# Policy Gradient Theorem, REINFORCE Algorithm

## Reading

Rensselaer

- Reinforcement Learning
  - -<u>http://www.incompleteideas.net/book/the-book-2nd.html</u>
  - Chapters 13.1-13.3
- David Silver lecture on Policy Gradients
  - https://www.youtube.com/watch?v=KHZVXao4qXs&t=3s

#### **Overview**

🕲 Rensselaer

- In Q-learning, we select actions based on their q values
- With policy gradient methods, the controller is just a function that has no notion of q values
  - Of course, during training, it will be trained to select actions maximize q values
- Policy gradient methods are more flexible than standard Qlearning for a number of reasons
  - Can handle partially observable MDPs
    - No need to estimate q values or even fully observe states
  - Can handle continuous control systems
- At the same time, training with policy gradient methods is very unstable



- In Q-learning, we have one function (approximation)
  - We have an estimate q(s, a) for each s, a pair
  - Those estimates define a deterministic policy
- In policy gradient methods, we have one function to estimate action values and a separate function for the policy
  - We update the two separately (using gradients)
  - Even if the Q approximations are (temporarily) wrong, the policy may not be affected much since it's slowly updated according to its learning rate



- The finite MDP setup is the same as before - An MDP is the usual 5-tuple  $(S, A, P, R, \eta)$
- The main difference is that now the policy does not depend on the *q*-values:
  - recall that  $\pi(a|s; \theta)$  is the probability that action a is taken from state s
  - the parameters  $\boldsymbol{\theta}$  are determined during training
  - -looks the same as before except there is no explicit computation of q-values

😰 Rensselaer

- Can encode a probabilistic policy, with parameters  $\boldsymbol{\theta}$ , using softmax
  - -How?
    - Let the current state be *s*
    - To compute the probability of action *a*, we need to first encode the state and the action somehow
    - Let x(s, a) be a one-hot encoding of all states and actions
    - Then the probability of taking action *a* from state *s* is:

$$\pi(a|s;\boldsymbol{\theta}) = \frac{e^{\boldsymbol{\theta}^T \boldsymbol{x}(s,a)}}{\sum_{a'} e^{\boldsymbol{\theta}^T \boldsymbol{x}(s,a')}}$$

- The encoding x(s, a) can be any encoding, including non-linear functions of the states and actions
- Of course,  $\pi$  may also be arbitrarily complex (wink, wink)

# **Partial Observability**

• Consider this short corridor example

- Actions are left/right, but their effect is reversed in state 2
- -Suppose features are  $\mathbf{x}(s, right) = [1 \ 0], \mathbf{x}(s, left) = [0 \ 1]$ 
  - Same features regardless of the value of s
  - You don't see which state you're in effectively
- Reward of -1 after each step
- What is the optimal policy (without knowing where you are)?
  - Need to make two rights and a left
    - So cannot be deterministic
  - Turns out a coin flip with a slight bias to the right is optimal
    - More next



# Partial Observability, cont'd

- What would an action-value method do?
  - If Q([1 0]) > Q([0 1]), always go right
    - Or with  $\epsilon$ -greedy probability
  - Cannot learn different policies per state
    - At best, take correct action w.p.  $\epsilon$
- Policy gradient method will learn a better probability than  $\epsilon\text{-}$  greedy









- Unlike Q-learning, we now have a policy that is learned separately from the *q*-values
- The policy  $\pi$  is defined in the same way as before:  $\pi(a|s; \theta) = \mathbb{P}_{\pi}[A_t = a|S_t = s]$
- The state values,  $v_{\pi}(s)$ , and action values,  $q_{\pi}(s, a)$ , are defined in the same way as before
  - The main difference is that the policy is now trained separately from the value estimates
  - We are now directly training the policy to maximize the value of each state



- What function should the policy optimize?
  - Maximize the value  $v_{\pi}(s)$  for all s
  - What is an issue with this?
    - Don't know the real  $v_{\pi}$
    - Also,  $v_{\pi}$  is policy-specific, so it changes every time we change  $\pi$
  - For now, assume we know  $v_{\pi}(s)$  for each state s
    - How do we train  $\pi$ ?
- Suppose the policy  $\pi$  is parameterized by  $\theta$  (written  $\pi_{\theta}$ )
  - The policy can be any function, as usual
    - E.g., a neural network's parameters
    - When clear from context, we'll just write  $\pi$
    - Only requirement is that it's differentiable w.r.t  $oldsymbol{ heta}$



- For now, assume we know  $v_{\pi}(s)$  for each state s
- Suppose the policy  $\pi$  is parameterized by  $\theta$  (written  $\pi_{\theta}$ )
- We want to pick the  $\theta$  that maximize  $v_{\pi_{\theta}}(s)$  for all s
  - This would be the optimal policy within the family of functions we are considering
    - E.g., all NNs with some architecture, all softmax functions
- Even if we assume we know  $v_{\pi_{\theta}}(s)$ , we can't just pick the optimal  $\theta$  usually (why?)
  - Function is non-convex in  $\boldsymbol{\theta}$ , especially if  $\pi$  is a neural net
  - What is our usual approach in this case?
    - Gradient descent!
    - In this case, we call it a policy gradient



• Look at policy gradient (w.r.t. θ) in finite state case:

$$\nabla v_{\pi}(s) = \nabla \left[ \sum_{a} \pi(a|s)q_{\pi}(s,a) \right]$$
  
=  $\sum_{a} \nabla \pi(a|s)q_{\pi}(s,a) + \pi(a|s)\nabla q_{\pi}(a,s)$   
=  $\sum_{a} \nabla \pi(a|s)q_{\pi}(s,a) + \pi(a|s)\nabla \sum_{s'} P(s,a,s')[R(s,a,s') + \gamma v_{\pi}(s')]$   
=  $\sum_{a} \nabla \pi(a|s)q_{\pi}(s,a) + \gamma \pi(a|s)\sum_{s'} P(s,a,s')\nabla v_{\pi}(s')$ 

• Notice that  $\nabla v_{\pi}$  appears recursively



$$\nabla v_{\pi}(s) = \sum_{a} \nabla \pi(a|s) q_{\pi}(s,a) + \gamma \pi(a|s) \sum_{s'} P(s,a,s') \left[ \sum_{a'} \nabla \pi(a'|s') q_{\pi}(s',a') + \gamma \pi(a'|s') \sum_{s''} P(s',a',s'') \nabla v_{\pi}(s'') \right]$$

- Notation:
- $\mathbb{P}[s \to x, k, \pi]$  is the probability that state x is visited from state s after k steps (following policy  $\pi$ )
  - $\mathbb{P}[s \to x, 0, \pi] = 1$  if s = x and 0, otherwise
  - $\mathbb{P}[s \to x, 1, \pi] = \sum_{a} \pi(a|s) P(s, a, x)$
  - $\mathbb{P}[s \to x, 2, \pi] = \sum_{a} \pi(a|s) \sum_{s'} P(s, a, s') \sum_{a'} \pi(a'|s') P(s', a', x)$



$$\nabla v_{\pi}(s) = \sum_{a} \nabla \pi(a|s) q_{\pi}(s,a) + \gamma \pi(a|s) \sum_{s'} P(s,a,s') \\ \left[ \sum_{a'} \nabla \pi(a'|s') q_{\pi}(s',a') + \gamma \pi(a'|s') \sum_{s''} P(s',a',s'') \nabla v_{\pi}(s'') \right]$$

• Look at first term:

$$\sum_{a} \nabla \pi(a|s) q_{\pi}(s, a) =$$

$$= \sum_{x \in S} \mathbb{P}[s \to x, 0, \pi] \sum_{a} \nabla \pi(a|x) q_{\pi}(x, a)$$
since  $\mathbb{P}[s \to x, 0, \pi] = 1$  only when  $x = s$ 



$$\nabla v_{\pi}(s) = \sum_{a} \nabla \pi(a|s) q_{\pi}(s,a) + \gamma \pi(a|s) \sum_{s'} P(s,a,s') \\ \left[ \sum_{a'} \nabla \pi(a'|s') q_{\pi}(s',a') + \gamma \pi(a'|s') \sum_{s''} P(s',a',s'') \nabla v_{\pi}(s'') \right]$$

• Look at second term (rename s' to x):

$$\gamma \sum_{a} \pi(a|s) \sum_{x} P(s, a, x) \left[ \sum_{a'} \nabla \pi(a'|x) q_{\pi}(x, a') \right] =$$
$$= \gamma \sum_{x} \left[ \sum_{a'} \nabla \pi(a'|x) q_{\pi}(x, a') \right] \sum_{a} \pi(a|s) P(s, a, x)$$
$$= \sum_{x \in S} \mathbb{P}[s \to x, 1, \pi] \left[ \sum_{a'} \nabla \pi(a'|x) q_{\pi}(x, a') \right]$$

Policy Gradients, cont'd



• Rewriting the policy gradient:

$$\begin{aligned} \nabla v_{\pi}(s) &= \sum_{x \in S} \mathbb{P}[s \to x, 0, \pi] \sum_{a} \nabla \pi(a|x) q_{\pi}(x, a) + \\ &+ \gamma \sum_{x} \mathbb{P}[s \to x, 1, \pi] \sum_{a} \nabla \pi(a|x) q_{\pi}(x, a) \\ &+ \sum_{a} \gamma \pi(a|s) \sum_{s'} P(s, a, s') \left[ \sum_{a'} \gamma \pi(a'|s') \sum_{s''} P(s', a', s'') \nabla v_{\pi}(s'') \right] \end{aligned}$$

• We can continue the expansion in the same fashion for future steps



$$\nabla v_{\pi}(s_0) = \sum_{s \in \mathcal{S}} \sum_{k=0}^{\infty} \gamma^k \mathbb{P}[s_0 \to s, k, \pi] \sum_a \nabla \pi(a|s) q_{\pi}(s, a)$$

- We can treat the sum of probabilities as the discounted aggregate state visitation "probability"
  - Call it  $d_{\pi}$
  - Similar to the stationary distribution  $\mu_{\pi}$  but not the same

$$\boldsymbol{\mu}_{\pi}\boldsymbol{P}=\boldsymbol{\mu}_{\pi}$$

- What probability does  $\mu_{\pi}$  capture?  $\lim_{k \to \infty} \mathbb{P}[s_0 \to s, k, \pi]$
- If you want to treat  $d_{\pi}$  as a real probability distribution, need to normalize it so that it sums up to 1



$$\nabla v_{\pi}(s_0) = \sum_{s \in \mathcal{S}} \sum_{k=0}^{\infty} \gamma^k \mathbb{P}[s_0 \to s, k, \pi] \sum_a \nabla \pi(a|s) q_{\pi}(s, a)$$

- We can treat the sum of probabilities as the discounted aggregate state visitation probability
  - Call it  $d_{\pi}$
- So, finally

$$\nabla v_{\pi}(s_0) = \sum_{s} d_{\pi}(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s,a)$$

• This is the **policy gradient theorem**!

-Note that we need to know  $q_{\pi}$  for each (s, a) pair



- To improve a given a policy  $\pi_{\theta}$ , we observe the next stateaction-reward pair, and compute the gradient
- Note that we can think of the gradient as an expectation

$$\nabla v_{\pi}(s_0) = \sum_{s} d_{\pi}(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s,a)$$
$$= \mathbb{E}_{d_{\pi}} \left[ \sum_{a} \nabla \pi(a|S_t) q_{\pi}(S_t,a) \right]$$

- Technically need to normalize  $d_\pi$ 
  - That's just a constant which would be multiplied by the learning rate anyway
- How do we approximate the expectation using real data?
   Average over real data

Using the policy gradient theorem, cont'd



• Note that we can think of the gradient as an expectation

$$\nabla v_{\pi}(s_0) = \mathbb{E}_{d_{\pi}} \left[ \sum_{a} \nabla \pi(a|S_t) q_{\pi}(S_t, a) \right]$$

- How do we approximate the expectation using real data?
  - Average over real data
  - For each state *s*, compute gradient over all actions:

$$\sum_{a} \nabla \pi(a|s) q_{\pi}(s,a)$$

- Any issues with this?
- Need to know all  $q_{\pi}(s, a)$



- The benefit of the policy gradient theorem is that we can compute gradients w.r.t. θ and improve the policy
  - As long as we have good estimates  $\hat{q}$  of the real q function
  - We'll discuss several ways to get  $\hat{q}$
- We could directly instantiate a gradient-descent algorithm:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \alpha \sum_{a} \hat{q}(S_t, a) \nabla \pi(a|S_t; \boldsymbol{\theta})$$

- What is the issue with this approach?
  - Updates the policy for all actions simultaneously
    - Each data point is for one action only
  - Requires good estimate of all action-values
  - May require a lot of data to converge



- To avoid needing an estimate for each action value, one could modify the policy gradient theorem
  - Could use the return  $G_t$  directly
  - To simplify the math, focus on finite-horizon case

$$\begin{aligned} \nabla v_{\pi}(s) &= \nabla \mathbb{E}_{\pi}[G_{1}|S_{1} = s] \\ &= \sum_{tr = (S_{1},A_{1},R_{1}...)} \nabla \mathbb{P}_{\pi}[tr|S_{1} = s] \mathbb{E}_{\pi}[G_{1}|tr] \\ &= \sum_{tr = (S_{1},A_{1},R_{1}...)} \mathbb{P}_{\pi}[tr|S_{1} = s] \nabla \log(\mathbb{P}_{\pi}[tr|S_{1} = s]) \mathbb{E}_{\pi}[G_{1}|tr] \\ &= \sum_{tr = (S_{1},A_{1},R_{1}...)} \mathbb{P}_{\pi}[tr|S_{1} = s] \nabla \log\left(\prod_{t=1}^{T} \pi(A_{t}|S_{t})P(S_{t},A_{t},S_{t+1})\right) \mathbb{E}_{\pi}[G_{1}|tr] \\ &= \sum_{tr} \mathbb{P}_{\pi}[tr|S_{1} = s] \left(\sum_{t} \nabla \log(\pi(A_{t}|S_{t})) + \nabla \log(P(S_{t},A_{t},S_{t+1}))\right) \mathbb{E}_{\pi}[G_{1}|tr] \\ &= \mathbb{E}_{\pi}[\sum_{t=1}^{T} \nabla \log(\pi(A_{t}|S_{t}))G_{1}|S_{1} = s] \end{aligned}$$



• Final form for the gradient is  $\nabla v_{\pi}(s) = \mathbb{E}_{\pi} \left[ \sum_{t=k}^{T} \nabla \log(\pi(A_t|S_t)) G_k \middle| S_k = s \right]$ 

- Could apply the gradient after any step k

- Once we have the gradient, update weights as usual  $\theta' = \theta + \alpha \nabla_{\theta} v_{\pi_{\theta}}(s)$ 
  - After visiting state s
  - This is similar to the Monte Carlo learning method where we wait until the end of the episode to observe  $G_t$

```
REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for \pi_*

Input: a differentiable policy parameterization \pi(a|s, \theta)

Algorithm parameter: step size \alpha > 0

Initialize policy parameter \theta \in \mathbb{R}^{d'} (e.g., to 0)

Loop forever (for each episode):

Generate an episode S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T, following \pi(\cdot|\cdot, \theta)

Loop for each step of the episode t = 0, 1, \dots, T - 1:

G \leftarrow \sum_{k=t+1}^T \gamma^{k-t-1} R_k (G_t)

\theta \leftarrow \theta + \alpha \gamma^t G \nabla \ln \pi(A_t|S_t, \theta)
```

### Partial Observability, cont'd

0.3

0.4

0.5

probability of right action

0.6

0.7

0.8

0.9

0.2

0

0.1

- What would an action-value method do?
   If Q([10]) > Q([01]), always go right
  - Or with  $\epsilon$ -greedy probability
  - Cannot learn different policies per state
    - At best, take correct action w.p.  $\epsilon$
- Policy gradient method learns a better policy than  $\epsilon$ -greedy



200

400

Episode

600

800

1000







- Can you spot any issues with this iteration?  $\nabla v_{\pi}(s) = \mathbb{E}_{\pi} \left[ \sum_{t=k}^{T} \nabla \log(\pi(A_t|S_t)) G_k \middle| S_k = s \right]$ 
  - How important is the magnitude of  $G_k$ ?
  - Turns out quite a bit tasks have greatly varying returns
  - Especially problematic if \*good\* runs have zero returns
    - Gradient is 0!
- Vanilla REINFORCE has very large variance depending on  $G_k$
- Next time we'll discuss how to address this issue