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Overview @©@ Rensselaer

* Generalization is a central concept in all areas of ML
 Just because your model works on your training data doesn’t
mean it will work on your test data
— One can go further: even if your model works on your test
data, it doesn’t mean it will work on new test data
e But that’s “better” evidence than working on training data
* Generalization is particularly important in deep learning
— Neural networks can overfit any dataset we currently have
— Users need to always be careful about generalization

* We'll discuss how to estimate generalization error and what
makes a model more likely to overfit




Training vs Test Data @) Rensselaer

* Almost any supervised ML task involves the collection of data

» Typically, once the data is collected, we split it into 3 sets:
—Training set
— Validation set
— Test set

 Historically, datasets weren’t large enough for such a split, so
researchers had to develop other techniques
—E.g., cross validation

e But the end goal is the same

—If we develop a model based on the data we have, how well
does this model perform on new data?




Generalization error

* Let D4y, D, D¢, be the training, validation and test sets,
respectively

 Each of those sets is drawn IID from the same distribution D

* The error of a model f on a dataset D is defined as:

1
Ermp() = ), 10 %)
(x,y)€D

—Where I is the indicator function
« I(f(x) # y) = 1when f(x) # y and 0, otherwise
* The generalization error of a model f is defined as:
GE(f) = Plf(X) # Y]
—where (X,Y)~D
—i.e., it is the probability of making an error on unseen data
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Generalization Error, cont’d @©@ Rensselaer

* An unbiased estimate of the generalization error is the
classifier’s performance on the test set:

(/;E(f) = ETTDte(f)

* An estimator is said to be unbiased if its expected value is
equal to the quantity it is trying to estimate

~Eg, E[Erny, ()] = GE(f)
—Why?
— Consider any random test set D

—All (x;,y;) € D are drawn IID from some distribution D
* Each corresponds to a random variable (X;,Y;)




Generalization Error, cont’d @©@ Rensselaer

* An unbiased estimate of the generalization error is the
classifier’s performance on the test set:

(/;E(f) = ETTDte(f)

* An estimator is said to be unbiased if its expected value is
equal to the quantity it is trying to estimate

—E.g., IE[Eerte(f)] = GE(f):
1
ELErmy (D] = 5 ) B (%) # 1))

1

1
_ FZ PIF(X,) # V] = WZ PIf(X,) # Y]

D
SHPLF(X) # Y]




Generalization Error, cont’d @©@ Rensselaer

e Being unbiased is a nice property but it’s not enough
—The test error on a single point is also an unbiased estimate

—But if we do well on a larger test set, that is better than
doing well on a smaller test set!

— We can use the Law of Large Numbers and Hoeffding’s
inequality to further analyze our model’s performance




Probability Aside: Law of Large Numbers @®) Rensselaer

* Let Xy, ..., X;; be n IID random variables
e LetS,, =X+ + X,
* (Weak) Law of Large Numbers:

Xl]‘ ] — lasn - o
—for any p05|t|ve €

* As we collect more data, the sample mean §,, /n converges to
the expected mean E[X]

—Since the X; are IID, E[X;] = E[X;] for any i




The Benefit of the Law of Large Numbers @ Rensselaer

* What is the benefit of the Law of Large Numbers?

Xl]‘ ]—>1asn—>oo

: S ,
* Think of =% as your model’s test error

n
Ero(f) = D 1) #9)
(x,y)ED

—Here, Spi = Xxy)ep I(f (X) # ¥) and n: = |D|
—So the test error converges to the true expected error as the
test set gets large

* Practically speaking, the larger the dataset the better

—E.g., if your model achieves good accuracy on a large test
set, then it will likely work well on new data also




Probability Aside: Hoeffding’s Inequality @ Rensselaer

* Suppose your model has good accuracy on a test set

—|s it possible that you just got lucky and your model isn’t
that great after all?

Let X4, ..., X,, be n independent random variables
—Each bounded by a; < X; < b;

LetS, = X; + -+ X,

Hoeffding’s Theorem:

P|S,, — E|S,) = t] < 2t
[ n - [ n] = t] = exp {_ ?:1(191' _ai)z}

Two-tailed version:

P[IS,, — E[S,]| > t] < 2 20"
no e TS (b~ a)?




Probability Aside: Hoeffding’s Inequality, cont’d @ Rensselaer

» Hoeffding’s Theorem:

PS5, — E[S,] =t] < 2t
[ n - [ n] = t] = exp {_ ?:1(191' _ai)z}

* A type of concentration bound

* Given a sample S,;, we can bound its deviation from the true
mean

* The larger t is, the higher the probability the mean is within t
of the sample

* The smaller the bounds (b; — a;), the tighter the bound on S,




Probability Aside: Hoeffding’s Inequality, cont’d @ Rensselaer

* Suppose each X; is Bernoulli, i.e., X; € {0,1},i.e.,,b; —a; =1
—E.g., X; denotes correct or wrong classification on example i

* The bound simplifies to:

2t2

P[S,, — E[S,,] = t] < exp {— 7}

* Furthermore, suppose we are interested in bounding the mean
—E.g., your model’s accuracy

1 -
P E(Sn — [E[Sn]) =t =

= P[S,, — E[S,] = nt] < exp{—2t2n)

* For fixed t, the sample mean is less likely to be farther from
the expected mean as we collect more data




Importance of the test set accuracy @®) Rensselaer

* Suppose we have trained a model f
* As far as the test set is concerned, f is now just a function

 Suppose the test setis (x4, V1), ..., (X5, Y1)

— In other words, we have realizations of |ID variables
(X1, Y1), o, (X3, V)
* Define the variable Z; = 1if f(X;) = Y; and 0, otherwise
—Then the Z; are |ID Bernoulli variables
—The expected value E[Z;] is the true accuracy of f

1 :
—The sample mean Ezi z; is the accuracy of f on the test set

* How can we bound E[Z;] in terms of%Zizi?

— We can directly apply Hoeffding’s inequality on the test set




Example: Hoeffding’s Inequality @ Rensselaer

» Suppose our model achieves a test accuracy of 80% over 1000
datapoints

— What’s the probability the true accuracy is less than 70%?
_ Note that P E (E[S,] = S,,) < —t] — P [% (S, — E[S,]) = t]
—Then, using Hoeffding’s inequality:

1
P [5 (S, — E[S,]) = t_

. _
P [E (Sp — E[S,]) = 0.1] <
exp{—2 * 0.12 * 1000} =~ 2 * 10~°

* Even 1000 points give us strong probabilistic guarantees




What about the training set?

e Can we apply Hoeffding’s inequality to the training set?
— Suppose training set is (x4, V1), ..., (Xn, V)
— Let z; be the same as before
—The z; are no longer independent!
* fisfunction of all (x;,y;), sothe f(x;) are not independent
* Intuitively, it makes sense that we can’t evaluate our model on
the training data
— As with any training task, you eventually remember the task
too well (you overfit!)
* There are some cases where we can bound the test set
performance in terms of training set performance
—VC dimension!

® Rensselaer




What about the validation set?

® Rensselaer

* In theory, the model f is only trained on the training set
* In practice, we choose different hyper-parameters of f and
iterate the training process
—E.g., number of neighbors in KNN

— After each iteration, we evaluate the model’s accuracy on
the validation set only (not the test set!)

—Why?
— We can overfit the hyper-parameter values also

* Once we train a good model, we evaluate on the test set

—If there is a big difference between the test and validation
sets, then overfitting is likely to blame




Cross Validation

 When the test set is not large (a few dozen examples),
Hoeffding’s inequality provides loose bounds
* Cross validation very useful in this case
—Split the data randomly into 90% training and 10% testing
—Train on the training data and record the test accuracy
— Repeat multiple (e.g., 10) times
— Take the average test error over all runs
— A better estimate of generalization error than a single split
* Most modern datasets are big enough such that this is no
longer an issue

— Cross validation is still useful but is not commonly used
since it’s quite computationally expensive

® Rensselaer




Bias, Variance, and Model Complexity @ Rensselaer

* We've already seen examples of models that perfectly overfit
the training data without having any generalization capacity

—E.g., a table with rules
e Turns out this is a general phenomenon that has to do with a
model’s complexity

—The more complex a model is, the easier it is to achieve zero
training error

— However, it is also easier to overfit




Model Complexity vs Generalization

® Rensselaer

* Typically, there exists a point beyond which increasing the
model complexity does not bring any generalization benefits
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— Book authors trained a LASSO algorithm on simulated data
— LASSO is a more sophisticated regression technique

* See book if you are interested
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Model Complexity vs Generalization @) Rensselaer

* Typically, there exists a point beyond which increasing the
model complexity does not bring any generalization benefits
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— As the model complexity is increased:

* Train error (bias) decreases, but eventually test error starts
increasing (overfitting!)

» Test error variance increases; models are sensitive to training noise
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Understanding deep learning (still) requires
rethinking generalization

®) Rensselaer
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Overview

® Rensselaer

* This paper is actually an updated version of a 2017 paper with
the same name (without the ‘still’)

* The authors show that generalization is not a well understood
notion

—In classical learning theory, good performance on the
training set should lead to similar performance on the test
set (when overfitting precautions have been made)

—This paper shows that this need not be the case

* The notion of a “distribution” is really not well defined (at least
in the case of images)




Theoretical Bounds on Generalization Error @ Rensselaer

* The classical approach is to quantify the classifier’s expressive
power (also known as capacity)

* Intuitively, argument works as follows:

— Suppose you have a simple classifier and you have correctly
classified a “large” training set

* “Simple” as measured through a complexity measure such as VC
dimension or Rademacher complexity

— Chances are you’ll correctly classify new points also (you’ve
already seen a large chunk of the distribution)

* Traditional generalization error arguments don’t work for NNs
—In some ways, it is surprising that they generalize at all

* There are many methods to fit the training data that don’t
generalize




Random Labels @©@ Rensselaer

* First experiment in the paper
 Randomly shuffle all labels
— By design, generalization isn’t possible

* One way of assessing the NN capacity
—Is it able to learn (i.e., memorize) even the shuffled labels?

—Is the learning going to slow down or be otherwise
adversely affected by the irregular training set?

25




Random Pixels and Shuffled Pixels @©@ Rensselaer

e Second set of experiments
* Random pixels: keep the original labels, but replace all pixels
with random noise
— Once again, generalization isn’t possible
» Shuffled pixels: keep the original labels, but shuffle pixels using
the same transformation for all images

— Depending on the transformation, this may add little to
significant noise




Training Results, CIFAR10

®) Rensselaer

* In all cases, the NN is able to memorize the entire training set!

* Training with random labels takes the longest but it still
converges to 0 loss

—Training with random pixels is faster probably because the
data is more separated in space due to the noise

true labels
random labels |-
shuffled pixels
— rondom pixels |
#—$ gaussian

I}

5

0 5 10 15 20 25
thousand steps
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Label corruption, CIFAR10 ®) Rensselaer

* |In order to assess the effect of label corruption on training and
generalization, the authors also try corrupting a fraction of the
labels

—Ranging from 0% to 100% of all labels are corrupted

* Higher label corruption makes it significantly harder to overfit
the training set

* Higher Iabeqlﬂcorr ption leads to higher generalization error
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Training/Test Results Summary, CIFAR10 ® Rensselaer

Table 1. The training and test accuracy (in %) of various models on
the CIFAR10 dataset.

Random Weight Train Test

 All sufficiently large models can
perfectly overfit training data e T

* Regularization improves generalization “ e weo e
(fitting No No 100.0 9.78
— But not necessary or sufficient e

w/o

— Major overfitting even with

. . No No 1000 82.00
ge n e ra I I Zat I O n (fitting ran- No No 100.0 10.12
dom labels)
Alexnet 1,387,786 Yes Yes 99.90 81.22
* Both convolution and fully-connected R
No Yes 100.0 77.36
NNs show the same trends No No 100 7607
(fitting ran- No No 99.82 9.86
dom labels)
MLP3x512 1735178 No Yes 100.0 53.35
No No 100.0 52.39
(fitting No No 100.0 10.48
random
labels)
MLP1=512 1209866 No Yes 99.80 50.39
No No 100.0 50.51
(fitting No No 99.34 10.61
random
labels)
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Training/Test Results Summary, ImageNet ® Rensselaer

e Similar to CIFAR10
— Overfitting only 95% of training data (still very surprising!)

* Regularization helps generalization

— But once again not necessary or sufficient (still major
overfitting even with regularization)

data dropout weight

aug decay top-1 train  top-5 train top-1 test top-5 test

ImageNet 1000 classes with the original labels

yes yes yes 92.18 99.21 77.84 93.92

yes no no 92.33 99.17 72.95 00.43

no no yes 90.60 100.0 67.18 (72.57) 86.44 (91.31)

no no no 99.53 100.0 59.80 (63.16) 80.38 (84.49)
Alexnet (Krizhevsky et al., 2012) - - 83.6
ImageNet 1000 classes with random labels

no yes yes 91.18 97.95 0.09 0.49

no no yes 87.81 96.15 0.12 0.50

no no no 95.20 99.14 0.11 0.56

Table 2 shows the performance on Imagenet with true labels and random labels, respectively.
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Role of Regularization @ Rensselaer

* Remember Occam’s Razor
— Usually want the simplest model that can learn the task
—This is what regularization tries to achieve

» Standard deep learning regularization techniques (dropout,
weight decay, batch normalization) do not prevent overfitting
in CIFAR10

— Only works for some smaller models (AlexNet) on ImageNet
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NN Expressivity @) Rensselaer

* Turns out that it doesn’t take a very large NN to perfectly
overfit a given training set

* Theorem: Given a training set S = {(x1y1), ..., (X5, ¥) } Of size
n, where each x; € R, there exists a 2-layer NN with ReLU
activations and 2n + d weights that can perfectly overfit S.

* Proof is not very hard

* This means that even very high-dimensional datasets can be
overfit with small NNs

—Hence we need to rethink generalization




Conclusion

® Rensselaer

* Generalization is one of the most important aspects of ML

* |tis especially important for expressive models such as neural
networks where overfitting is very easy

* The most robust method of establishing your model’s
generalization performance is through a test set

—The larger and more diverse, the better!
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