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Reading

• Chapters 7.1, 7.2

–Hastie, Trevor, et al. The elements of statistical learning: 
data mining, inference, and prediction. Vol. 2. New York: 
springer, 2009.

–Available online: https://hastie.su.domains/Papers/ESLII.pdf

• Zhang, Chiyuan, Samy Bengio, Moritz Hardt, Benjamin Recht, 
and Oriol Vinyals. "Understanding deep learning (still) requires 
rethinking generalization." Communications of the ACM 64, no. 
3 (2021): 107-115.
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Overview

• Generalization is a central concept in all areas of ML

• Just because your model works on your training data doesn’t 
mean it will work on your test data

–One can go further: even if your model works on your test 
data, it doesn’t mean it will work on new test data
• But that’s “better” evidence than working on training data

• Generalization is particularly important in deep learning

–Neural networks can overfit any dataset we currently have

–Users need to always be careful about generalization

• We’ll discuss how to estimate generalization error and what 
makes a model more likely to overfit
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Training vs Test Data

• Almost any supervised ML task involves the collection of data

• Typically, once the data is collected, we split it into 3 sets:

– Training set

–Validation set

– Test set

• Historically, datasets weren’t large enough for such a split, so 
researchers had to develop other techniques

– E.g., cross validation

• But the end goal is the same

– If we develop a model based on the data we have, how well 
does this model perform on new data?

4



Generalization error

• Let 𝐷𝑡𝑟 , 𝐷𝑣 , 𝐷𝑡𝑒  be the training, validation and test sets, 
respectively

• Each of those sets is drawn IID from the same distribution 𝒟

• The error of a model 𝑓 on a dataset 𝐷 is defined as:

𝐸𝑟𝑟𝐷 𝑓 =
1

|𝐷|


𝒙,𝑦 ∈𝐷

𝑰(𝑓 𝒙 ≠ 𝑦)

–Where 𝑰 is the indicator function
• 𝑰 𝑓 𝒙 ≠ 𝑦 = 1 when 𝑓 𝒙 ≠ 𝑦 and 0, otherwise

• The generalization error of a model 𝑓 is defined as:
𝐺𝐸 𝑓 = ℙ 𝑓 𝑿 ≠ 𝑌

–where 𝑿, 𝑌 ~𝒟

– i.e., it is the probability of making an error on unseen data
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Generalization Error, cont’d

• An unbiased estimate of the generalization error is the 
classifier’s performance on the test set:

𝐺𝐸 𝑓 = 𝐸𝑟𝑟𝐷𝑡𝑒
𝑓

• An estimator is said to be unbiased if its expected value is 
equal to the quantity it is trying to estimate

– E.g., 𝔼 𝐸𝑟𝑟𝐷𝑡𝑒
𝑓 = 𝐺𝐸(𝑓)

–Why?

– Consider any random test set 𝐷

–All 𝒙𝑖 , 𝑦𝑖 ∈ 𝐷 are drawn IID from some distribution 𝒟
• Each corresponds to a random variable (𝑿𝑖 , 𝑌𝑖)
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Generalization Error, cont’d

• An unbiased estimate of the generalization error is the 
classifier’s performance on the test set:

𝐺𝐸 𝑓 = 𝐸𝑟𝑟𝐷𝑡𝑒
𝑓

• An estimator is said to be unbiased if its expected value is 
equal to the quantity it is trying to estimate

– E.g., 𝔼 𝐸𝑟𝑟𝐷𝑡𝑒
𝑓 = 𝐺𝐸(𝑓):

𝔼 𝐸𝑟𝑟𝐷 𝑓 =
1

|𝐷|


𝑖

𝔼[𝑰 𝑓 𝑿𝑖 ≠ 𝑌𝑖 ] 

 =
1

|𝐷|


𝑖

ℙ[𝑓 𝑿𝑖 ≠ 𝑌𝑖] =
1

|𝐷|


𝑖

ℙ[𝑓 𝑿1 ≠ 𝑌]

=
|𝐷|

|𝐷|
ℙ 𝑓 𝑿1 ≠ 𝑌  
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Generalization Error, cont’d

• Being unbiased is a nice property but it’s not enough

– The test error on a single point is also an unbiased estimate

– But if we do well on a larger test set, that is better than 
doing well on a smaller test set!

–We can use the Law of Large Numbers and Hoeffding’s 
inequality to further analyze our model’s performance
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Probability Aside: Law of Large Numbers

• Let 𝑋1, … , 𝑋𝑛 be 𝑛 IID random variables

• Let 𝑆𝑛 = 𝑋1 + ⋯ + 𝑋𝑛

• (Weak) Law of Large Numbers:

ℙ
𝑆𝑛

𝑛
− 𝔼 𝑋1 < 𝜖 → 1 as 𝑛 → ∞

– for any positive 𝜖

• As we collect more data, the sample mean 𝑆𝑛/𝑛 converges to 
the expected mean 𝔼 𝑋1

– Since the 𝑋𝑖  are IID, 𝔼 𝑋1 = 𝔼[𝑋𝑖] for any 𝑖
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The Benefit of the Law of Large Numbers

• What is the benefit of the Law of Large Numbers?

ℙ
𝑆𝑛

𝑛
− 𝔼 𝑋1 < 𝜖 → 1 as 𝑛 → ∞

• Think of 
𝑆𝑛

𝑛
 as your model’s test error

𝐸𝑟𝑟𝐷 𝑓 =
1

|𝐷|


𝒙,𝑦 ∈𝐷

𝑰(𝑓 𝒙 ≠ 𝑦)

–Here, 𝑆𝑛: = σ 𝒙,𝑦 ∈𝐷 𝑰(𝑓 𝒙 ≠ 𝑦) and 𝑛: = |𝐷|

– So the test error converges to the true expected error as the 
test set gets large

• Practically speaking, the larger the dataset the better

– E.g., if your model achieves good accuracy on a large test 
set, then it will likely work well on new data also 10



Probability Aside: Hoeffding’s Inequality

• Suppose your model has good accuracy on a test set

– Is it possible that you just got lucky and your model isn’t 
that great after all?

• Let 𝑋1, … , 𝑋𝑛 be 𝑛 independent random variables

– Each bounded by 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖

• Let 𝑆𝑛 = 𝑋1 + ⋯ + 𝑋𝑛

• Hoeffding’s Theorem:

ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑡 ≤ exp −
2𝑡2

σ𝑖=1
𝑛 𝑏𝑖 − 𝑎𝑖

2

• Two-tailed version:

ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑡 ≤ 2exp −
2𝑡2

σ𝑖=1
𝑛 𝑏𝑖 − 𝑎𝑖

2
11



Probability Aside: Hoeffding’s Inequality, cont’d

• Hoeffding’s Theorem:

ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑡 ≤ exp −
2𝑡2

σ𝑖=1
𝑛 𝑏𝑖 − 𝑎𝑖

2

• A type of concentration bound

• Given a sample 𝑆𝑛, we can bound its deviation from the true 
mean

• The larger 𝑡 is, the higher the probability the mean is within 𝑡 
of the sample

• The smaller the bounds 𝑏𝑖 − 𝑎𝑖 , the tighter the bound on 𝑆𝑛
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Probability Aside: Hoeffding’s Inequality, cont’d

• Suppose each 𝑋𝑖  is Bernoulli, i.e., 𝑋𝑖 ∈ {0,1}, i.e., 𝑏𝑖 − 𝑎𝑖 = 1

– E.g., 𝑋𝑖  denotes correct or wrong classification on example 𝑖

• The bound simplifies to:

ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑡 ≤ exp −
2𝑡2

𝑛

• Furthermore, suppose we are interested in bounding the mean

– E.g., your model’s accuracy

ℙ
1

𝑛
(𝑆𝑛 − 𝔼 𝑆𝑛 ) ≥ 𝑡 = 

 = ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑛𝑡 ≤ exp −2𝑡2𝑛

• For fixed 𝑡, the sample mean is less likely to be farther from 
the expected mean as we collect more data
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Importance of the test set accuracy

• Suppose we have trained a model 𝑓

• As far as the test set is concerned, 𝑓 is now just a function

• Suppose the test set is 𝒙1, 𝑦1 , … , 𝒙𝑛, 𝑦𝑛

– In other words, we have realizations of IID variables 
𝑿1, 𝑌1 , … , (𝑿𝑛, 𝑌𝑛)

• Define the variable 𝑍𝑖 = 1 if 𝑓 𝑿𝑖 = 𝑌𝑖  and 0, otherwise

– Then the 𝑍𝑖  are IID Bernoulli variables

– The expected value 𝔼 𝑍𝑖  is the true accuracy of 𝑓

– The sample mean 
1

𝑛
σ𝑖 𝑧𝑖 is the accuracy of 𝑓 on the test set

• How can we bound 𝔼 𝑍𝑖  in terms of 
1

𝑛
σ𝑖 𝑧𝑖?

–We can directly apply Hoeffding’s inequality on the test set 14



Example: Hoeffding’s Inequality

• Suppose our model achieves a test accuracy of 80% over 1000 
datapoints

–What’s the probability the true accuracy is less than 70%?

–Note that ℙ
1

𝑛
𝔼 𝑆𝑛 − 𝑆𝑛 ≤ −𝑡 = ℙ

1

𝑛
(𝑆𝑛 − 𝔼 𝑆𝑛 ) ≥ 𝑡

– Then, using Hoeffding’s inequality:

ℙ
1

𝑛
(𝑆𝑛 − 𝔼 𝑆𝑛 ) ≥ 𝑡 = 

ℙ
1

𝑛
(𝑆𝑛 − 𝔼 𝑆𝑛 ) ≥ 0.1 ≤ 

 exp −2 ∗ 0.12 ∗ 1000 ≈ 2 ∗ 10−9

• Even 1000 points give us strong probabilistic guarantees
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What about the training set?

• Can we apply Hoeffding’s inequality to the training set?

– Suppose training set is 𝒙1, 𝑦1 , … , (𝒙𝑁 , 𝑦𝑁)

– Let 𝑧𝑖 be the same as before

– The 𝑧𝑖 are no longer independent!
• 𝑓 is function of all (𝒙𝑖 , 𝑦𝑖), so the 𝑓(𝒙𝑖) are not independent

• Intuitively, it makes sense that we can’t evaluate our model on 
the training data

–As with any training task, you eventually remember the task 
too well (you overfit!)

• There are some cases where we can bound the test set 
performance in terms of training set performance

–VC dimension! 
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What about the validation set?

• In theory, the model 𝑓 is only trained on the training set

• In practice, we choose different hyper-parameters of 𝑓 and 
iterate the training process

– E.g., number of neighbors in KNN

–After each iteration, we evaluate the model’s accuracy on 
the validation set only (not the test set!)

–Why?

–We can overfit the hyper-parameter values also

• Once we train a good model, we evaluate on the test set

– If there is a big difference between the test and validation 
sets, then overfitting is likely to blame
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Cross Validation

• When the test set is not large (a few dozen examples), 
Hoeffding’s inequality provides loose bounds

• Cross validation very useful in this case

– Split the data randomly into 90% training and 10% testing

– Train on the training data and record the test accuracy

– Repeat multiple (e.g., 10) times

– Take the average test error over all runs

–A better estimate of generalization error than a single split

• Most modern datasets are big enough such that this is no 
longer an issue

– Cross validation is still useful but is not commonly used 
since it’s quite computationally expensive
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Bias, Variance, and Model Complexity

• We’ve already seen examples of models that perfectly overfit 
the training data without having any generalization capacity

– E.g., a table with rules

• Turns out this is a general phenomenon that has to do with a 
model’s complexity

– The more complex a model is, the easier it is to achieve zero 
training error

–However, it is also easier to overfit
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Model Complexity vs Generalization

• Typically, there exists a point beyond which increasing the 
model complexity does not bring any generalization benefits

– Book authors trained a LASSO algorithm on simulated data

– LASSO is a more sophisticated regression technique
• See book if you are interested

20
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Model Complexity vs Generalization

• Typically, there exists a point beyond which increasing the 
model complexity does not bring any generalization benefits

–As the model complexity is increased:
• Train error (bias) decreases, but eventually test error starts 

increasing (overfitting!)

• Test error variance increases; models are sensitive to training noise
21
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Understanding deep learning (still) requires 

rethinking generalization
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Overview

• This paper is actually an updated version of a 2017 paper with 
the same name (without the ‘still’)

• The authors show that generalization is not a well understood 
notion

– In classical learning theory, good performance on the 
training set should lead to similar performance on the test 
set (when overfitting precautions have been made)

– This paper shows that this need not be the case

• The notion of a “distribution” is really not well defined (at least 
in the case of images)
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Theoretical Bounds on Generalization Error

• The classical approach is to quantify the classifier’s expressive 
power (also known as capacity)

• Intuitively, argument works as follows:

– Suppose you have a simple classifier and you have correctly 
classified a “large” training set
• “Simple” as measured through a complexity measure such as VC 

dimension or Rademacher complexity

– Chances are you’ll correctly classify new points also (you’ve 
already seen a large chunk of the distribution)

• Traditional generalization error arguments don’t work for NNs

– In some ways, it is surprising that they generalize at all
• There are many methods to fit the training data that don’t 

generalize
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Random Labels

• First experiment in the paper

• Randomly shuffle all labels

– By design, generalization isn’t possible

• One way of assessing the NN capacity

– Is it able to learn (i.e., memorize) even the shuffled labels?

– Is the learning going to slow down or be otherwise 
adversely affected by the irregular training set?
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Random Pixels and Shuffled Pixels

• Second set of experiments

• Random pixels: keep the original labels, but replace all pixels 
with random noise

–Once again, generalization isn’t possible

• Shuffled pixels: keep the original labels, but shuffle pixels using 
the same transformation for all images

–Depending on the transformation, this may add little to 
significant noise
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Training Results, CIFAR10

• In all cases, the NN is able to memorize the entire training set!

• Training with random labels takes the longest but it still 
converges to 0 loss

– Training with random pixels is faster probably because the 
data is more separated in space due to the noise
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Label corruption, CIFAR10

• In order to assess the effect of label corruption on training and 
generalization, the authors also try corrupting a fraction of the 
labels

– Ranging from 0% to 100% of all labels are corrupted

• Higher label corruption makes it significantly harder to overfit 
the training set

• Higher label corruption leads to higher generalization error
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Training/Test Results Summary, CIFAR10

• All sufficiently large models can
perfectly overfit training data

• Regularization improves generalization

– But not necessary or sufficient

–Major overfitting even with
generalization

• Both convolution and fully-connected
NNs show the same trends
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Training/Test Results Summary, ImageNet

• Similar to CIFAR10

–Overfitting only 95% of training data (still very surprising!)

• Regularization helps generalization

– But once again not necessary or sufficient (still major 
overfitting even with regularization)
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Role of Regularization

• Remember Occam’s Razor

–Usually want the simplest model that can learn the task

– This is what regularization tries to achieve

• Standard deep learning regularization techniques (dropout, 
weight decay, batch normalization) do not prevent overfitting 
in CIFAR10

–Only works for some smaller models (AlexNet) on ImageNet
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NN Expressivity

• Turns out that it doesn’t take a very large NN to perfectly 
overfit a given training set

• Theorem: Given a training set 𝑆 = {(𝑥1𝑦1), … , (𝑥𝑛, 𝑦𝑛)} of size 
𝑛, where each 𝑥𝑖 ∈ ℝ𝑑, there exists a 2-layer NN with ReLU 
activations and 2𝑛 + 𝑑 weights that can perfectly overfit 𝑆.

• Proof is not very hard

• This means that even very high-dimensional datasets can be 
overfit with small NNs

–Hence we need to rethink generalization
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Conclusion

• Generalization is one of the most important aspects of ML

• It is especially important for expressive models such as neural 
networks where overfitting is very easy

• The most robust method of establishing your model’s 
generalization performance is through a test set

– The larger and more diverse, the better!
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