
Policy Gradient Theorem, REINFORCE Algorithm

1

Reading

• Reinforcement Learning

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapters 13.1-13.3

• David Silver lecture on Policy Gradients

– https://www.youtube.com/watch?v=KHZVXao4qXs&t=3s

2

http://www.incompleteideas.net/book/the-book-2nd.html

Overview

• In Q-learning, we select actions based on their 𝑞 values

• With policy gradient methods, the controller is just a function
that has no notion of 𝑞 values

–Of course, during training, it will be trained to select actions
maximize 𝑞 values

• Policy gradient methods are more flexible than standard Q-
learning for a number of reasons

– Can handle partially observable MDPs
• No need to estimate 𝑞 values or even fully observe states

– Can handle continuous control systems

• At the same time, training with policy gradient methods is very
unstable

3

Policy Gradients vs Q-learning

• In Q-learning, we have one function (approximation)

–We have an estimate 𝑞(𝑠, 𝑎) for each 𝑠, 𝑎 pair

– Those estimates define a deterministic policy

• In policy gradient methods, we have one function to estimate
action values and a separate function for the policy

–We update the two separately (using gradients)

– Even if the Q approximations are (temporarily) wrong, the
policy may not be affected much since it’s slowly updated
according to its learning rate

4

Finite-MDP Setup

• The finite MDP setup is the same as before

–An MDP is the usual 5-tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝜂)

• The main difference is that now the policy does not depend on
the 𝑞-values:

– recall that 𝜋(𝑎|𝑠; 𝜽) is the probability that action 𝑎 is taken
from state 𝑠

– the parameters 𝜽 are determined during training

– looks the same as before except there is no explicit
computation of 𝑞-values

5

Policy Example

• Can encode a probabilistic policy, with parameters 𝜽, using
softmax

–How?
• Let the current state be 𝑠

• To compute the probability of action 𝑎, we need to first encode the
state and the action somehow

• Let 𝒙(𝑠, 𝑎) be a one-hot encoding of all states and actions

• Then the probability of taking action 𝑎 from state 𝑠 is:

𝜋 𝑎 𝑠; 𝜽 =
𝑒𝜽𝑇𝒙(𝑠,𝑎)

σ𝑎′ 𝑒𝜽𝑇𝒙(𝑠,𝑎′)

• The encoding 𝒙(𝑠, 𝑎) can be any encoding, including non-linear
functions of the states and actions

• Of course, 𝜋 may also be arbitrarily complex (wink, wink)
6

Partial Observability

• Consider this short corridor example

–Actions are left/right, but their effect is reversed in state 2

– Suppose features are 𝒙 𝑠, 𝑟𝑖𝑔ℎ𝑡 = 1 0 , 𝒙 𝑠, 𝑙𝑒𝑓𝑡 = 0 1
• Same features regardless of the value of 𝑠

• You don’t see which state you’re in effectively

– Reward of -1 after each step

• What is the optimal policy (without knowing where you are)?

–Need to make two rights and a left
• So cannot be deterministic

– Turns out a coin flip with a slight bias to the right is optimal
• More next 7

Partial Observability, cont’d

• What would an action-value method do?

– If 𝑄 1 0 > 𝑄 [0 1] , always go right
• Or with 𝜖-greedy probability

– Cannot learn different policies per state
• At best, take correct action w.p. 𝜖

• Policy gradient method will learn a better probability than 𝜖-
greedy

8

Policy Gradient Setup

• Unlike Q-learning, we now have a policy that is learned
separately from the 𝑞-values

• The policy 𝜋 is defined in the same way as before:
𝜋 𝑎 𝑠; 𝜽 = ℙ𝜋[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠]

• The state values, 𝑣𝜋(𝑠), and action values, 𝑞𝜋(𝑠, 𝑎), are
defined in the same way as before

– The main difference is that the policy is now trained
separately from the value estimates

–We are now directly training the policy to maximize the
value of each state

9

Optimization Function

• What function should the policy optimize?

–Maximize the value 𝑣𝜋(𝑠) for all 𝑠

–What is an issue with this?
• Don’t know the real 𝑣𝜋

• Also, 𝑣𝜋 is policy-specific, so it changes every time we change 𝜋

– For now, assume we know 𝑣𝜋(𝑠) for each state 𝑠
• How do we train 𝜋?

• Suppose the policy 𝜋 is parameterized by 𝜽 (written 𝜋𝜽)

– The policy can be any function, as usual
• E.g., a neural network’s parameters

• When clear from context, we’ll just write 𝜋

• Only requirement is that it’s differentiable w.r.t 𝜽

10

Optimization Function, cont’d

• For now, assume we know 𝑣𝜋(𝑠) for each state 𝑠

• Suppose the policy 𝜋 is parameterized by 𝜽 (written 𝜋𝜽)

• We want to pick the 𝜽 that maximize 𝑣𝜋𝜽
(𝑠) for all 𝑠

– This would be the optimal policy within the family of
functions we are considering
• E.g., all NNs with some architecture, all softmax functions

• Even if we assume we know 𝑣𝜋𝜽
(𝑠), we can’t just pick the

optimal 𝜽 usually (why?)

– Function is non-convex in 𝜽, especially if 𝜋 is a neural net

–What is our usual approach in this case?
• Gradient descent!

• In this case, we call it a policy gradient
11

Policy Gradients

• Look at policy gradient (w.r.t. 𝜽) in finite state case:

∇𝑣𝜋 𝑠 = ∇ ෍

𝑎

𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

= ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 + 𝜋 𝑎 𝑠 ∇𝑞𝜋(𝑎, 𝑠)

= ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 +

 +𝜋 𝑎 𝑠 ∇ ෍

𝑠′

𝑃 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑣𝜋 𝑠′

 = ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 + 𝛾𝜋 𝑎 𝑠 ෍

𝑠′

𝑃 𝑠, 𝑎, 𝑠′ ∇𝑣𝜋 𝑠′

• Notice that ∇𝑣𝜋 appears recursively

12

Policy Gradients, cont’d

∇𝑣𝜋 𝑠 = ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 + 𝛾𝜋 𝑎 𝑠 ෍

𝑠′

𝑃 𝑠, 𝑎, 𝑠′

 ෍

𝑎′

∇𝜋 𝑎′ 𝑠′ 𝑞𝜋 𝑠′, 𝑎′ + 𝛾𝜋 𝑎′ 𝑠′ ෍

𝑠′′

𝑃 𝑠′, 𝑎′, 𝑠′′ ∇𝑣𝜋 𝑠′′

• Notation:

• ℙ[𝑠 → 𝑥, 𝑘, 𝜋] is the probability that state 𝑥 is visited from state
𝑠 after 𝑘 steps (following policy 𝜋)

• ℙ 𝑠 → 𝑥, 0, 𝜋 = 1 if 𝑠 = 𝑥 and 0, otherwise

• ℙ 𝑠 → 𝑥, 1, 𝜋 = σ𝑎 𝜋 𝑎 𝑠 𝑃 𝑠, 𝑎, 𝑥

• ℙ 𝑠 → 𝑥, 2, 𝜋 = σ𝑎 𝜋 𝑎 𝑠 σ𝑠′ 𝑃 𝑠, 𝑎, 𝑠′ σ𝑎′ 𝜋 𝑎′ 𝑠′ 𝑃 𝑠′, 𝑎′, 𝑥

13

Policy Gradients, cont’d

∇𝑣𝜋 𝑠 = ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 + 𝛾𝜋 𝑎 𝑠 ෍

𝑠′

𝑃 𝑠, 𝑎, 𝑠′

 ෍

𝑎′

∇𝜋 𝑎′ 𝑠′ 𝑞𝜋 𝑠′, 𝑎′ + 𝛾𝜋 𝑎′ 𝑠′ ෍

𝑠′′

𝑃 𝑠′, 𝑎′, 𝑠′′ ∇𝑣𝜋 𝑠′′

• Look at first term:

෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 =

 = ෍

𝑥∈𝑆

ℙ 𝑠 → 𝑥, 0, 𝜋 ෍

𝑎

∇𝜋 𝑎 𝑥 𝑞𝜋 𝑥, 𝑎

– since ℙ 𝑠 → 𝑥, 0, 𝜋 = 1 only when 𝑥 = 𝑠

14

Policy Gradients, cont’d

∇𝑣𝜋 𝑠 = ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 + 𝛾𝜋 𝑎 𝑠 ෍

𝑠′

𝑃 𝑠, 𝑎, 𝑠′

 ෍

𝑎′

∇𝜋 𝑎′ 𝑠′ 𝑞𝜋 𝑠′, 𝑎′ + 𝛾𝜋 𝑎′ 𝑠′ ෍

𝑠′′

𝑃 𝑠′, 𝑎′, 𝑠′′ ∇𝑣𝜋 𝑠′′

• Look at second term (rename 𝑠′ to 𝑥):

𝛾 ෍

𝑎

𝜋 𝑎 𝑠 ෍

𝑥

𝑃 𝑠, 𝑎, 𝑥 ෍

𝑎′

∇𝜋 𝑎′ 𝑥 𝑞𝜋 𝑥, 𝑎′ =

 = 𝛾 ෍

𝑥

෍

𝑎′

∇𝜋 𝑎′ 𝑥 𝑞𝜋 𝑥, 𝑎′ ෍

𝑎

𝜋 𝑎 𝑠 𝑃 𝑠, 𝑎, 𝑥

 = ෍

𝑥∈𝑆

ℙ 𝑠 → 𝑥, 1, 𝜋 ෍

𝑎′

∇𝜋 𝑎′ 𝑥 𝑞𝜋 𝑥, 𝑎′

15

Policy Gradients, cont’d

• Rewriting the policy gradient:

∇𝑣𝜋 𝑠 = ෍

𝑥∈𝑆

ℙ 𝑠 → 𝑥, 0, 𝜋 ෍

𝑎

∇𝜋 𝑎 𝑥 𝑞𝜋 𝑥, 𝑎 +

+𝛾 ෍

𝑥

ℙ 𝑠 → 𝑥, 1, 𝜋 ෍

𝑎

∇𝜋 𝑎 𝑥 𝑞𝜋 𝑥, 𝑎

 + ෍

𝑎

𝛾𝜋 𝑎 𝑠 ෍

𝑠′

𝑃 𝑠, 𝑎, 𝑠′ ෍

𝑎′

𝛾𝜋 𝑎′ 𝑠′ ෍

𝑠′′

𝑃 𝑠′, 𝑎′, 𝑠′′ ∇𝑣𝜋 𝑠′′

• We can continue the expansion in the same fashion for future
steps

16

Policy Gradients, cont’d

∇𝑣𝜋 𝑠0 = ෍

𝑠∈𝒮

෍

𝑘=0

∞

𝛾𝑘ℙ 𝑠0 → 𝑠, 𝑘, 𝜋 ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

• We can treat the sum of probabilities as the discounted
aggregate state visitation “probability”

– Call it 𝑑𝜋

– Similar to the stationary distribution 𝝁𝜋 but not the same
𝝁𝜋𝑷 = 𝝁𝜋

• What probability does 𝝁𝜋 capture?
lim

𝑘→∞
ℙ 𝑠0 → 𝑠, 𝑘, 𝜋

• If you want to treat 𝑑𝜋 as a real probability distribution, need
to normalize it so that it sums up to 1

17

Policy Gradients, cont’d

∇𝑣𝜋 𝑠0 = ෍

𝑠∈𝒮

෍

𝑘=0

∞

𝛾𝑘ℙ 𝑠0 → 𝑠, 𝑘, 𝜋 ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

• We can treat the sum of probabilities as the discounted
aggregate state visitation probability

– Call it 𝑑𝜋

• So, finally

∇𝑣𝜋 𝑠0 = ෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

• This is the policy gradient theorem!

–Note that we need to know 𝑞𝜋 for each (𝑠, 𝑎) pair

18

Using the policy gradient theorem

• To improve a given a policy 𝜋𝜽, we observe the next state-
action-reward pair, and compute the gradient

• Note that we can think of the gradient as an expectation

∇𝑣𝜋 𝑠0 = ෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

 = 𝔼𝑑𝜋
෍

𝑎

∇𝜋 𝑎 𝑆𝑡 𝑞𝜋 𝑆𝑡 , 𝑎

– Technically need to normalize 𝑑𝜋
• That’s just a constant which would be multiplied by the learning

rate anyway

• How do we approximate the expectation using real data?

–Average over real data 19

Using the policy gradient theorem, cont’d

• Note that we can think of the gradient as an expectation

∇𝑣𝜋 𝑠0 = 𝔼𝑑𝜋
෍

𝑎

∇𝜋 𝑎 𝑆𝑡 𝑞𝜋 𝑆𝑡 , 𝑎

• How do we approximate the expectation using real data?

–Average over real data

– For each state 𝑠, compute gradient over all actions:

෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

–Any issues with this?

–Need to know all 𝑞𝜋 𝑠, 𝑎

20

REINFORCE algorithm

• The benefit of the policy gradient theorem is that we can
compute gradients w.r.t. 𝜽 and improve the policy

–As long as we have good estimates ො𝑞 of the real 𝑞 function

–We’ll discuss several ways to get ො𝑞

• We could directly instantiate a gradient-descent algorithm:

𝜽𝑘+1 = 𝜽𝑘 + 𝛼 ෍

𝑎

ො𝑞 𝑆𝑡, 𝑎 ∇𝜋(𝑎|𝑆𝑡; 𝜽)

• What is the issue with this approach?

–Updates the policy for all actions simultaneously
• Each data point is for one action only

– Requires good estimate of all action-values

–May require a lot of data to converge
21

REINFORCE algorithm, cont’d

• To avoid needing an estimate for each action value, one could
modify the policy gradient theorem

– Could use the return 𝐺𝑡 directly

– To simplify the math, focus on finite-horizon case
∇𝑣𝜋 𝑠 = ∇𝔼𝜋 𝐺1 𝑆1 = 𝑠

= ෍

𝑡𝑟=(𝑆1,𝐴1,𝑅1…)

∇ℙ𝜋 𝑡𝑟 𝑆1 = 𝑠 𝔼𝜋 𝐺1 𝑡𝑟

 = ෍

𝑡𝑟= 𝑆1,𝐴1,𝑅1…

ℙ𝜋 𝑡𝑟 𝑆1 = 𝑠 ∇log ℙ𝜋 𝑡𝑟 𝑆1 = 𝑠 𝔼𝜋 𝐺1 𝑡𝑟

 = ෍

𝑡𝑟= 𝑆1,𝐴1,𝑅1…

ℙ𝜋 𝑡𝑟 𝑆1 = 𝑠 ∇ log ෑ

𝑡=1

𝑇

𝜋 𝐴𝑡 𝑆𝑡 𝑃 𝑆𝑡 , 𝐴𝑡, 𝑆𝑡+1 𝔼𝜋 𝐺1 𝑡𝑟

 = ෍

𝑡𝑟

ℙ𝜋 𝑡𝑟 𝑆1 = 𝑠 ෍

𝑡

∇ log 𝜋 𝐴𝑡 𝑆𝑡 + ∇ log 𝑃 𝑆𝑡 , 𝐴𝑡, 𝑆𝑡+1 𝔼𝜋 𝐺1 𝑡𝑟

= 𝔼𝜋 σ𝑡=1
𝑇 ∇ log 𝜋 𝐴𝑡 𝑆𝑡 𝐺1 𝑆1 = 𝑠 22

(log trick)

REINFORCE algorithm, cont’d

• Final form for the gradient is

∇𝑣𝜋 𝑠 = 𝔼𝜋 σ𝑡=𝑘
𝑇 ∇ log 𝜋 𝐴𝑡 𝑆𝑡 𝐺𝑘 𝑆𝑘 = 𝑠

– Could apply the gradient after any step 𝑘

• Once we have the gradient, update weights as usual
𝜽′ = 𝜽 + 𝛼∇𝜽𝑣𝜋𝜽

𝑠

–After visiting state 𝑠

– This is similar to the Monte Carlo learning method where we
wait until the end of the episode to observe 𝐺𝑡

23

Partial Observability, cont’d

• What would an action-value method do?

– If 𝑄 1 0 > 𝑄 [0 1] , always go right
• Or with 𝜖-greedy probability

– Cannot learn different policies per state
• At best, take correct action w.p. 𝜖

• Policy gradient method learns a better policy than 𝜖-greedy

– Suppose we use softmax policy 𝜋 [1 0] =
𝑒𝜃1⋅1+𝜃2⋅0

𝑒𝜃1+𝑒𝜃2

24

Issues with REINFORCE

• Can you spot any issues with this iteration?

∇𝑣𝜋 𝑠 = 𝔼𝜋 σ𝑡=𝑘
𝑇 ∇ log 𝜋 𝐴𝑡 𝑆𝑡 𝐺𝑘 𝑆𝑘 = 𝑠

–How important is the magnitude of 𝐺𝑘?

– Turns out quite a bit – tasks have greatly varying returns

– Especially problematic if *good* runs have zero returns
• Gradient is 0!

• Vanilla REINFORCE has very large variance depending on 𝐺𝑘

• Next time we’ll discuss how to address this issue

25

	Slide 1: Policy Gradient Theorem, REINFORCE Algorithm
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Policy Gradients vs Q-learning
	Slide 5: Finite-MDP Setup
	Slide 6: Policy Example
	Slide 7: Partial Observability
	Slide 8: Partial Observability, cont’d
	Slide 9: Policy Gradient Setup
	Slide 10: Optimization Function
	Slide 11: Optimization Function, cont’d
	Slide 12: Policy Gradients
	Slide 13: Policy Gradients, cont’d
	Slide 14: Policy Gradients, cont’d
	Slide 15: Policy Gradients, cont’d
	Slide 16: Policy Gradients, cont’d
	Slide 17: Policy Gradients, cont’d
	Slide 18: Policy Gradients, cont’d
	Slide 19: Using the policy gradient theorem
	Slide 20: Using the policy gradient theorem, cont’d
	Slide 21: REINFORCE algorithm
	Slide 22: REINFORCE algorithm, cont’d
	Slide 23: REINFORCE algorithm, cont’d
	Slide 24: Partial Observability, cont’d
	Slide 25: Issues with REINFORCE

