
Q-Learning with Function Approximation

1

Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapters 9.1-9.4

• David Silver lecture on Value Function Approximation

– https://www.youtube.com/watch?v=UoPei5o4fps

• Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602.

2

http://www.incompleteideas.net/book/the-book-2nd.html
https://www.youtube.com/watch?v=UoPei5o4fps

Overview

• Classic Q-learning only works for finite-state and finite-action
MDPs

– Can’t be used for most real-world problems

– Even if state-space is finite, it may be extremely large
• Hard for Q-learning to even visit all states

• E.g., all images

• In classic Q-learning, Q values are stored in a table

–Here, we approximate the Q function with another function
• E.g., line, decision tree, neural network

– Essentially cast the problem as a regression problem

• Modern deep Q learning is an instantiation of this setting

–Will talk about the first deep Q network (DQN)
3

Function Approximation

• The value function maps every state to a value

• Ideally, we want to approximate the value function, e.g., using
least squares:

𝑀𝑆𝐸 =
1

𝑆

𝑠∈𝑆

𝑣 𝑠 − ො𝑣 𝑠
2

– You might want to normalize over the amount of time spent
in each state (e.g., by the stationary distribution 𝜇)

4

Function Approximation, cont’d

• What is the first challenge when minimizing least squares?

𝑠∈𝑆

𝑣 𝑠 − ො𝑣 𝑠
2

• We don’t have labels!

–We don’t know the true 𝑣(𝑠)

–We have no training data either!

• What is a naïve way of alleviating this challenge?

– Collect returns 𝐺𝑡 for each state, similar to MC

– But 𝐺𝑡 are not the actual values
• Turns out that minimizing least squares over 𝐺𝑡 is still unbiased

5

Linear Regression as a Function Approximator

• Suppose the approximator ො𝑣 is a linear function, i.e.,
ො𝑣 𝒔 = 𝒘𝑇𝒔

–where the state 𝒔 ∈ ℝ𝑛 can now be high-dimensional
• E.g., position, velocity, etc.

• A simple way to train the value function would be to use linear
regression with least squares

–We collect data from multiple episodes

– Collect all (𝑆𝑡,𝑖 , 𝐺𝑡,𝑖) pairs and treat it as training data

• What are some issues with this?

–Waiting for returns is very slow, same as in the MC case

– True value function may not be a linear function

6

Linear Regression as a Function Approximator

• What are some issues with this?

– True value function may not be a linear function
• Will address that with other functions (wink, wink)

–Waiting for returns is very slow, same as in the MC case
• We’ll come up with an iterative solution, similar to TD learning

7

Gradient Descent

• In standard ML, we use SGD to minimize non-convex losses

• In RL, we can use SGD to iteratively update the weights of the
approximation function

• Recall standard gradient descent (for least squares)

– Suppose we receive a new pair (𝒙, 𝑦)

𝒘′ = 𝒘 − 𝛼 2 𝒘𝑇𝒙 − 𝑦 𝒙

• Of course, we don’t have labeled data in RL

– If we wait for the final return, could treat a point 𝑆𝑡 , 𝐺𝑡 as
labeled data (rename to 𝒔, 𝑔 just for simplicity)

–Gradient descent is now

𝒘′ = 𝒘 − 𝛼 2 𝒘𝑇𝒔 − 𝑔 𝒔

– Turns out this converges to the least squares optimum
8

Semi-Gradient Methods

• If we don’t wait for the final return, what can we do?

𝒘′ = 𝒘 − 𝛼 2 𝒘𝑇𝒔 − 𝑔 𝒔

– Think TD learning

–Use the immediate reward

– “Label” becomes the Bellman prediction
𝑅𝑡+1 + 𝛾𝒘𝑇𝑺𝑡+1

• Now the update becomes

𝒘′ = 𝒘 − 𝛼 2 𝒘𝑇𝑺𝑡 − 𝑅𝑡+1 − 𝛾𝒘𝑇𝑺𝑡+1 𝑺𝑡

– Called a semi-gradient because it’s bootstrapped
• i.e., we use out estimate of 𝒘 to get the predicted return

9

Semi-Gradient Methods as Linear Systems

• Rewrite the semi-gradient

𝒘′ = 𝒘 − 𝛼 2 𝒘𝑇𝑺𝑡 − 𝑅𝑡+1 − 𝛾𝒘𝑇𝑺𝑡+1 𝑺𝑡

 = 𝒘 − 𝛼𝑺𝑡2 𝑺𝑡 − 𝛾𝑺𝑡+1
𝑇𝒘 + 𝛼2𝑅𝑡+1𝑺𝑡

= 𝑨𝒘 + 𝛼𝒃

–where 𝑨 = 𝑰 − 𝛼𝑺𝑡2 𝑺𝑡 − 𝛾𝑺𝑡+1
𝑇, 𝒃 = 2𝑅𝑡+1𝑺𝑡

• When does this system converge?

–When all eigenvalues of 𝑨 are in the unit circle

• Similarly, the conditional expectation is
𝔼 𝒘𝑡+1 𝒘𝑡 = 𝔼 𝑨 𝒘𝑡 + 𝛼𝔼[𝒃]

• It can be shown that this converges (see book for proof)

– Eigenvalues of 𝔼[𝑨] are in the unit circle

–What does it converge to, however?
10

Semi-Gradient Linear Methods, cont’d

• The semi-gradient linear method converges to the “best” linear
approximation of the value function

–Where “best” is defined as the projection of the true value
function to the set of linear functions

–Don’t have time to make this more formal

• Of course, the “best” linear approximation may not be good
enough in many cases

– Especially in rich settings such as images

11

Semi-Gradient Polynomial Methods

• How can we learn a polynomial approximation?

–How does polynomial regression work?

– Construct polynomial features and learn weights, e.g.,
𝑝 𝑥1, 𝑥2 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝑤4𝑥1

2 + 𝑤5𝑥2
2

• Essentially the same as linear regression

–Need to construct features first

• To approximate a 𝑞 value, need to stack states and actions

– E.g., suppose you have 𝑛 states and 1 action
𝑺 = [𝑠1 … 𝑠𝑛 𝑎]

• Construct polynomial features, e.g., 2nd order:
𝒇(𝑺, 𝑎) = [1 𝑠1 … 𝑠𝑛 𝑎 𝑠1

2 … 𝑠𝑛
2 𝑎2 𝑠1𝑠2 … 𝑠𝑛𝑎]

12

Semi-Gradient Polynomial Methods, cont’d

• To approximate a 𝑞 value, need to stack states and actions

– E.g., suppose you have 𝑛 states and 1 action
𝑺 = [𝑠1 … 𝑠𝑛 𝑎]

• Construct polynomial features, e.g., 2nd order:
𝒇(𝑺, 𝑎) = [1 𝑠1 … 𝑠𝑛 𝑎 𝑠1

2 … 𝑠𝑛
2 𝑎2 𝑠1𝑠2 … 𝑠𝑛𝑎]

• Then,
ො𝑞 𝒔, 𝑎 = 𝒘𝑇𝒇(𝒔, 𝑎)

• The semi-gradient is now the same as before:

𝒘′ = 𝒘 − 𝛼 2 𝒘𝑇𝒇 𝑺𝑡 , 𝐴𝑡 − 𝑅𝑡+1 − 𝛾 max
𝑎

𝒘𝑇𝒇 𝑺𝑡+1, 𝑎 𝒇(𝑺𝑡 , 𝐴𝑡)

–Note this is still for the case of finite actions

13

Playing Atari with Deep Reinforcement Learning

14

Overview

• One of the first paper to apply RL to problems with raw image
data

• Authors made use of several recent breakthroughs in ML and
RL

– CNNs with stochastic gradient descent, batch norm, etc.

– Experience replay

–New exploration mechanisms

– Based also on standard Q-learning theory

• Achieved super-human performance on many Atari games that
have image inputs

– Input is 210 × 160 RGB video at 60Hz

15

Setup

• Environment is the Atari game engine

• Assumed to be a standard MDP: 5-tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝜂)

–where 𝑆 is the finite set of states (aka the state space)

– The true game state is not observed – the observations are
instead RGB images
• Note that this means that the MDP is partially observable since the

image does not capture things like velocity

• A sequence of images should cover the full hidden state, so an MDP
assumption still makes sense

16

Setup, cont’d

• Environment is the Atari game engine

• Assumed to be a standard MDP: 5-tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝜂)

–where 𝐴 is the finite set of actions (aka the action space)

–Number of actions varies from game to game but is always
finite and typically fairly small (< 10)

17

Setup, cont’d

• Environment is the Atari game engine

• Assumed to be a standard MDP: 5-tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝜂)

–where 𝑃 is the transition function
• It is largely unknown

• It is (mostly) deterministic in Atari games

– Some environments have added non-determinism to prevent
hardcoded policies

– Some non-determinism due to games getting harder as you progress

–where 𝜂 is the initial distribution
• Some games have randomized initial positions for extra uncertainty

–where 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ is the reward function
• Based on the engine’s internal state, so unknown

• It is deterministic in Atari games

• Reward structure varies from game to game
18

Q-learning learning

• Could use standard value iteration
𝑄𝑖+1 𝑠, 𝑎 = 𝔼[𝑅𝑡+1 + 𝛾 max

𝑎′
𝑄𝑖(𝑆𝑡+1, 𝑎′) |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

– State-space is too large to explore

– Essentially infinite

• Need to approximate 𝑄 instead

–Use a neural network (surprise, surprise…)

• Recall the Q-learning iteration

𝑄′ 𝑆𝑡 , 𝐴𝑡 = 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄 𝑆𝑡 , 𝐴𝑡

–How do we set this up as a learning problem?

19

Q-learning learning, cont’d

• Recall the Q-learning iteration

𝑄′ 𝑆𝑡, 𝐴𝑡 = 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄 𝑆𝑡 , 𝐴𝑡

–How do we set this up as a learning problem?

• Could use the semi-gradient method from before

𝜽′ = 𝜽 − 𝛼 2 𝑄 𝑆𝑡 , 𝐴𝑡 − 𝑅𝑡+1 − 𝛾 max
𝑎

𝑄 𝑆𝑡+1, 𝑎 ∇𝜽𝑄(𝑆𝑡 , 𝐴𝑡)

• What issues do you see with this setup?

–Q-learning can diverge with non-linear function
approximators such as neural networks1

• What’s an alternative (possibly more stable) way?

–Map the problem to a supervised setting

20

1Tsitsiklis, John N., and Benjamin Van Roy. "An analysis of temporal-difference learning with function

approximation." IEEE Transactions on Automatic Control. 1997.

Q-learning learning, cont’d

• Recall the Q-learning iteration

𝑄′ 𝑆𝑡, 𝐴𝑡 = 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄 𝑆𝑡 , 𝐴𝑡

• The semi-gradient method only looks at the latest reward

• What if we went back to older data as well?

• Could cast the problem as a supervised learning problem

– Change of notation: 𝑄 ≔ 𝑄𝜽𝑖−1
, 𝑄′ ≔ 𝑄𝜽𝑖

– For each historic tuple (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1):
• Inputs are 𝑆𝑡 , 𝐴𝑡

• (bootstrapped) Labels are 𝑦 = 𝑅𝑡+1 + 𝛾 max
𝑎

𝑄𝜽𝑖−1
𝑆𝑡+1, 𝑎

• Can use least-squares loss (or any other loss)

𝐿 𝜽𝑖 , 𝑆𝑡 , 𝐴𝑡 , 𝑦 = 𝑄𝜽𝑖
𝑆𝑡 , 𝐴𝑡 − 𝑦

2

21

Convergence of Q-learning with neural networks

• Convergence guarantees are out the window

– If the algorithm does converge, unclear what the limit is

– Could be a bad local optimum, as usual

• At the same time, just because some runs may diverge doesn’t
mean all runs diverge

–Many techniques have been developed to improve the
stability of RL since then

–Will look at some in these slides

22

Experience Replay

• An old idea in the RL community1

• In standard Q-learning, each data-point is only used once and
discarded

–However, some past experiences are rare and may be costly
to obtain (e.g., a crash)

–Makes sense to train on past experience also

• On the other hand, past experience introduces a bias since the
behavior policy may be significantly different from target

–How can this be a problem?
• May have too many suboptimal actions

• “Training data” may be out of distribution

– Bootstrapped Q-estimates may be bad

23

1Lin, Long-Ji. Reinforcement learning for robots using neural networks. Carnegie Mellon University, 1992.

Experience Replay, cont’d

• Store each experience as a tuple (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1)

• Can be used as training data in the Q-learning algorithm

• Typically, a buffer is used to store past experience, so that
newer experiences gradually replace older ones

–Also mitigates the bias of using past policies

• Many variants have been developed since the original paper

– E.g., prioritized experience replay

• In the Atari games paper, they use a vanilla buffer and sample
experiences at random

• Experience replay also removes data correlations

– Semi-gradient method performs updates on correlated data

24

Training specifics

• As usual, we would like to do gradient descent over the entire
dataset, but that’s too expensive, so we use SGD

• We have now cast the problem as a supervised regression
problem, so all standard hyperparameters need to be chosen

–Mini-batch size, learning rate, NN architecture, etc.

– Extra RL hyperparameter is the discount rate 𝛾
• Typically set to a large value, ≥ 0.9

• Algorithm is model-free

– The underlying MDP is not known or learned

• Algorithm is off-policy

– Training data is generated by a previous version of the policy
• In essence, historic data is generated by a behavior policy

25

Data Preprocessing

• Raw images are 210 × 160 × 3

– Challenging both computationally and statistically

• Images are converted to grayscale, downscaled and cropped,
for a final size of 84 × 84 × 1

• 4 consecutive images are stacked together as the input to the
NN

– Effectively the MDP *state*; can capture dynamics such as
velocity

– Final input dimension is thus 84 × 84 × 4

26

Model Architecture: Deep Q-Network (DQN)

• The intuitive thing to do is build a NN that has one output, i.e.,
the Q value of the input state-action pair

–What is the drawback of this?
𝜋 𝑠 = max

𝑎
𝑄(𝑠, 𝑎)

• Need to compute 𝑄(𝑠, 𝑎) for each action 𝑎

• The alternative is to have an output layer that has as many
neurons as possible actions

– Problem effectively becomes a classification task in which
the action with the highest Q value is picked

• Used a CNN with the following layers

1. 16 8 × 8 filters, stride = 4, ReLU

2. 32 4 × 4 filters, stride = 2, ReLU

3. Fully connected layer with 256 neurons, ReLU
27

Experiments overview

• Performed experiments on 7 Atari games

– Beam Rider, Breakout, Enduro, Pong, Q*bert, Seaquest,
Space Invaders

–Atari games have become one of the most widely used
benchmarks since then

• Used the same architecture and hyperparameters for all games

• Normalized all positive rewards to 1 and all negative rewards
to -1

– Scores vary too much in magnitude

– Probably exist better ways of normalizing, in order to
maintain the relative magnitude

28

Training Stability

• To this day, stability remains a major challenge in RL

– Learning quickly diverges even if it seems to have converged

• Rewards per episode vary considerably, though there is an
overall trend

• Average Q values output by the NN increase consistently

–Authors claim this is a good sign, though that is a
questionable statement (why?)
• could be overfitting, selecting wrong actions, maximization bias

29

Visualizing the Value Function

• One way to judge how good the learned policy is by looking at
specific scenarios and looking at the value function output by
the NN

• In the example below, we can see that the Q value is high
when our sub is about to destroy an enemy sub

• And low when there are no immediate targets

–Unclear if the relative difference should be that different

30

Main Evaluation

• Compared DQN (in terms of average reward) with a number of
methods using hand-crafted features from images

–Used Q-learning-based methods on those images

– Comparison is unfairly in favor of prior work since features
use knowledge that objects have only one color, etc.

• Superhuman performance on some games!

–Not so surprising anymore

– Can nowadays achieve superhuman performance on most

31

Conclusion

• Q-learning has now been applied to a number of hard control
tasks, including challenging games such as Go, Starcraft, etc.

• The Atari games paper was one of the first to demonstrate the
feasibility of RL in a challenging high-dimensional setting

• However, RL is far from mature

– stability issues

– exploration vs. exploitation

– requires rewards (which makes it hard to use in a real-world
setting)

– robustness issues (!)

• Q-learning only works for discrete actions (more next)

32

	Slide 1: Q-Learning with Function Approximation
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Function Approximation
	Slide 5: Function Approximation, cont’d
	Slide 6: Linear Regression as a Function Approximator
	Slide 7: Linear Regression as a Function Approximator
	Slide 8: Gradient Descent
	Slide 9: Semi-Gradient Methods
	Slide 10: Semi-Gradient Methods as Linear Systems
	Slide 11: Semi-Gradient Linear Methods, cont’d
	Slide 12: Semi-Gradient Polynomial Methods
	Slide 13: Semi-Gradient Polynomial Methods, cont’d
	Slide 14: Playing Atari with Deep Reinforcement Learning
	Slide 15: Overview
	Slide 16: Setup
	Slide 17: Setup, cont’d
	Slide 18: Setup, cont’d
	Slide 19: Q-learning learning
	Slide 20: Q-learning learning, cont’d
	Slide 21: Q-learning learning, cont’d
	Slide 22: Convergence of Q-learning with neural networks
	Slide 23: Experience Replay
	Slide 24: Experience Replay, cont’d
	Slide 25: Training specifics
	Slide 26: Data Preprocessing
	Slide 27: Model Architecture: Deep Q-Network (DQN)
	Slide 28: Experiments overview
	Slide 29: Training Stability
	Slide 30: Visualizing the Value Function
	Slide 31: Main Evaluation
	Slide 32: Conclusion

