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Linear Algebra Intro

• Linear algebra is one of the main building blocks of modern RL 
and dynamical systems

–We will cover important properties as we go but we won’t 
have time to go in much depth

• A scalar 𝑥 ∈ ℝ is just a real number

• A 𝑝-dimensional vector 𝒙 ∈ ℝ𝑝 is a list of 𝑝 scalars, i.e.,

𝒙 =

𝑥1

𝑥2

…
𝑥𝑝

–where 𝑥𝑖  denotes the 𝑖th element of 𝒙
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Linear Algebra Intro, cont’d

• A 𝑝 × 𝑛 matrix 𝑨 ∈ ℝ𝑝×𝑛 consists of 𝑛 𝑝-dimensional vectors, 
i.e.,

𝑨 =

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

… … … …
𝑎𝑝1 𝑎𝑝2 … 𝑎𝑝𝑛 

–where 𝑎𝑖𝑗  denotes the element in row 𝑖 and column 𝑗

–where 𝑎𝑖  denotes the 𝑖th column vector of 𝑨

–where 𝑎𝑖
𝑟 denotes the 𝑖th row vector of 𝑨

• Why do we need matrices?

– Store data

– Represent multi-dimensional data (e.g., images)

– Perform operations in multiple dimensions (e.g., rotation)
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Linear Algebra Intro, cont’d

• Vectors are by default represented as columns

• The transpose of a vector 𝒙 ∈ ℝ𝑝, written 𝒙𝑇, is a row vector:
𝒙𝑇 = 𝑥1 𝑥2 … 𝑥𝑝

• Similarly, the transpose of a matrix 𝑨 is

𝑨𝑇 =

𝑎11 𝑎21 … 𝑎𝑝1

𝑎12 𝑎22 … 𝑎𝑝2

… … … …
𝑎1𝑛 𝑎2𝑛 … 𝑎𝑝𝑛 

– or, equivalently

𝑨𝑇 =

𝒂1
𝑇

𝒂2
𝑇

…
𝒂𝑛

𝑇
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Multiplication

• The inner product of two vectors 𝒙, 𝒚 ∈ ℝ𝑝 is
𝒙𝑇𝒚 = 𝑥1𝑦1 + 𝑥2𝑦2 + ⋯ + 𝑥𝑝𝑦𝑝

–Note they must have the same dimension

– The inner product is a scalar

• The product of two matrices 𝑨 ∈ ℝ𝑝×𝑛 and 𝑩 ∈ ℝ𝑛×𝑚 is the 
inner product of all of 𝑨’s rows with all of 𝑩’s columns:

𝑨𝑩 =

𝑎11 … 𝑎1𝑛

𝑎21 … 𝑎2𝑛

𝑎𝑝1 … 𝑎𝑝𝑛

𝑏11 … 𝑏1𝑚

… … …
𝑏𝑛1 … 𝑏𝑛𝑚 

=

𝑐11 … 𝑐1𝑚

… … …
𝑐𝑝1 … 𝑐𝑝𝑚 

• Note that dimensions must match!

• What are the dimensions of the output matrix?
𝑝 × 𝑚
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Multiplication Example

𝑨𝑩 =
1 2
3 4

5 6
7 8

 

=
5 + 14 6 + 16

15 + 28 18 + 32

=
19 22
43 50

 

• Note that in general 𝑨𝑩 ≠ 𝑩𝑨
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Multiplication, cont’d

• Note that for any matrix 𝑨 and vector 𝒙, the following is true
𝑨𝒙 = 𝑥1𝒂1 + ⋯ + 𝑥𝑛𝒂𝑛

• Let 𝒃 = 𝑨𝒙

𝒃 = 𝑨𝒙 =

𝑎11 … 𝑎1𝑛

𝑎21 … 𝑎2𝑛

𝑎𝑝1 … 𝑎𝑝𝑛

𝑥1

…
𝑥𝑛 

–What is 𝑏1?
𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 

0
…
0
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Multiplication, cont’d

• Note that for any matrix 𝑨 and vector 𝒙, the following is true
𝑨𝒙 = 𝑥1𝒂1 + ⋯ + 𝑥𝑛𝒂𝑛

• Let 𝒃 = 𝑨𝒙

𝒃 = 𝑨𝒙 =

𝑎11 … 𝑎1𝑛

𝑎21 … 𝑎2𝑛

𝑎𝑝1 … 𝑎𝑝𝑛

𝑥1

…
𝑥𝑛 

–What about the rest?

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 

…
𝑎𝑝1𝑥1 + 𝑎𝑝2𝑥2 + ⋯ + 𝑎𝑝𝑛𝑥𝑛 

= 𝑥1𝒂1 + ⋯ + 𝑥𝑛𝒂𝑛
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Transpose Property

• Note that
𝑨𝑩 𝑇 = 𝑩𝑇𝑨𝑇

–Why?

𝑨𝑩 =

𝑎11 … 𝑎1𝑛

𝑎21 … 𝑎2𝑛

𝑎𝑝1 … 𝑎𝑝𝑛

𝑏11 … 𝑏1𝑚

… … …
𝑏𝑛1 … 𝑏𝑛𝑚 

• First column of 𝑨𝑩 𝑇 is 𝒂1
𝑟𝒃1 𝒂1

𝑟𝒃2 ⋯ 𝒂1
𝑟𝒃𝑛

𝑇

– In general, column 𝑖 is 𝒂𝑖
𝑟𝒃1 𝒂𝑖

𝑟𝒃2 ⋯ 𝒂𝑖
𝑟𝒃𝑛

𝑇

• First column of 𝑩𝑇𝑨𝑇 𝒃1
𝑇𝒂1

𝑟 𝒃2
𝑇𝒂1

𝑟 ⋯ 𝒃𝑛
𝑇𝒂1

𝑟 𝑇

– In general, column 𝑖 is 𝒃1
𝑇𝒂𝑖

𝑟 𝒃2
𝑇𝒂𝑖

𝑟 ⋯ 𝒃𝑛
𝑇𝒂𝑖

𝑟 𝑇

• Matrices are the same (note that for vectors 𝒙𝑇𝒚 = 𝒚𝑇𝒙)
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The identity matrix

• There is a special square matrix 𝑰 ∈ ℝ𝑛×𝑛 with 1’s on the 
diagonal and 0’s everywhere else:

𝑰 =

1 0 … 0
0 1 … 0
… … … …
0 0 … 1 

• We call 𝑰 the identity matrix

• Among other things, multiplication by 𝑰 does not modify a 
matrix

– i.e., for any 𝑨 ∈ ℝ𝑛×𝑛:
𝑨𝑰 = 𝑰𝑨 = 𝑨
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Symmetric Matrices

• A square matrix 𝑨 ∈ ℝ𝑛×𝑛 is symmetric if its values are 
symmetric about the diagonal, i.e.,

𝑨 =

𝑎11 𝑎21 … 𝑎𝑛1

𝑎21 𝑎22 … 𝑎𝑛2

… … … …
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

• Note that if 𝑨 is symmetric, then 𝑨 = 𝑨𝑇
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Notation

• I will use capital letters for random variables, e.g., 𝑋

• Vectors are in bold lowercase, e.g., 𝒙

– But random vectors will be uppercase bold, i.e., 𝑿

–When clear from context, capital bold letters will also 
indicate matrices, e.g., 𝑾

• I will use lowercase letters for sampled data points, e.g., 𝒙

• Subscripts typically indicate the example index in a dataset, 
e.g., 𝒙𝑖  is the 𝑖th example in the dataset

• When clear from context, a subscript will also denote the 
specific element in a vector

– E.g., 𝑥𝑖  is the 𝑖th element of vector 𝒙
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Linearly Independent Vectors

• A sequence of vectors 𝒗1, … , 𝒗𝑘 is linearly dependent if there 
exist coefficients 𝑎1, … , 𝑎𝑘, not all zero, such that

𝑎1𝒗1 + ⋯ + 𝑎𝑘𝒗𝑘 = 𝟎

• For example, if 𝑎1 ≠ 0, then

𝒗1 = −
𝑎2

𝑎1
𝒗2 − ⋯ −

𝑎𝑘

𝑎1
𝒗𝑘

– i.e., 𝒗1 can be written as a linear combination of other 𝒗𝑖’s

• The 𝒗𝑖’s are linearly independent if there exist no such 𝑎𝑖’s

• Linear independence is a central concept in linear algebra

• For example, if each 𝒗𝑖 ∈ ℝ𝑘, then the 𝒗𝑖’s form a basis for ℝ𝑘

– Every other vector in ℝ𝑘 can be written as a linear 
combination of 𝒗1, … , 𝒗𝑘

13



Linear independence, examples

• Are the following vectors linear independent:
𝒙 = 1,2 , 𝒚 = 2,4

• No, because 𝒚 = 2𝒙

𝒙 = 1,0 , 𝒚 = [0,1]
• Yes, there is no way to express 𝒚 as a multiple of 𝒙

𝒙 = 1,2,3 , 𝒚 = 4,5,6 , 𝒛 = [5,7,9]
• No, because 𝒛 = 𝒙 + 𝒚
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Matrix Rank

• Suppose 𝑨 ∈ ℝ𝑚×𝑛

– i.e., 𝑨 consists of 𝑛 𝑚-dimensional columns

• The rank of 𝑨 is the maximal number of linearly independent 
columns in 𝑨

• A matrix 𝑨 is said to be full rank if its rank is equal to the 
number of columns

• Is 𝑨 =
1 2
3 4

 full rank?

– Yes, its columns are independent

• Is 𝑨 =
1 4 5
2 5 7
3 6 9 

full rank?

–No. 𝑨 has a rank of 2
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Matrix Inverse

• Let 𝑨 ∈ ℝ𝑛×𝑛 be a square matrix

• If 𝑨 is full rank, then there exists a unique matrix 𝑩 ∈ ℝ𝑛×𝑛 
such that

𝑩𝑨 = 𝑰

–where 𝑰 is the identity matrix

–We say 𝑩 is the inverse of 𝑨, written 𝑨−1

• If 𝑨 is not full rank, the inverse does not exist
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Matrix Pseudo-Inverse

• Suppose 𝑨 is not square, i.e., 𝑨 ∈ ℝ𝑚×𝑛

–Assume first 𝑚 > 𝑛, i.e., 𝑨 is a tall matrix

• If 𝑨 is full rank, then 𝑨𝑇𝑨 is full rank (and square)

–However, 𝑨𝑨𝑇 is not!

• Consider the matrix 𝑨𝑇𝑨
−1

𝑨𝑇𝑨

–What is it equal to?

–We say 𝑨𝑇𝑨
−1

𝑨𝑇 is the pseudo-inverse of 𝑨

– Called “pseudo-inverse” because it is not unique

• What about the case 𝑚 < 𝑛?

– The pseudo-inverse is 𝑨𝑇 𝑨𝑨𝑇 −1
, on the right:

𝑨𝑨𝑇 𝑨𝑨𝑇 −1
= 𝑰 17



Eigenvectors and Eigenvalues

• Suppose we are given a square matrix 𝑨 ∈ ℝ𝑛×𝑛

• A vector 𝒗 is said to be an eigenvector of 𝑨 if
𝑨𝒗 = 𝜆𝒗

–where 𝜆 ∈ ℝ is a corresponding eigenvalue

• If the matrix 𝑨 is full rank, it has 𝑛 eigenvectors, 𝒗𝑖

–And 𝑛 corresponding eigenvalues, 𝜆𝑖

– If eigenvalues are not repeated, the eigenvectors form a 
basis in ℝ𝑛

– i.e., any 𝒙 ∈ ℝ𝑛 can be written as a linear combination
𝒙 = 𝑐1𝒗1 + ⋯ + 𝑐𝑛𝒗𝑛

• There may be repeated eigenvalues

• 𝑨 is full rank iff 𝜆𝑖 ≠ 0 for all 𝑖
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Eigenvectors and Eigenvalues, cont’d

• Suppose a square matrix 𝑨 has eigenvalues 𝜆1, … , 𝜆𝑛

• What are the eigenvalues of 𝑨2?
𝜆1

2, … , 𝜆𝑛
2

• Take any eigenvalue 𝜆𝑖 and corresponding eigenvector 𝒗𝑖

𝑨𝑨𝒗𝑖 = 𝑨𝜆𝑖𝒗𝑖

 = 𝜆𝑖
2𝒗𝑖

• In general, the eigenvalues of 𝑨𝑘 are
𝜆1

𝑘, … , 𝜆𝑛
𝑘

– The eigenvectors are the same as those of 𝑨
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Eigenvectors and Eigenvalues Examples

• Consider the identity matrix

𝑰 =
1 0 0
0 1 0
0 0 1

• What are the eigenvectors of 𝑰?

– Trick question. Every vector is an eigenvector of 𝑰

– E.g., unit vectors 𝒆1 = 1 0 0 𝑇, 𝒆2 = 0 1 0 𝑇 , 𝒆3 = 0 0 1 𝑇

• How about the eigenvalues?
𝜆1 = 𝜆2 = 𝜆3 = 1

• Given a vector 𝒗 = 𝑣1 𝑣2 𝑣3
𝑇, how do we express 𝒗 as a 

linear combination of the unit vectors?
𝒗 = 𝑣1𝒆1 + 𝑣2𝒆2 + 𝑣3𝒆3
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Linear Systems

• Consider a general discrete-time linear system
𝒙𝑘 = 𝑨𝒙𝑘−1

• i.e.,
𝒙𝑘 = 𝑨𝑘𝒙0

– for some initial 𝒙0

• Suppose 𝑨 has non-repeated eigenvalues

– Recall that the eigenvectors of 𝑨 form a basis in ℝ𝑛, so
𝒙0 = 𝑐1𝒗1 + ⋯ + 𝑐𝑛𝒗𝑛

• Then

𝑨𝑘𝒙0 = 𝑐1𝜆1
𝑘𝒗1 + ⋯ + 𝑐𝑛𝜆𝑛

𝑘 𝒗𝑛

• Under what conditions does 𝒙𝑘 converge to 𝟎?

– need 𝜆𝑖 < 1, for all 𝑖
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