Linear Algebra Intro

Linear Algebra Intro

- Linear algebra is one of the main building blocks of modern RL and dynamical systems
 - We will cover important properties as we go but we won't have time to go in much depth
- A scalar $x \in \mathbb{R}$ is just a real number
- A p-dimensional vector $x \in \mathbb{R}^p$ is a list of p scalars, i.e.,

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_p \end{bmatrix}$$

- where x_i denotes the *i*th element of x

• A $p \times n$ matrix $A \in \mathbb{R}^{p \times n}$ consists of n p-dimensional vectors, i.e.,

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{p1} & a_{p2} & \dots & a_{pn} \end{bmatrix}$$

– where a_{ij} denotes the element in row i and column j

- -where a_i denotes the *i*th column vector of A
- -where a_i^r denotes the *i*th row vector of **A**
- Why do we need matrices?
 - Store data
 - Represent multi-dimensional data (e.g., images)
 - Perform operations in multiple dimensions (e.g., rotation)

Linear Algebra Intro, cont'd

- Vectors are by default represented as columns
- The transpose of a vector $x \in \mathbb{R}^p$, written x^T , is a row vector: $x^T = \begin{bmatrix} x_1 & x_2 & \dots & x_p \end{bmatrix}$
- Similarly, the transpose of a matrix A is

$$\boldsymbol{A}^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{p1} \\ a_{12} & a_{22} & \dots & a_{p2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{pn} \end{bmatrix}$$

- or, equivalently

$$oldsymbol{A}^T = egin{bmatrix} oldsymbol{a}_1^T \ oldsymbol{a}_2^T \ oldsymbol{...} \ oldsymbol{a}_n^T \end{bmatrix}$$

Multiplication

- The inner product of two vectors $x, y \in \mathbb{R}^p$ is $x^T y = x_1 y_1 + x_2 y_2 + \dots + x_p y_p$
 - Note they must have the same dimension
 - The inner product is a scalar
- The product of two matrices $A \in \mathbb{R}^{p \times n}$ and $B \in \mathbb{R}^{n \times m}$ is the inner product of all of A's rows with all of B's columns:

$$\boldsymbol{AB} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ a_{p1} & \dots & a_{pn} \end{bmatrix} \begin{bmatrix} b_{11} & \dots & b_{1m} \\ \dots & \dots & \dots \\ b_{n1} & \dots & b_{nm} \end{bmatrix} = \begin{bmatrix} c_{11} & \dots & c_{1m} \\ \dots & \dots & \dots \\ c_{p1} & \dots & c_{pm} \end{bmatrix}$$

- Note that dimensions must match!
- What are the dimensions of the output matrix?

 $p \times m$

$$\boldsymbol{AB} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

 $= \begin{bmatrix} 5+14 & 6+16 \\ 15+28 & 18+32 \end{bmatrix}$

$$=\begin{bmatrix} 19 & 22\\ 43 & 50 \end{bmatrix}$$

• Note that in general $AB \neq BA$

Multiplication, cont'd

- Note that for any matrix A and vector x, the following is true $Ax = x_1a_1 + \cdots + x_na_n$
- Let $\boldsymbol{b} = A\boldsymbol{x}$

$$\boldsymbol{b} = \boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ a_{p1} & \dots & a_{pn} \end{bmatrix} \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix}$$

- What is
$$b_1$$
?

$$\begin{bmatrix}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\
0 \\
\dots \\
0
\end{bmatrix}$$

Multiplication, cont'd

- Note that for any matrix A and vector x, the following is true $Ax = x_1a_1 + \cdots + x_na_n$
- Let $\boldsymbol{b} = A\boldsymbol{x}$

$$\boldsymbol{b} = \boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ a_{p1} & \dots & a_{pn} \end{bmatrix} \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix}$$

– What about the rest?

$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots \\ a_{p1}x_1 + a_{p2}x_2 + \dots + a_{pn}x_n \end{bmatrix} = x_1a_1 + \dots + x_na_n$$

Transpose Property

Note that

$$(\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T$$

– Why?

$$\boldsymbol{AB} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ a_{p1} & \dots & a_{pn} \end{bmatrix} \begin{bmatrix} b_{11} & \dots & b_{1m} \\ \dots & \dots & \dots \\ b_{n1} & \dots & b_{nm} \end{bmatrix}$$

- First column of $(\boldsymbol{A}\boldsymbol{B})^T$ is $[\boldsymbol{a}_1^r \boldsymbol{b}_1 \ \boldsymbol{a}_1^r \boldsymbol{b}_2 \cdots \boldsymbol{a}_1^r \boldsymbol{b}_n]^T$ - In general, column *i* is $[\boldsymbol{a}_i^r \boldsymbol{b}_1 \ \boldsymbol{a}_i^r \boldsymbol{b}_2 \cdots \boldsymbol{a}_i^r \boldsymbol{b}_n]^T$
- First column of $\boldsymbol{B}^T \boldsymbol{A}^T \left[\boldsymbol{b}_1^T \boldsymbol{a}_1^T \ \boldsymbol{b}_2^T \boldsymbol{a}_1^T \cdots \boldsymbol{b}_n^T \boldsymbol{a}_1^T \right]^T$

- In general, column *i* is $[\boldsymbol{b}_1^T \boldsymbol{a}_i^r \ \boldsymbol{b}_2^T \boldsymbol{a}_i^r \cdots \boldsymbol{b}_n^T \boldsymbol{a}_i^r]^T$

• Matrices are the same (note that for vectors $x^T y = y^T x$)

The identity matrix

• There is a special square matrix $I \in \mathbb{R}^{n \times n}$ with 1's on the diagonal and 0's everywhere else:

$$\boldsymbol{I} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

- We call *I* the identity matrix
- Among other things, multiplication by *I* does not modify a matrix

-i.e., for any
$$A \in \mathbb{R}^{n \times n}$$
:

$$AI = IA = A$$

Symmetric Matrices

• A square matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if its values are symmetric about the diagonal, i.e.,

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{21} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

• Note that if A is symmetric, then $A = A^T$

Notation

- I will use capital letters for random variables, e.g., X
- Vectors are in bold lowercase, e.g., x
 - But random vectors will be uppercase bold, i.e., X
 - When clear from context, capital bold letters will also indicate matrices, e.g., W
- I will use lowercase letters for sampled data points, e.g., x
- Subscripts typically indicate the example index in a dataset,
 e.g., x_i is the *i*th example in the dataset
- When clear from context, a subscript will also denote the specific element in a vector
 - $-E.g., x_i$ is the *i*th element of vector x

Linearly Independent Vectors

• A sequence of vectors $v_1, ..., v_k$ is *linearly dependent* if there exist coefficients $a_1, ..., a_k$, not all zero, such that

$$a_1 \boldsymbol{v}_1 + \dots + a_k \boldsymbol{v}_k = \boldsymbol{0}$$

• For example, if $a_1 \neq 0$, then

i.e.,
$$v_1$$
 can be written as a linear combination of other v_i 's

 $\boldsymbol{v}_1 = -\frac{a_2}{2}\boldsymbol{v}_2 - \cdots - \frac{a_k}{2}\boldsymbol{v}_k$

- The v_i 's are *linearly independent* if there exist no such a_i 's
- Linear independence is a central concept in linear algebra
- For example, if each $\boldsymbol{v}_i \in \mathbb{R}^k$, then the \boldsymbol{v}_i 's form a basis for \mathbb{R}^k
 - Every other vector in \mathbb{R}^k can be written as a linear combination of v_1, \ldots, v_k

• Are the following vectors linear independent:

$$x = [1,2], y = [2,4]$$

- No, because y = 2x x = [1,0], y = [0,1]
 Yes, there is no way to express y as a multiple of
- Yes, there is no way to express y as a multiple of x = [1,2,3], y = [4,5,6], z = [5,7,9]

• No, because
$$z = x + y$$

Matrix Rank

- Suppose $A \in \mathbb{R}^{m imes n}$
 - -i.e., A consists of n m-dimensional columns
- The *rank* of *A* is the maximal number of linearly independent columns in *A*
- A matrix *A* is said to be full rank if its rank is equal to the number of columns

• Is
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 full rank?
- Yes, its columns are independent
• Is $A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9 \end{bmatrix}$ full rank?
- No. A has a rank of 2

Matrix Inverse

- Let $A \in \mathbb{R}^{n \times n}$ be a square matrix
- If A is full rank, then there exists a unique matrix $B \in \mathbb{R}^{n \times n}$ such that

$$BA = I$$

- where *I* is the identity matrix
- We say **B** is the inverse of **A**, written A^{-1}
- If *A* is not full rank, the inverse does not exist

- Suppose A is not square, i.e., A ∈ ℝ^{m×n}
 Assume first m > n, i.e., A is a tall matrix
- If A is full rank, then A^TA is full rank (and square)
 However, AA^T is not!
- Consider the matrix $(A^T A)^{-1} A^T A$
 - What is it equal to?
 - -We say $(A^T A)^{-1} A^T$ is the pseudo-inverse of A
 - Called "pseudo-inverse" because it is not unique
- What about the case m < n?

- The pseudo-inverse is
$$A^T (AA^T)^{-1}$$
, on the right:

- Suppose we are given a square matrix $A \in \mathbb{R}^{n imes n}$
- A vector \boldsymbol{v} is said to be an eigenvector of \boldsymbol{A} if $\boldsymbol{A} \boldsymbol{v} = \lambda \boldsymbol{v}$

- where $\lambda \in \mathbb{R}$ is a corresponding eigenvalue

- If the matrix $oldsymbol{A}$ is full rank, it has n eigenvectors, $oldsymbol{v}_i$
 - -And n corresponding eigenvalues, λ_i
 - If eigenvalues are not repeated, the eigenvectors form a basis in \mathbb{R}^n
 - i.e., any $x \in \mathbb{R}^n$ can be written as a linear combination

$$\boldsymbol{x} = c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n$$

- There may be repeated eigenvalues
- **A** is full rank iff $\lambda_i \neq 0$ for all i

Eigenvectors and Eigenvalues, cont'd

- Suppose a square matrix A has eigenvalues $\lambda_1, ..., \lambda_n$
- What are the eigenvalues of A^2 ? $\lambda_1^2, \dots, \lambda_n^2$
- Take any eigenvalue λ_i and corresponding eigenvector \boldsymbol{v}_i $AA\boldsymbol{v}_i = A\lambda_i \boldsymbol{v}_i$ $= \lambda_i^2 \boldsymbol{v}_i$
- In general, the eigenvalues of A^k are $\lambda_1^k, \dots, \lambda_n^k$

– The eigenvectors are the same as those of A

• Consider the identity matrix

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- What are the eigenvectors of *I*?
 - Trick question. Every vector is an eigenvector of I

-E.g., unit vectors $\boldsymbol{e}_1 = [1 \ 0 \ 0]^T$, $\boldsymbol{e}_2 = [0 \ 1 \ 0]^T$, $\boldsymbol{e}_3 = [0 \ 0 \ 1]^T$

• How about the eigenvalues?

$$\lambda_1 = \lambda_2 = \lambda_3 = 1$$

• Given a vector $\boldsymbol{v} = [v_1 \ v_2 \ v_3]^T$, how do we express \boldsymbol{v} as a linear combination of the unit vectors?

$$\boldsymbol{v} = v_1 \boldsymbol{e}_1 + v_2 \boldsymbol{e}_2 + v_3 \boldsymbol{e}_3$$

Linear Systems

$$\boldsymbol{x}_k = \boldsymbol{A}\boldsymbol{x}_{k-1}$$

• i.e.,

$$\boldsymbol{x}_k = \boldsymbol{A}^k \boldsymbol{x}_0$$

– for some initial x_0

- Suppose *A* has non-repeated eigenvalues
 - Recall that the eigenvectors of A form a basis in \mathbb{R}^n , so

$$\boldsymbol{x}_0 = c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n$$

• Then

$$\boldsymbol{A}^{k}\boldsymbol{x}_{0} = c_{1}\lambda_{1}^{k}\boldsymbol{v}_{1} + \dots + c_{n}\lambda_{n}^{k}\boldsymbol{v}_{n}$$

• Under what conditions does x_k converge to **0**? -need $|\lambda_i| < 1$, for all i

