Convolutional Neural Networks




Reading @ Rensselaer

* Deep Learning: chapter 9
— https://www.deeplearningbook.org/contents/convnets.html



https://www.deeplearningbook.org/contents/convnets.html

Overview @©@ Rensselaer

CNNs are one of the most successful classes of NNs

* Specialized for tasks with known topology and grid-like inputs
—E.g., image processing, point-cloud processing

Inspired by the visual cortex of the brain that is known to
perform convolution

— Convolution is very effective at recognizing object edges,
shades, etc.

— David Hubel and Torsten Wiesel received a Nobel prize for
these findings

CNNs can be considered as a subclass of fully-connected NNs,
with a bunch of 0 weights and a bunch of shared weights




The convolution operation @ Rensselaer

* In math, convolution is an operation on two functions that
produces a third function

Typically the functions are signals (i.e., functions of time)

* Convolution can capture many natural phenomena

— Filtering out noise in data, modeling the response of a
circuit to an electrical impulse, etc.

Definition
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Convolution, cont’d @©@ Rensselaer

* Also has a discrete-time version

(From= Y flogh -

k=—o0

e Mostly used in analyzing control/industrial systems
* g isthe system’s response to a “unit” impulse
* f is the specific input signal (multiplied by the impulse)
* g isreversed for mathematical convenience

e Convolution is commutative
fxg=g+f
—this is the benefit of reversing time




Example

® Rensselaer

* Suppose during my PhD | publish 0,0,1,2,3,1 papers each year

— Each paper is cited 100,50,25,0 times a year at 0,1,2,3 years

How do | calculate my total citations per year?

— Convolution!

Citations per paper is the system’s response, g, to my input, f

To calculate number, reverse g and convolve

In year 3
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In year 5
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Motivation

® Rensselaer

e Pattern matching
—signal f is the input example (e.g., image)
—signal g is also known as a kernel in ML
— a convolutional filter tries to find similar patterns in the data
(e.g., cats, dogs, etc.)
* Training
— Each kernel has few parameters, so easier to train
—Similar to a (very) sparse fully-connected NN

* Equivariant representation
— More on this later




Convolution example

®) Rensselaer
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Convolutional Kernel Structure

® Rensselaer

* Dimensions:m Xn
— Usually 2D, but can also be 1D
— A total of m * n weights (plus one optional bias parameter)

* Images usually have ¢ channels (i.e., a 3" dimension)
—e.g., RGB (red, green, blue)
—one weight per channel
—total number of weights becomes m *n * ¢

* Kernel dimensions usually much smaller than input

— Need to slide it right and down, using same weights —
shared parameters




Convolutional Kernel Structure, cont’d @ Rensselaer

 Stride
— Step size when sliding (right and down)
—Typical values are 1 and 2, though others possible, too

e Padding
—If kernel doesn’t fit on the last step(s), extend image by Os
— Could distribute the Os on both sides evenly
* Computing output dimension of a kernel is tricky because of
these issues

—E.g., suppose inputisa 32 X 32 image and kernel is 4 X 4
with a stride of 1

— Can slide it across and down 29 times, so output is 29 X 29
—You need to know these details when constructing your NN




CNN Example: CIFAR10 @) Rensselaer

* Simple CNN architecture on CIFAR10
— Each filter’s output is one channel in the next layer

—How many weights does the 2" hidden layer have?
* Each filter has 43 weights, so total number is 8 * 43 = 512

—FC layer has 200 * 5408 = 1081600
29 X 29 X 4 26 X 26 X 8

Input image:
32X 32 X3

Each neuron has

Convolution: Convolution:

4 X 4 x 3 filters 4 X 4 X 4 filters 26 x 26 * 8 = 5408
inputs "




A very simple convolution

®) Rensselaer

* Take an image and form a new image by subtracting from each
pixel its neighboring pixel to the left

What does the kernel look like?

[-1 1]
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Convolutional Layers as Sparse
“Fully”-Connected Layers

Input

® Rensselaer
Kernel
Wo | W1
Wy | W3
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Convolutional Layers as Sparse
“Fully”-Connected Layers

® Rensselaer

Layer 1

Note the drastic savings in

number of parameters!

* A fully connected layer would
have 4 * 9 parameters
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Benefits of convolutional layers over fully
connected layers

® Rensselaer

* Very few parameters for similar representation complexity

— Fully-connected NNs are universal approximators but finding
the right parameters is hard in high-dimensional spaces

— CNNs are tailored for grid-like inputs and have sufficient
expressive power with fewer parameters
* Easier to train
— Both faster and better optimization since searching in lower-
dimensional spaces
* Require less memory

— Not terribly important but could make a difference on an
embedded device




Translational equivariance @) Rensselaer

* If we translate the image (e.g., move to the right), the
convolved image is similarly translated

flg() = g(f(x))
* Not quite invariant to translation, but next best thing
— Useful image features still propagated to the next layer
— For example, first layer may be trained to detect edges

e Convolution is not naturally invariant to rotation or scale
— Other mechanisms are necessary for these
—E.g., data-augmentation




Pooling ® Rensselaer

* A small layer that usually goes hand in hand with a
convolutional layer

— Newer architectures do not use it as much, so it doesn’t
seem to be essential
* Usually convolution is followed by an activation as before
— Pooling comes after the activation

* Pooling is a local function that we slide across the image
—E.g., take the mean/max of nearby pixels

POOLING STAGE
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Pooling Motivation @) Rensselaer

* Local translation invariance
— If we shift pixels by a few places, max pooling will not be
affected
* Useful for downsampling

—If input image is too large, can use max pooling to reduce it
to required size while preserving high-level features

—If used in the middle of the NN, can reduce the number of
parameters in the rest of the NN
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Typical Convolutional Layer Summary @ Rensselaer

* Picking kernel size depends on application e——
— Standard choicesare 8 X 8,16 X 16 T

— Might need bigger if image is very big Comvolutional Layes
* Stride is usually 1 but bigger values may Pooling stae
be more efficient (fewer outputs)
* Padding is not very important, but you Detector stage:

. . Nonlinearity
need to be careful since it affects the oo rectified linear
number of outputs A

Convolution stage:
* Pooling does not help tremendously but Affine transform
may lead to more stable training A
* Typically, a CNN ends with a fully-connected Lnput to layer

layer or two, partly to reshape the output
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