐻 𝑝, 𝑞 = 𝐻 𝑝 + 𝐷𝐾𝐿(𝑝||𝑞)

• KL divergence can be thought of as a distance metric between 
distributions (although it’s not symmetric)

• Cross-entropy is not a distance metric since 𝐻 𝑃, 𝑃 ≠ 0
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Law of Large Numbers

• Let 𝑋1, … , 𝑋𝑛 be 𝑛 IID random variables

• Let 𝑆𝑛 = 𝑋1 + ⋯ + 𝑋𝑛

• (Weak) Law of Large Numbers:

ℙ
𝑆𝑛

𝑛
− 𝔼 𝑋1 < 𝜖 → 1 as 𝑛 → ∞

– for any positive 𝜖

• As we collect more data, the sample mean 𝑆𝑛/𝑛 converges to 
the expected mean 𝔼 𝑋1

– Since the 𝑋𝑖  are IID, 𝔼 𝑋1 = 𝔼[𝑋𝑖] for any 𝑖

• Practically speaking, as our dataset gets larger, the law of large 
numbers is more likely to apply

– E.g., for accuracy, parameter estimates, etc.
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