Q-Learning with Function Approximation

Reading

- Sutton, Richard S., and Barto, Andrew G. Reinforcement learning: An introduction. MIT press, 2018.
 - -<u>http://www.incompleteideas.net/book/the-book-2nd.html</u>
 - Chapters 9.1-9.4
- David Silver lecture on Value Function Approximation <u>https://www.youtube.com/watch?v=UoPei5o4fps</u>
- Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

- Classic Q-learning only works for finite-state and finite-action MDPs
 - Can't be used for most real-world problems
 - Even if state-space is finite, it may be extremely large
 - Hard for Q-learning to even visit all states
 - E.g., all images
- In classic Q-learning, Q values are stored in a table
 - Here, we approximate the Q function with another function
 - E.g., line, decision tree, neural network
 - Essentially cast the problem as a regression problem
- Modern deep Q learning is an instantiation of this setting
 - Will talk about the first deep Q network (DQN)

- The value function maps every state to a value
- Ideally, we want to approximate the value function, e.g., using least squares:

$$MSE = \frac{1}{|S|} \sum_{s \in S} (v(s) - \hat{v}(s))^2$$

– You might want to normalize over the amount of time spent in each state (e.g., by the stationary distribution μ)

• What is the first challenge when minimizing least squares?

$$\sum_{s\in S} (v(s) - \hat{v}(s))^2$$

- We don't have labels!
 - We don't know the true v(s)
 - We have no training data either!
- What is a naïve way of alleviating this challenge?
 - Collect returns G_t for each state, similar to MC
 - But G_t are not the actual values
 - Turns out that minimizing least squares over G_t is still unbiased

Linear Regression as a Function Approximator

- Rensselaer
- Suppose the approximator \hat{v} is a linear function, i.e., $\hat{v}(s) = w^T s$
 - where the state $s \in \mathbb{R}^n$ can now be high-dimensional
 - E.g., position, velocity, etc.
- A simple way to train the value function would be to use linear regression with least squares
 - We collect data from multiple episodes
 - Collect all $(S_{t,i}, G_{t,i})$ pairs and treat it as training data
- What are some issues with this?
 - Waiting for returns is very slow, same as in the MC case
 - True value function may not be a linear function

Linear Regression as a Function Approximator

- What are some issues with this?
 - True value function may not be a linear function
 - Will address that with other functions (wink, wink)
 - Waiting for returns is very slow, same as in the MC case
 - We'll come up with an iterative solution, similar to TD learning

Gradient Descent

- In standard ML, we use SGD to minimize non-convex losses
- In RL, we can use SGD to iteratively update the weights of the approximation function
- Recall standard gradient descent (for least squares)

Suppose we receive a new pair
$$(x, y)$$

 $w' = w - \alpha [2(w^T x - y)x]$

- Of course, we don't have labeled data in RL
 - If we wait for the final return, could treat a point (S_t, G_t) as labeled data (rename to (s, g) just for simplicity)
 - Gradient descent is now

$$\boldsymbol{w}' = \boldsymbol{w} - \alpha [2(\boldsymbol{w}^T \boldsymbol{s} - g)\boldsymbol{s}]$$

- Turns out this converges to the least squares optimum

- If we don't wait for the final return, what can we do? $w' = w - \alpha [2(w^T s - g)s]$
 - Think TD learning
 - Use the immediate reward
 - "Label" becomes the Bellman prediction

$$R_{t+1} + \gamma \boldsymbol{w}^T \boldsymbol{S}_{t+1}$$

Now the update becomes

$$\boldsymbol{w}' = \boldsymbol{w} - \alpha \left[2 \left(\boldsymbol{w}^T \boldsymbol{S}_t - \boldsymbol{R}_{t+1} - \gamma \boldsymbol{w}^T \boldsymbol{S}_{t+1} \right) \boldsymbol{S}_t \right]$$

- Called a semi-gradient because it's bootstrapped

• i.e., we use out estimate of *w* to get the predicted return

Semi-Gradient Methods as Linear Systems

Rewrite the semi-gradient

$$w' = w - \alpha \left[2 \left(w^T S_t - R_{t+1} - \gamma w^T S_{t+1} \right) S_t \right]$$

= w - \alpha S_t 2 (S_t - \gamma S_{t+1})^T w + \alpha 2 R_{t+1} S_t
= Aw + \alpha b

-where $A = I - \alpha S_t 2(S_t - \gamma S_{t+1})^T$, $b = 2R_{t+1}S_t$

• When does this system converge?

– When all eigenvalues of A are in the unit circle

- Similarly, the conditional expectation is $\mathbb{E}[\boldsymbol{w}_{t+1}|\boldsymbol{w}_t] = \mathbb{E}[\boldsymbol{A}]\boldsymbol{w}_t + \alpha \mathbb{E}[\boldsymbol{b}]$
- It can be shown that this converges (see book for proof)
 - Eigenvalues of $\mathbb{E}[A]$ are in the unit circle
 - What does it converge to, however?

Semi-Gradient Linear Methods, cont'd

- The semi-gradient linear method converges to the "best" linear approximation of the value function
 - Where "best" is defined as the projection of the true value function to the set of linear functions
 - Don't have time to make this more formal
- Of course, the "best" linear approximation may not be good enough in many cases
 - Especially in rich settings such as images

- How can we learn a polynomial approximation?
 - How does polynomial regression work?

- Construct polynomial features and learn weights, e.g., $p(x_1, x_2) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1 x_2 + w_4 x_1^2 + w_5 x_2^2$

• Essentially the same as linear regression

- Need to construct features first

 To approximate a q value, need to stack states and actions — E.g., suppose you have n states and 1 action

$$\boldsymbol{S} = [s_1 \dots s_n \ a]$$

• Construct polynomial features, e.g., 2^{nd} order: $f(S, a) = \begin{bmatrix} 1 & s_1 & \dots & s_n & a & s_1^2 & \dots & s_n^2 & a^2 & s_1s_2 & \dots & s_na \end{bmatrix}$ Semi-Gradient Polynomial Methods, cont'd

- To approximate a q value, need to stack states and actions
 - -E.g., suppose you have n states and 1 action

$$\boldsymbol{S} = [s_1 \dots s_n a]$$

- Construct polynomial features, e.g., 2^{nd} order: $f(S, a) = \begin{bmatrix} 1 & s_1 & \dots & s_n & a & s_1^2 & \dots & s_n^2 & a^2 & s_1s_2 & \dots & s_na \end{bmatrix}$
- Then,

$$\hat{q}(\boldsymbol{s}, a) = \boldsymbol{w}^T \boldsymbol{f}(\boldsymbol{s}, a)$$

- The semi-gradient is now the same as before: $w' = w - \alpha \left[2 \left(w^T f(S_t, A_t) - R_{t+1} - \gamma \max_a w^T f(S_{t+1}, a) \right) f(S_t, A_t) \right]$
 - Note this is still for the case of finite actions

Playing Atari with Deep Reinforcement Learning (1) Rensselaer

- One of the first paper to apply RL to problems with raw image data
- Authors made use of several recent breakthroughs in ML and RL
 - CNNs with stochastic gradient descent, batch norm, etc.
 - Experience replay
 - New exploration mechanisms
 - Based also on standard Q-learning theory
- Achieved super-human performance on many Atari games that have image inputs
 - Input is 210×160 RGB video at 60Hz

- Environment is the Atari game engine
- Assumed to be a standard MDP: 5-tuple (S, A, P, R, η)
 - where S is the finite set of states (aka the state space)
 - The true game state is not observed the observations are instead RGB images
 - Note that this means that the MDP is partially observable since the image does not capture things like velocity
 - A sequence of images should cover the full hidden state, so an MDP assumption still makes sense

Figure 1: Screen shots from five Atari 2600 Games: (*Left-to-right*) Pong, Breakout, Space Invaders, Seaquest, Beam Rider

Setup, cont'd

- Environment is the Atari game engine
- Assumed to be a standard MDP: 5-tuple (S, A, P, R, η)
 - where A is the finite set of actions (aka the action space)
 - Number of actions varies from game to game but is always finite and typically fairly small (< 10)

Setup, cont'd

- Environment is the Atari game engine
- Assumed to be a standard MDP: 5-tuple (S, A, P, R, η)
 - where P is the transition function
 - It is largely unknown
 - It is (mostly) deterministic in Atari games
 - Some environments have added non-determinism to prevent hardcoded policies
 - Some non-determinism due to games getting harder as you progress
 - where η is the initial distribution
 - Some games have randomized initial positions for extra uncertainty
 - -where $R: S \times A \times S \rightarrow \mathbb{R}$ is the reward function
 - Based on the engine's internal state, so unknown
 - It is deterministic in Atari games
 - Reward structure varies from game to game

Q-learning learning

- Could use standard value iteration $Q_{i+1}(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} Q_i(S_{t+1}, a') | S_t = s, A_t = a]$
 - State-space is too large to explore
 - Essentially infinite
- Need to approximate Q instead
 - Use a neural network (surprise, surprise...)
- Recall the Q-learning iteration

 $Q'(S_t, A_t) = Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \right]$

- How do we set this up as a learning problem?

• Recall the Q-learning iteration $Q'(S_t, A_t) = Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \right]$

- How do we set this up as a learning problem?

- Could use the semi-gradient method from before $\boldsymbol{\theta}' = \boldsymbol{\theta} - \alpha \left[2 \left(Q(S_t, A_t) - R_{t+1} - \gamma \max_a Q(S_{t+1}, a) \right) \nabla_{\boldsymbol{\theta}} Q(S_t, A_t) \right]$
- What issues do you see with this setup?
 - Q-learning can diverge with non-linear function approximators such as neural networks¹
- What's an alternative (possibly more stable) way?

- Map the problem to a supervised setting

¹Tsitsiklis, John N., and Benjamin Van Roy. "An analysis of temporal-difference learning with function approximation." *IEEE Transactions on Automatic Control*. 1997.

- Recall the Q-learning iteration $Q'(S_t, A_t) = Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \right]$
- The semi-gradient method only looks at the latest reward
- What if we went back to older data as well?
- Could cast the problem as a supervised learning problem
 - Change of notation: $Q \coloneqq Q_{\theta_{i-1}}, Q' \coloneqq Q_{\theta_i}$
 - For each historic tuple $(S_t, A_t, R_{t+1}, S_{t+1})$:
 - Inputs are S_t , A_t
 - (bootstrapped) Labels are $y = R_{t+1} + \gamma \max_{a} Q_{\theta_{i-1}}(S_{t+1}, a)$
- Can use least-squares loss (or any other loss)

$$L(\boldsymbol{\theta}_i, S_t, A_t, y) = \left(Q_{\boldsymbol{\theta}_i}(S_t, A_t) - y\right)^2$$

Convergence of Q-learning with neural networks (1) Rensselaer

- Convergence guarantees are out the window
 - If the algorithm does converge, unclear what the limit is
 - Could be a bad local optimum, as usual
- At the same time, just because some runs may diverge doesn't mean all runs diverge
 - Many techniques have been developed to improve the stability of RL since then
 - Will look at some in these slides

- An old idea in the RL community¹
- In standard Q-learning, each data-point is only used once and discarded
 - However, some past experiences are rare and may be costly to obtain (e.g., a crash)
 - Makes sense to train on past experience also
- On the other hand, past experience introduces a bias since the behavior policy may be significantly different from target
 - How can this be a problem?
 - May have too many suboptimal actions
 - "Training data" may be out of distribution
 - Bootstrapped Q-estimates may be bad

¹Lin, Long-Ji. Reinforcement learning for robots using neural networks. Carnegie Mellon University, 1992.

- Store each experience as a tuple $(S_t, A_t, R_{t+1}, S_{t+1})$
- Can be used as training data in the Q-learning algorithm
- Typically, a buffer is used to store past experience, so that newer experiences gradually replace older ones
 - Also mitigates the bias of using past policies
- Many variants have been developed since the original paper — E.g., prioritized experience replay
- In the Atari games paper, they use a vanilla buffer and sample experiences at random
- Experience replay also removes data correlations
 - Semi-gradient method performs updates on correlated data

- As usual, we would like to do gradient descent over the entire dataset, but that's too expensive, so we use SGD
- We have now cast the problem as a supervised regression problem, so all standard hyperparameters need to be chosen
 - Mini-batch size, learning rate, NN architecture, etc.
 - Extra RL hyperparameter is the discount rate γ
 - Typically set to a large value, ≥ 0.9
- Algorithm is *model-free*
 - The underlying MDP is not known or learned
- Algorithm is *off-policy*
 - Training data is generated by a previous version of the policy
 - In essence, historic data is generated by a behavior policy

- Raw images are $210 \times 160 \times 3$
 - Challenging both computationally and statistically
- Images are converted to grayscale, downscaled and cropped, for a final size of $84\times84\times1$
- 4 consecutive images are stacked together as the input to the NN
 - Effectively the MDP *state*; can capture dynamics such as velocity
 - Final input dimension is thus $84 \times 84 \times 4$

Model Architecture: Deep Q-Network (DQN)

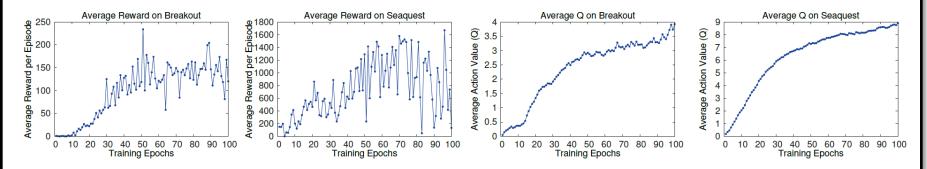
- The intuitive thing to do is build a NN that has one output, i.e., the Q value of the input state-action pair
 - What is the drawback of this?

$$\pi(s) = \max_{a} Q(s, a)$$

- Need to compute Q(s, a) for each action a
- The alternative is to have an output layer that has as many neurons as possible actions
 - Problem effectively becomes a classification task in which the action with the highest Q value is picked
- Used a CNN with the following layers
 - 1. 168×8 filters, stride = 4, ReLU
 - 2. 32.4×4 filters, stride = 2, ReLU
 - 3. Fully connected layer with 256 neurons, ReLU

- Performed experiments on 7 Atari games
 - Beam Rider, Breakout, Enduro, Pong, Q*bert, Seaquest,
 Space Invaders
 - Atari games have become one of the most widely used benchmarks since then
- Used the same architecture and hyperparameters for all games
- Normalized all positive rewards to 1 and all negative rewards to -1
 - Scores vary too much in magnitude
 - Probably exist better ways of normalizing, in order to maintain the relative magnitude

- To this day, stability remains a major challenge in RL
 Learning quickly diverges even if it seems to have converged
- Rewards per episode vary considerably, though there is an overall trend
- Average Q values output by the NN increase consistently
 - Authors claim this is a good sign, though that is a questionable statement (why?)
 - could be overfitting, selecting wrong actions, maximization bias



Visualizing the Value Function

- One way to judge how good the learned policy is by looking at specific scenarios and looking at the value function output by the NN
- In the example below, we can see that the Q value is high when our sub is about to destroy an enemy sub
- And low when there are no immediate targets

- Unclear if the relative difference should be that different

Figure 3: The leftmost plot shows the predicted value function for a 30 frame segment of the game Seaquest. The three screenshots correspond to the frames labeled by A, B, and C respectively.

- Compared DQN (in terms of average reward) with a number of methods using hand-crafted features from images
 - Used Q-learning-based methods on those images
 - Comparison is unfairly in favor of prior work since features use knowledge that objects have only one color, etc.
- Superhuman performance on some games!
 - Not so surprising anymore
 - Can nowadays achieve superhuman performance on most

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690

Conclusion

- Q-learning has now been applied to a number of hard control tasks, including challenging games such as Go, Starcraft, etc.
- The Atari games paper was one of the first to demonstrate the feasibility of RL in a challenging high-dimensional setting
- However, RL is far from mature
 - stability issues
 - exploration vs. exploitation
 - requires rewards (which makes it hard to use in a real-world setting)
 - robustness issues (!)
- Q-learning only works for discrete actions (more next)